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M
2CAMI is a working group dedicated to
Modeling and Monitoring of Computer
Assisted Medical Interventions within

the CAMI Labex. It aims at unifying data ac-
quired from different surgical trainers and pro-
cedures for collaborative research. In this pa-
per, we propose a generic structure for multi-
modal dataset that allows faster development
and easier processing. With such formalization,
our objective is to go beyond the state of the art
by sharing various types of data between inter-
national institutions and merge methodological
approaches for better detection and understand-
ing of surgical workflows.

1 Introduction
For the past decade, the medical community has shown
a growing interest in biomedical international compe-
titions, named challenges. Since 2007, more than 120
challenges have been proposed on the grand-challenge
platform1 where various research fields are addressed
such as image segmentation and registration, anatomi-
cal structure localization and tracking or surgical work-
flow detection and understanding. Through such plat-
form, multiple types of data are shared going from point
cloud depth image acquisition to CT or MRI segmented
images. These challenges share the same goal: use
pre-clinical and clinical data in order to validate and
evaluate methodologies that are developed for biomedi-
cal analysis purposes.

1https://grand-challenge.org/
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Figure 1: Pipeline for data conversion into a standardized
output for M2CAMI applications.

Focusing on surgical workflow detection and under-
standing, various datasets have been released over the
last years, where multiple types of data are accessible.
For each dataset, data representation and storage are
unique because of the acquisition setup and the per-
sonal requirements. However, this sharing model is not
suitable for collaborative research due to the heteroge-
neous representation of the same data type. Moreover,
such approach does not promote the use of multimodal
data for multiscale processing because of the complex
integration of various data types and formats.
In this paper, we address the need of a standard for-
malism for multimodal data representation and storage.
By taking into account the available datasets in the
M2CAMI community, we propose a generic structure
and a first implementation for data conversion to a
generic format that is readable and usable in the dif-
ferent applications developed into the M2CAMI group
(fig. 1).

Page 1 of 3

mailto:fabien.despinoy@univ-rennes1.fr
https://grand-challenge.org/


F. DESPINOY et al. Surgetica 2017 Strasbourg, France – 20 - 22 Nov.

(a) Video data. (b) Kinematic data. (c) Transcription data. (d) Evaluation data.

Figure 2: Multimodal data of surgical workflow available into the M2CAMI collaborative research group.

2 Methods
In the M2CAMI group, data acquisition and analysis
are oriented towards surgical workflow detection and
understanding. In order to build a unified framework
to convert data into a generic representation, we pro-
posed a two-step approach. The first step was the
inventory of the different available data into the work-
ing group. Then, in the second step, we described a
common formalism for data representation and storage.
From the M2CAMI community, two datasets are pub-
licly available: NeuroSurgicalTools [1] and Cholec80 [2]
where the latter has been already used for a previous
scientific challenge2. To generalize our work, we used
also three other available datasets: JIGSAWS [3] as
well as acquisitions performed during previous CAMI
works [4][5].

2.1 Data inventory
These datasets contain various data types that can be
sorted into four distinct categories. Videos are (fig. 2a)
automatically captured from the surgical field by record-
ing the endoscopic point of view, or from the entire
operating room with additional cameras. They can
also be expressed as a set of images. Kinematic data
(fig. 2b) is automatically captured from robotic systems
or additional tracking devices to describe the surgical
instrument motions over the time. Transcription data
(fig. 2c), or annotations, is most of the time manually
generated by human observers and describes the differ-
ent actions, instruments or events taking place during
the procedure. Evaluation data (fig. 2d) quantifies per-
formance of the surgeon to achieve a clinical task or
procedure. It can be automatically calculated from sur-
gical trainers or manually generated by human experts
and is necessary for surgical workflow referenced-based
evaluations. As an extension to these four categories,
unusual clinical data types are emerging and combine
annotations with kinematics such as human body pose
annotations for medical staff analysis [6]. To cover the
full spectrum from training to interventional clinical
data available into the M2CAMI group, we developed
an inventory form based on a previous formalism [7] to
make a list of the different data and structures available.

2http://camma.u-strasbg.fr/m2cai2016/

2.2 Generic data representation

As previously mentioned, a same data type can be rep-
resented in different ways. For instance, video is a set
of images that is embedded into a streaming container.
However, depending on the format, the encoder and the
output container it can be difficult to use it for process-
ing purpose. Thus, our objective is to define a standard
representation that rely on open source protocols (e.g.
x265 for video codec, Boost.PropertyTree for configura-
tion file) to ease broadcast of our developments. This
standard representation can be developed at two differ-
ent scales. At the global level, we provide guidelines
and tools to uniformly structure dataset in order to ease
sharing, processing and hard data storage. Additionally,
standardized header files are integrated into datasets
to regroup data properties for conversion management.
At a second level, we propose a C++ language-based
container that stores data synchronously into memory
for processing (e.g. as an extended map for data series).
The main advantage of the presented structure is to be
easily extended to add new types of data. The only as-
sumption we rely on is the data synchronization where
for each timestamp in the timeline there is at least one
sample from each data type available in the dataset.

3 Conclusion and Perspectives

At the current stage, data conversion seems feasible to
provide larger datasets for each partner of the M2CAMI
group. Relying on open source protocols, the current
implementation is shareable between members and im-
provements can be easily undertaken. The added value
of the current work will be emphasized by the con-
nection of various developments coming from different
teams, including surgical context detection [2] that will
provide entry frame for instrument tracking [8]. The
output information from the tool tracking will be used
for gesture recognition [9] in order to, at the end, ob-
tain a complete comprehension of the surgical context.
These are the first steps towards generation of new
decision-making systems where multimodal data allows
to capture and understand surgical events for training,
teaching and surgical assistance purposes.
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