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ABSTRACT— In this paper, RISE Controller (Robust Integral of the Sign of the Error) is proposed for class I of 
Underactuated mechanical systems. This class is characterized by two degrees of freedom and one control input. This 
approach is based on a global change of coordinates where the system is transformed into cascade strict feedback form. 
Through this transformation, two novel desired trajectories are proposed for the design of the controller. 

Experimentally, implementation of this approach has some drawbacks. Most of real systems are only equipped with 
position sensors (i.e. encoders). Velocities and accelerations are usually non-measurable. Indeed, the RISE controller is 
depending on the first derivative of the position measurement of the system. Furthermore, experimental quantities 
contain a noisy measurement and the latter is amplified in the computation of the velocity in real time. This may 
decrease the performance of the closed loop system. To overcome, these drawbacks, a HOSM differentiator is used to 
estimate, the velocity measurement of the system. 

To validate the effectiveness of this approach, extensive real-time experiments are conducted for the stabilization of 
the Inertia Wheel Inverted Pendulum (IWIP), where the system is under unmatched disturbances.  

KEYWORDS: Nonlinear RISE-based control design, HOSM differentiator, Underactuated mechanical system, 

Inertia Wheel Inverted Pendulum. 

  

 

1. Introduction   

In recent years, control of Underactuated Mechanical Systems (UMS) has got growing attention. For the same 

configuration, an (UMS) requires less control than fully actuated system. This feature decreases the weight, allows 

eliminating certain control devices and reduces the cost of conception. Furthermore, the control of such system presents 

a control solution in case of an actuator failure. It guarantees the good operation of the system and ensures the 

continuity of difficult missions [1]. 

Although, (UMS) invokes challenges that are not found in fully actuated systems. It presents a restriction which 

makes the procedure of the control more complicated. When some degrees of freedom are not directly driven by 

actuators, a higher nonlinear coupling between actuated and non actuated coordinates makes the control design difficult. 

This class of system is often called a non-minimum phase system because the zero dynamic is unstable. Among the 

control difficulties of this class is the lack of feedback linearizability and classical control techniques cannot be directly 

applied to the system. 

     UMSs are studied on case by case. There is no general theory or common approach to control all kind of 

underactuated mechanical systems. Some researchers were focused on the classification of some known examples of 

underactuated systems. Using the method of control flow diagram, Seto and Baillieul proposed three structures namely 

chain, tree and isolated vertex [2]. These obtained structures present the interaction forces through the degrees of 

freedom. Several control approaches were proposed for this type of classification, like backstepping, sliding mode, for 

more details see [1]. 

 Another classification is based on the structural properties of the system like (interacting inputs, kinetic symmetry, etc) 

was proposed by [3]. 
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Using explicit change of coordinates for system with two degrees of freedom, three normal forms were identified 

called feedback form, feed-forward form and non-triangular linear quadratic form. The author proposed a backstepping 

procedure for the first form and a forwarding scheme for the second form. 

More of this classification, a wide range of control approaches have been proposed in the literature, partial feedback 

linearization [4], passivity [5] [6], adaptive neural network-based controller [7], stable limit cycle generation [8] to 

name a few. 

The sliding mode control (SMC) has received widespread attention in control of underactuated mechanical systems. 

It is insensitive to external disturbances and has a finite-time transient. After a transformation of the system dynamics 

into a quasi-chained form, a nonlinear robust controller is developed in [9] [10] to make the system state variables 

staying in the sliding manifold, and vanishing asymptotically towards the equilibrium point. In [11], a combination of a 

high-gain observer and a first-order sliding-mode controller was proposed for the stabilization of the inertia wheel 

inverted pendulum. A change of coordinates was made in order to obtain the normal form. Then the system is 

decoupled into linear and non-linear subsystems. A high-gain observer is used for the estimation of the states. However, 

classical sliding mode controllers are characterized by a higher frequency switching known as the “chattering 

phenomenon”, causing dangerous damages to the actuators. 

In this paper, we are interested on implementing another robust controller which belongs to the set of sliding mode 

controllers, namely the Robust Integral Signum of Error (RISE) controller [12]. The proposed approach is related to the 

class I of underactuated mechanical systems defined in [3]. Many theoretical extensions and practical applications of 

this control strategy have been reported in literature. And it was applied to a wide variety of systems including 

autonomous underwater vehicle [13], Multi-Link Flexible Manipulator [14], parallel robot [15], a servo system of a 

Hard Disc Drive (HDD) [16]. In general case, this control was applied to a fully actuated mechanical system and cannot 

be applied directly to an underactuated mechanical system. We proceed by several steps. Firstly, we refer to the change 

of coordinates presented in [3]. This change of coordinates transforms the system on strict feedback form. This 

transformation simplifies the control design. It decouples the original system in two subsystems, where a new control 

input appears in the actuated subsystem and don't have effect on the unactuated subsystem. Secondly we define a new 

desired trajectories and error tracking according to the new transformation. Then, we design the RISE controller using 

the error tracking and its first derivative. Using this method experientially in an underactuated benchmark, a chattering 

phenomenon is observed in the control input. Indeed, the position control is a noisy signal, and its derivative is 

calculated by numerical derivation in real time. This is amplifying the noise in the velocity signal, likewise the control 

input. To overcome this problem, we decide to estimate the velocity using a second order differentiator. This control 

schema is validated in real time in a well known underactuated benchmark system namely the inertia wheel inverted 

pendulum. 

In the second section, we present a general background on transformation of system in strict feedback form and 

introduce the application of RISE controller using such transformation. The section 3, we apply this control schema to 

stabilize the inertia wheel inverted pendulum. In the next section, we present experimental results and attest the 

advantages of using a differentiator to estimate states of the system. Conclusion and future work are given in section 5. 

2. Class I of underactuated mechanical systems 

The general mathematical model of underactuated mechanical systems with two degrees of freedom is described by 

   ( ) ̈     ( ) ̈    (   ̇)                                                                                                                          (1) 

   ( ) ̈     ( ) ̈    (   ̇)                                                                                                                          (2) 

There are two modes of actuation defined depending on the application.  

 (  )         is the control input  and       

 (  )         is the control input  and       

 

The mode (  ) represents the class I of underactuated mechanical system. The TORA, the Acrobot and the Inertia 

Wheel Inverted Pendulum (IWIP) belong to the mode (  ), whereas the inverted pendulum is actuated under the mode 

(  ). Underactuated mechanical systems of class I can be transformed in strict feedback form. 
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In this paper, we are interested in the mode (  ). The dynamic of the system can be partially linearized into a double 

integrator due the lack of control input in the first equation (1). The linearization procedure is called collocated partial 

feedback linearization. Subsequently, we present the transformation of the system in strict feedback form. 

Definition 1: A nonlinear system is in strict feedback form, has the following triangular structure. 

 ̇   (    )                                                                                                                                                                      (3) 

 ̇                                                                                                                                                                                   (4) 

 ̇                                                                                                                                                                                 (5) 

 ̇                                                                                                                                                                                   (6) 

2.1. RISE controller: Application to class I of underactuated mechanical systems  

      In this section, we provide the details to design a RISE controller for class I of underactuated mechanical systems. 

The first step consists on transforming the system in strict feedback using a global change of coordinates. 

2.1.1.   Strict feedback linearization 

Underactuated mechanical system of class I with two degrees of freedom can be transformed into cascade nonlinear 

system in strict feedback form.  

Assuption1: Using the lagrangian of the system, and if the quantity    
  (  )   (  ) is integrable, a global change 

of coordinates can be obtained. 

       (  )                                                                                                                                                                 (7) 

 (  )  ∫    
  ( )   ( )   

  
 

                                                                                                                                        (8) 

      (  )      (  )                                                                                                                                              (9) 

                                                                                                                                                                                  (10) 

                                                                                                                                                                                  (11) 

 

Then, the following global change of coordinates obtained from the Lagrangian of the system, transforms the 

dynamic of the system into a cascade nonlinear system in strict feedback form.  The obtained cascaded system is an 

interconnection of a linear (double integrator) subsystem, and a nonlinear core subsystem. 

The backstepping procedure has proven to be successful for this type of transformation system [3]. The system is 

transformed as follow 

 ̇     
  (  )                                                                                                                                                                 (12) 

 ̇    (    (  )   )                                                                                                                                                   (13) 

  ̇                                                                                                                                                                                 (14)                                                                                                                                                                        

  ̇                                                                                                                                                                                 (15) 

where   (     )   
  ( )

   
 ,  ( ) is the potential energy of the system and   is the new control from collocated partial 

feedback linearization. The torque and the new control are related through this relation 

   ( )   (   ̇)                                                                                                                                                       (16) 

 ( )     ( )     ( )   
  ( )   ( )                                                                                                                     (17) 

 (   ̇)    (   ̇)     ( )   
  ( )  (   ̇)                                                                                                               (18)                                                                                                                                                                       

 

2.1.2. RISE control design 

Our objective, is the control of class I underactuated mechanical system. The following hypotheses are essential to 

ensure the design of RISE controller. 

Consider a nonlinear system with dynamics of the following form 

 ( ) ̈   ( )                                                                                                                                                          (19) 

where   is the control input vector,   and  are uncertain nonlinear functions. 

Assuption2: The uncertain nonlinear system matrix   is bounded from below by a positive constant   and from 

above by a non decreasing positive function  . The following inequality holds: 
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 ‖ ‖        ‖ ‖                                                                                                                                          (20) 

Assuption3: The nonlinear functions   and  are second-order differentiable. 

    Assuption4: The desired reference trajectory is continuously differentiable with respect to time. 

To design the RISE controller, we need auxiliary error signals, denoted by   ( )   *   + and defined in the following 

manner. 

                                                                                                                                                                             (21) 

 ̇   ̇   ̇                                                                                                                                                                      (22) 

    ̇                                                                                                                                                                       (23)                                                                                                                                                                        

   ̇                                                                                                                                                                        (24) 

 

where    and    are positive constant gains.    is the desired trajectory tracking and  ̇  is the derivative of the desired 

position.  ( ) cannot be used in the control design. It requires the measurement of the derivative error   which depends 

on the acceleration measurement. The equation of the control input is given by [13] as follow 

  (    )   (    )  ( )                                                                                                                                (25) 

 ̇  (    ) ̇       (  )                                                                                                                                         (26) 

  ( )                                                                                                                                                                            (27)    

                                                                                                                                                                     

where    and   are positive constant gains and the      is the Signum function. 

2.2. Robust Levant differentiator 

HOSM differentiators were developed in order to provide the derivatives required to implement HOSM controllers. 

They are known for their robustness in presence of noise and their exactness in its absence. 

 ̇                                                                                                                                                                                (28) 

         
 

 |    |
 

      (    )                                                                                                                        (29) 

 ̇                                                                                                                                                                                (30)                                                                                                                                                                        

         
 

 |     |
 

      (     )                                                                                                                     (31) 

 ̇          (     )                                                                                                                                              (32)   

If          and   ( )    ( )   .   is the output to be estimated,    is its estimated.    and   are its first 

and second derivative.   ,   and    are positive gains. In the next section, we design a control input for the inertia 

wheel inverted pendulum. We use the HOSM differentiator to estimate states of the system. 

 

3.  Application example : IWIP 

         The proposed RISE control scheme for the Inertia wheel inverted pendulum is presented in this section. The 

description of the system and design of the proposed control scheme are presented. 

3.1. The inertia wheel inverted pendulum 

The inertia wheel inverted pendulum is a flat underactuated mechanical system with two degrees of freedom and 

one control input. The joint   between the frame and the pendulum body is unactuated (passive). The joint between the 

body and the inertia wheel    is actuated (active). The unstable equilibrium point corresponds to the position in which 

the pendulum is pointed upwards. In absence of a control force, the pendulum is unable to maintain this position 

indefinitely. To ride up the pendulum, the torque generated by the sum of the gravity  and the force   must be lower 

than the applied torque acting at  , and generated by the force    see figure 1. The motor torque of the rotating wheel 

produces an angular acceleration, which generates torque acting on the pendulum. Therefore, the goal is to find control 

acting on the inertia wheel to bring the pendulum from its initial position to its unstable equilibrium point and to 

maintain it, in spite of external disturbances. 

The dynamical model of IWIP is obtained by using the Euler–Lagrange method. The Lagrangian formulation for this 

system is given by 

  
 

 
(   ̇ 

    (     )
 )        (  )                                                                                                                  (33)   
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The dynamic model of the IWIP is described by 

[
      
    

] [
 ̈ 
 ̈ 
]  [

      (  )

 
]  [

 
 
]                                                                                                                      (34) 

 

                                                             

Figure 1. Schematic view of the inertia wheel inverted pendulum: the first joint   is unactuated, while the second 

joint    is actuated. 

where   ,     -, is the vector of generalized positions,   is the torque  applied by the actuator on the inertia 

wheel. The parameters of the system are summarized in table 1. 

      
      

                                                                                                                                                      (35) 

                                                                                                                                                                      (36)   

 

Table 1. Dynamic parameters of the IWIP 

Parameter Description Unit 

   Pendulum angle with respect to vertical axis     

   Wheel angle with respect to pendulum axis     

   Rotational Inertia of pendulum       

   Rotational Inertia of Wheel       

   Mass of the pendulum    

   Mass of the Wheel    

   Length from pendulum base to pendulum center of mass   

   Length from pendulum base to Wheel center of mass   

  Constant of gravitational acceleration      

3.2. Control design 

In accordance with the theorem (4.2.1) in [3], the global change of coordinates is defined by 

   
  

  ̇̂ 
 (    ) ̇̂     ̇                                                                                                                                           (37)   

    ̂                                                                                                                                                                              (38)   

                                                                                                                                                                                  (39)   

 

where   ,        - is the novel state,  ̂  and  ̇̂  are the estimated angular position and estimated angular velocity of 

the pendulum through the HOSM differentiator. 

Using the Lagrangian formulation, the system is transformed to a cascade form as follows 

 ̇  
  

   
       (  )                                                                                                                                                   (40)   

 ̇  
  

    
 
    

    
                                                                                                                                                                 (41)   

 ̇                                                                                                                                                                                 (42)   
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The angular position of the rotating wheel is not used as a state in the new transformation, for the reason that, it does not 

play any role in the dynamic and does not appear in the lagrangian equation.    is a virtual control input of the 

  subsystem. Using a sigmoidal function –        (  ) for the   subsystem can globally asymptotically stabilizes (37), 

by choosing this valid Lyapunov function  (  )  
  
 

 
. 

So, using the novel transformation, two novel desired trajectories are defined. They are described as follows 

                (  )                                                                                                                                              (43) 

 ̇   
      (  )

(  (  
 ))

                                                                                                                                                               (44)   

To design the control schema, we need to define the error tracking using the novel desired trajectories and the estimates 

states. 

 ̂   ̂                                                                                                                                                                        (45) 

 ̇̂   ̇̂   ̇                                                                                                                                                                     (46) 

 ̂   ̇̂     ̂                                                                                                                                                                  (47)                                                                                                                                                                        

Using the equation (16)-(18), (25) and (26) the control input is described as follow 

  
   

(    )
  

         ( ̂ )

(    )
                                                                                                                                                (48) 

  (    ) ̂  (    ) ̂ ( )                                                                                                                                (49) 

 ̇  (    ) ̂       ( ̂ )                                                                                                                                         (50) 

 Figure 2 presents the block diagram of the proposed control approach.                                                                                                                                                                 

                                  

                                              Figure 2. View of the block diagram of the proposed control approach 

4. Experimental results 

The efficiency of the controller is confirmed by real time experiments, carried out on the testbed of the inertia wheel 

inverted pendulum (IWIP), designed and developed at LIRMM . Figure 3 presents the experimental testbed of (IWIP). 

 

                              

                                           Figure 3. View of the IWIP experimental testbed 

Due to mechanical stops, the pendulum angle   , is constrained to remain within the interval [-0.2 rad, 0.2 rad]. It is 

measured with respect to the vertical through a micro strain FAS-G inclinometer. The inertia wheel angular position is 

measured by an encoder linked to the actuator of the system (Maxon EC-powermax 30 DC motor), allowing to compute 

Inclinometer 

Pendulum 

Inertia wheel 

Variable Frequency 

drive 

Power supply (12V) 

Control PC 

Interface card 
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its velocity in real time. The control approach is implemented using C++ language and the whole system runs under the 

Ardence RTX real-time OS. 

Two experimental scenarios are carried out and discussed. In the first one, the proposed control scheme is implemented 

in nominal case, without considering any external disturbances. In the second one, the system is subject to external 

disturbances, to show the robustness of the proposed approach. The same parameters are kept same for both scenarios. 

The parameters used in experiment are presented in table 2. 

                                                    Table 2. Summary on control design parameters 

Parameter Value Parameter Value 

   7.3  ̂ ( ) 0.16 

   3.2   10 

  14.05    50 

   19.09    80 

   0.213    110 

  9.8   0.0130 

         

4.1. Scenario 1: Nominal case 

Figure 4 presents the response of the position and velocity of the pendulum     ̇ , and the angular velocity of the 

inertia wheel   . The RISE controller ensures a good stabilization of the pendulum around its unstable equilibrium 

point. The evolution of control input is presented in figure 5-(a). 

                                                    

Figure 4. Obtained experimental results for scenario1: Nominal case. Top: Pendulum angular position, Middle: 

pendulum angular velocity, Bottom: velocity of the inertia wheel 

         

Figure 5.  (a) Evolution of the control input (torque) versus time for scenario1: Nominal case. Solid line: Without 

HOSM differentiator Dash line: With HOSM differentiator. (b) The evolution of the estimated velocity (Dash line) and 

real measurement of the velocity (Solid line) versus time. 

(a) (b) 
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An improvement is observed when the controller is coupled with the HOSM differentiator. Indeed, the control input is 

depending on the velocity of the pendulum. The latter, is calculated by numerical derivation of the measured angular 

position of the pendulum, which is in general case contain a noise measurement. 

Thus, the noise presented in the control input makes a whirring sound of the actuator and affects the performance of the 

system. So, the use of the HOSM differentiator, to estimate the position and velocity of the pendulum improves the 

experimental results. 

Known for their robustness in presence of noise, HOSM observer is used in order to provide the derivatives required to 

implement the RISE controller.  In figure 5-(b), the real time measurement velocity (solid line) and estimated angular 

velocity (dash line) are presented. The plots are zoomed within the interval [6,7] seconds for clarity. The estimated 

signal is smoother than the computation of the velocity with numerical derivation. 

4.2. Scenario 2: Rejection of punctual perturbations 

To show the robustness of the proposed controller, the second scenario consists of a disturbing force applied to the body 

of the pendulum in different time of the experiment. The disturbance is generated by pushing the pendulum at 

approximately t = 6s, t = 14s and t = 21s.  Figure 6 presents the evolution of the system states.  
 

 

 

 

 

 

                                                       

 

 

 

 

 

 

 

             

 

 

Figure 6. Obtained experimental results for scenario2: Rejection of punctual perturbations. Top: Pendulum angular 

position, Middle: pendulum angular velocity, Bottom: velocity of the inertia wheel versus time. 

               
 

 

Figure 7.  Scenario 2: Rejection of punctual perturbations (a) Evolution of tracking error   versus time. (b) Evolution 

of the control input (torque) versus time. 

 

 

The effect of the punctual disturbances can be observed as peaks on the curves that appear at instants of application of 

the disturbing torques. The RISE controller is able to compensate the perturbations and maintain the system around the 

desired unstable equilibrium point. The evolution of the tracking error    versus time is presented in figure 7-(a). It 

(a) (b) 
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converges to zero after each perturbation. The controller is robust with respect to disturbance and performs an accurate 

stabilization of the inertia wheel inverted pendulum. Figure 7-(b) shows the evolution of the control input versus time. 

5. Conclusion and Future Work 

In the present paper, we propose a robust control approach for class I of underactuated systems. This class is 

characterized by one control input and two degrees of freedom. The control approach consists on transformation of the 

system in strict feedback form. Then novel desired trajectories were designed for the design of the RISE controller. To 

overcome, the problem of noisy measurement in experimental results, a HOSM differentiator was used to estimate the 

first derivative of the angular position. This method gives better results than the numerical computation of the first 

derivative. Real time experiment was conducted in the inertia wheel inverted pendulum to show the efficiency of the 

controller with respect to unmatched disturbances. 

The future work is ongoing to apply the RISE controller, on other class of underactuated mechanical systems. We 

can also use other extinction of the RISE control approach in order to improve the robustness of the IWIP. 
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