An Intelligent Compensation Through B-Spline Neural Network for a Delta Parallel Robot

Jonatan Martín Escorcia-Hernández, Hipólito Aguilar-Sierra, Omar Aguilar-Mejía, Ahmed Chemori, and José Humberto Arroyo-Núñez

Abstract—In this paper a PD controller with intelligent compensation is used to solve the problem of tracking trajectories for a Delta Parallel Robot with three degrees of freedom. This controller uses an artificial B-Spline neural network as a feedforward compensation term. To evaluate the proposed controller performance some numerical simulations under two different scenarios have been carried out in order to know its effectiveness respect to a simple PD controller.

Index Terms—Delta Parallel Robot, Learning systems, Trajectory tracking

I. INTRODUCTION

The Delta Parallel Robot (DPR) was invented in the early 80’s by Reymond Clavel (a professor at EPFL - Ecole Polytechnique Federale de Lausanne) [1]. This robot is mainly used in Pick and Place applications requiring high speed and good precision. The main industries where this type of robot is used are food, pharmaceutic, electronic, among others [2]. Devices based on DPR have also been used as 3D printers or haptic interfaces [1], [3].

For parallel robots, several control techniques have been implemented: nonlinear control, intelligent control, robust control, or a combination of the above to regulate the tracking of complex trajectories [4]. The Proportional-Integral-Derivatives controllers (PID) has been widely used in the industry for its simplicity and good performance [5]. However, the performance of the PID controller on DPR decreases due to internal disturbances caused by the set of closed kinematic chains [6], [7]. One of the main causes of the poor performance of the PID controller is due to the controller gains being calculated arbitrarily or by trial and error. The computed torque control is another control technique regularly used in parallel robots; this technique is based on inverse dynamics, so it is necessary to have knowledge of the matrices that make up the dynamics of the robot, [8], [9]. In [6] a fuzzy controller is used to regulate trajectory tracking of a DPR; in this controller the parameters of the fuzzy controller are adjusted by a particle swarm optimization algorithm. Although the results based on the fuzzy logic controller present a good performance in a closed loop, many problems related to the fuzzification rules exist, for example the defuzzification operations are unclear; besides this, operations demand high computational processing capacity. Due to the complexity of the dynamic model of DPR, some terms of the dynamic model are unknown, whereby control techniques are used based on state observers. In [7] an active disturbance rejection control (ADRC) is used, where the unknown terms are estimated by high gain observers. The ADRC cancels the effects produced by internal or external disturbances in the DPR and compensates the effects produced by unknown dynamics to decrease steady-state error. However the accuracy estimation of unknown parameters depends on a good tuning process at the gains [7], [10]. In [11] a hybrid controller is used based on two controllers that work in parallel. The first controller has the function of regulating the joint acceleration of DPR through a disturbance observer. The second controller is a sliding mode controller, which imposes the desired dynamic of the tangential, normal and bi-normal components of the tracking error signal, with the purpose of reducing the path tracking contour error. A drawback that the variable structure controllers show is the effects in the response, which is due to high switching frequencies.

The artificial neural networks (ANN) are used in the automatic control area to recognize parameters of nonlinear systems, adaptive control systems design, and intelligent compensators [12]. Since the end of the 20th century, the use of ANN has been increasing in several areas of knowledge due to its great capacity to adapt to various engineering problems and industrial applications [13]. Controllers that use ANN are employed to regulate nonlinear systems due to parametric uncertainty, unknown dynamic, and high coupling between state variables in the mathematical model of the system [14]. Artificial neural networks of instant learning exist, such as B-Spline Neural Networks (BSNN), that have favorable aspects and characteristics compared with other intelligent networks such as the back-propagation (BP) ANN and the radial base function (RBF) ANN [15]. The main advantage of the BSNN with respect to another ANN is that the control law is adapted every moment in the online process, while the other types need a previous offline training. The drawback of offline training is if the operating condition changes, it is necessary do another offline training again [16]. BSNN can be defined as a system that converts input patterns to their corresponding weight without performing many operations. It should be mentioned that the ANN BP and RBF need an offline training before implementing in the experiment or prototype. This situation requires more execution
model for the DPR has been taken by the work developed by [17]. Some simplifications for the dynamic model have been taken into account, these simplifications are discussed in more detail in these works [18], [19].

- The frictional forces of all types, whether dry or viscous, are neglected.
- The forearms mass are smaller than other DPR parts, its inertia can be neglected hence, forearm mass is divided in to two parts, one is added to DPR arm mass and the other part is added to the mobile platform mass.

Two different forces can be distinguished acting on the mobile platform. The gravity force which can be expressed by:

\[G_p = -M_pG \] (1)

where \(M_p = diag([m_1 m_2 m_3]) \) with \(m_i = m_p + 3m_{fa} \), \(m_p \) is the mobile platform mass, and \(m_{fa} \) is the forearm mass. The gravity vector \(G \in \mathbb{R}^{3 \times 1} \) is given by \(G = [0 \ 0 \ g]^T \) with \(g = 9.81 \text{ m/s}^2 \).

The inertial forces on the mobile platform due to the Cartesian acceleration \(\ddot{X} \in \mathbb{R}^{3 \times 1} \) are:

\[F_p = M_p \ddot{X} \] (2)

The torque contributions of \(G_p \) and \(F_p \) to each motor located in the base denoted by \(T_{Gp} \) and \(T_{fp} \) can be calculated using the inverse Jacobian matrix \(J_{inv}(q, \dot{X}) \in \mathbb{R}^{3 \times 3} \):

\[T_{Gp} = -J_{inv}^T(q)M_pG \] (3)

\[T_{fp} = J_{inv}^T(q)M_p \ddot{X} \] (4)

The acting forces on the DPR arms are the torque produced by the motors \(\tau \in \mathbb{R}^{3 \times 1} \), the torque due to the acceleration of the arms \(T_{AA} \in \mathbb{R}^{3 \times 1} \) and torque due to gravity on the arms \(T_{AG} \in \mathbb{R}^{3 \times 1} \); each contribution is represented as follows:

\[T_{AA} = I_{AA} \ddot{q} \] (5)

\(I_{AA} \in \mathbb{R}^{3 \times 3} \) is a diagonal matrix whose elements of the diagonal are formed by:

\[I_{aa} = I_{act} + I_{arm} + \frac{L_c^2 m_f}{2} \] (6)

Where \(I_{act}, I_{arm} \) are the inertia of the actuators and the inertia of the arms, respectively and \(L_c \) is the arm length. The torques produced by the gravitational forces acting on the arms are given by

\[T_{AG} = -M_{Ra}g \cos(q) \] (7)

\[M_{Ra} = diag([m_{ra} \ m_{ra} \ m_{ra}]) \] (8)

\[\cos(q) = [\cos(q_1) \ \cos(q_2) \ \cos(q_3)]^T \] (9)

Where \(m_{ra} = m_a L_c + \frac{m_{fa} L_c}{2} \), \(L_c \) is the length to the center of mass of one arm, and \(m_{fa} \) is the mass of the forearm.

Applying the virtual work principle, which states that the sum of all non-inertial forces must be equal to the sum of all inertial ones, we obtain:

\[\tau - T_{Gp} - T_{AG} = T_{AA} + T_{fp} \] (10)
TABLE I
DPR GEOMETRIC PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Arm length</td>
<td>0.3 m</td>
</tr>
<tr>
<td>l</td>
<td>Forearm length</td>
<td>0.624 m</td>
</tr>
<tr>
<td>Rb</td>
<td>Base platform</td>
<td>0.1267 m</td>
</tr>
<tr>
<td>Rp</td>
<td>Mobile platform</td>
<td>0.0497 m</td>
</tr>
</tbody>
</table>

TABLE II
DPR DYNAMIC PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_P</td>
<td>Mobile platform mass</td>
<td>0.19 Kg</td>
</tr>
<tr>
<td>m_a</td>
<td>Arm mass</td>
<td>0.29 Kg</td>
</tr>
<tr>
<td>m_fa</td>
<td>Forearm mass</td>
<td>0.28 Kg</td>
</tr>
<tr>
<td>I_arm</td>
<td>Arm inertia</td>
<td>0.0213 Kgm²</td>
</tr>
<tr>
<td>I act</td>
<td>Motor inertia</td>
<td>3.8 × 10⁻⁶ Kgm²</td>
</tr>
</tbody>
</table>

To express only the dynamic model in the joint space, we proceed to use the following relationship:

\[\ddot{X} = J_{inv} \dot{q} + \dot{J}_{inv} \ddot{q} \] \tag{11}

Rearranging the terms, the inverse dynamic model of the DPR can be written into the standard joint space form as follows:

\[M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = \tau \] \tag{12}

where:

- \(M(q) = I_{AA} + J_{inv}^T M_P J_{inv} \)
- \(C(q, \dot{q}) = J_{inv}^T M_P J_{inv} \)
- \(G(q) = T_{GP} + T_{AG} \)

The DPR kinematic and dynamic parameters are shown in Tables 1 and 2 respectively.

III. CONTROL STRATEGY

The control law for the DPR is given as follows:

\[\tau = K_p e_q(t) + K_d \dot{e}_q(t) + \hat{\sigma}(e_q) \] \tag{13}

where \(K_p \in \mathbb{R}^{3 \times 3} \), \(K_d \in \mathbb{R}^{3 \times 3} \) are diagonal positive definite matrices which are the feedback gains proportional and derivative respectively; the joint tracking error expression is given by \(e_q(t) = q_d(t) - q(t) \) where \(q_d(t) \in \mathbb{R}^{3 \times 1} \) and \(q(t) \in \mathbb{R}^{3 \times 1} \) are the desired joint trajectory and the measured joint position respectively.

The parts that integrate the structure of the BSNN are divided in three main parts, defined as follows: A 1-dimensional space to normalized inputs, a set of base functions, and the output function of the BSNN. Fig. 2 shows the main components that make up the BSNN and Fig. 3 shows the whole DPR control diagram. The main elements in the BSNN structure are the base functions, which are specified from a set of control point vectors. The Base functions of the BSNN are obtained using a periodic expression described by different authors [20], [21]; these functions are numerically stable, computationally efficient, and can deal with any strategic distribution of control points which are determined in an off-line process and must be delimited according to the possible BSNNs input values.

The output of the BSNN is obtained through a linear combination of the base functions’ outputs. Another important aspect of the BSNN is that the instant training is simply a linear optimization problem because the adjustable weights \((w_i) \) are linear coefficients, which makes the output linearly dependent on the set of weights [22]. The output of the BSNN can be written as [23]:

\[\hat{\sigma}_i = \sum_{i=1}^P a_i w_i = a^T w \] \tag{14}

where \(a \) is a \(P \)-dimensional vector which contains the outputs of the base for \(P = 1, \ldots, 4 \) and, \(w \) is the weights vector. The B-Spline base function is defined in the following form [24]:

\[a^j_K(e_q) = \begin{cases}
\frac{1}{\lambda_j - \lambda_{j-1} - 1} a_{j-1}^{K-1}(e_q) + \frac{\lambda_j - e_q}{\lambda_j - \lambda_{j-1}} a_{j-1}^{K-1}(e) & \text{if } e_q \in I_j \\
0 & \text{other case}
\end{cases} \] \tag{15}

where \(\lambda_j \) is the \(j \)-th control point and \(I_j = [\lambda_{j-1}, \lambda_j] \) is the \(j \)-th interval for \(j = 1, \ldots, 4 \), and \(K \) is the B-Spline function order which can take values of 1 to 4. The values for each control point \(\lambda_j \) are defined according to the range of possible values of the error signal.

A. Learning rule

The performance function establishes the type of learning rule, computational complexity and final model. In this paper a simple learning rule is required for its implementation, whereby a performance function of medium quadratic error (MQE) is
selected because it provides excellent results in most cases [15].

The rules of instant learning are formulated by minimizing
the instantaneous estimation of a MQE output performance
function and the parameters are upgraded using the downward
gradient rules. The gradient method can be implemented in two
different ways: a) batch learning and b) online learning. Batch
learning corresponds to the standard gradient method, where the
network weights are updated only once in each iteration of the
training process, after all learning examples are processed by the
network [25]. The online training is a variation of the standard
gradient method, where the networks weights are upgraded
after every learning example is processed. For this case we
chose to implement the online learning method. In neural
networks computational engineering, the gradient method is
commonly employed due to its simplicity and efficiency [26].
In the neuro-controller design, rules of downward gradient are
used, and the updating of the weights \(\Delta W(t-1) \) is done by
means of an instant learning rule, as follows [23], [27]:

\[
\Delta W(t-1) = \gamma \hat{\sigma}(t) - \frac{a(t)}{||a(t)||^2}
\]

(16)

\(\gamma \) is the learning relationship, \(a \) is the vector that contains
the output of the base functions, \(W \) is the weights vector, and
\(\hat{\sigma}(t) = \sigma(t) - \tilde{\sigma}(t) \), where \(\sigma(t) \) and \(\tilde{\sigma}(t) \) are the actual output
and the desired output of the BSNN respectively.

IV. SIMULATION AND RESULTS

The performance of the proposed PD controller with BSNN
compensation is evaluated using a trajectory for a Pick
and Place task. This trajectory is generated using polynomial inter-
polation of degree five [28], [29]. The function is given in this form:

\[x_f = x_i + r(t) \Delta x, \quad \text{for} \quad 0 \leq t \leq t_f \]

(17)

And:

\[r(t) = 10 \left(\frac{t}{t_f} \right)^3 - 15 \left(\frac{t}{t_f} \right)^4 + 6 \left(\frac{t}{t_f} \right)^5 \]

(18)

Where \(x_i \) is the initial position, \(x_f \) is the final position, both
are given in cartesian space, \(r(t) \) is the trajectory function
of two points, \(\Delta x = x_f - x_i \), and \(t_f \) is the duration of the
movement. Using (17) and (18) the desired trajectory for a
Pick and Place Task is generated which is shown in Fig. 4. For
the DPR simulation, the system is submitted to two different
scenarios. For the first scenario, DPR executes the trajectory
shown in Fig. 4 without any load on the mobile platform. In
the second scenario DPR executes the same trajectory but a
load of 1 Kg is added at different intervals of the trajectory;
Fig. 5 shows the desired trajectory in 3D with the changes in
the mass used for scenario 2.

The proposed PD with BSNN compensation performance is
compared with a simple PD controller in order to evaluate the
improvement obtained when a compensation term is added. The
parameters for the controllers are summarized in Table 3. To
quantify the performance of the proposed PD controller with
BSNN compensation versus the simple PD controller the Root
Mean Square Error (RMSE) formula is used, which allows us to
know with better precision which of the proposed controllers
offers a better performance for tracking trajectory tasks. The
Fig. 7. The first column are the control signals, and the second one to BSNN compensation term Scenario 1

Fig. 8. The first column corresponds to tracking error in Cartesian Space, and the second one in Joint Space Scenario 2

Fig. 9. The first column are the control signals, and the second one to BSNN compensation term Scenario 2

TABLE III
CONTROLLERS PARAMETERS

<table>
<thead>
<tr>
<th>PD/PD BSNN</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_P = 1045$</td>
<td>$K_D = 63$</td>
<td></td>
</tr>
<tr>
<td>$\gamma = 0.53$</td>
<td>$I_1 = [-1.5, -1.2, -0.9, -0.6]$</td>
<td></td>
</tr>
<tr>
<td>$I_2 = [-0.9, -0.6, -0.3, 0]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_3 = [-0.3, 0.3, 0.6]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_4 = [0.3, 0.6, 0.9, 1.2]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RMSE for the Cartesian and joint space are given as follows respectively:

$$RMSE_C = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (e_x^2(k) + e_y^2(k) + e_z^2(k))}$$ (19)

$$RMSE_J = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (e_{q1}^2(k) + e_{q2}^2(k) + e_{q3}^2(k) + e_{q4}^2(k))}$$ (20)

where e_x, e_y, e_z denote the Cartesian position tracking error of the mobile platform along the x, y, z axes, while e_{q1}, e_{q2}, e_{q3} are the different joint space tracking errors. Moreover, N is the number of samples and k the sample at a certain moment. The RMSE results for scenarios 1 and 2 are depicted in Tables IV and V respectively. According to the results, the improvement of the proposed PD BSNN controller exceeds the simple PD controller more than 70% for the first scenario when the DPR works without any payload; likewise for scenario 2, the improvement of the PD BSNN controller is greater than 30% with respect to the PD controller. The control signals with respect to time for both controllers and the behavior of the BSNN compensation term with respect to time are illustrated in Fig. 7 for scenario 1 and in Fig. 9 for scenario 2. As can be noted in Fig. 6 and Fig. 8 the steady-state error for the PD controller will never be zero; this is because the PD controller can not compensate the gravity term of the manipulator, unless the gravity vector is known and it can be include into the controller, or add an integral action at the PD controller, unlike the PD BSNN controller which, due to the neural network, tries to estimate the DPR dynamic model and in this way cancels the effects produced by gravity. PD BSNN controller alleviates the steady-state error in 3 seconds for the first scenario and 5 seconds for the second scenario.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a PD controller with intelligent compensation based on the B-Spline neural network which was applied in simulation to a DPR. An advantage of this
controller is that it is not necessary to have knowledge about the dynamic parameters of the system, only the range of possible values that the error signal can acquire should be considered. The results show the improvement of including the term of intelligent compensation, since it considerably improved the performance of the system under different requirements. For future work it is intended to implement this controller in real-time to a physical DPR and compare the performance obtained with the BSNN with respect to a PD controller with Radial Base Function Neural Network compensation.

ACKNOWLEDGMENTS

Thanks to the Program of Support to the development of higher education (PADES), agreement No 2018-13-011-047. Additionally J. Escorcia thanks to The Mexican Council of Science and Technology (CONACYT); Award no. 593804.

REFERENCES

