
HAL Id: lirmm-02124337
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02124337

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spotlighting Use Case Specific Architectures
Mohamed Lamine Kerdoudi, Mohamed Lamine Kerdoudi, Chouki

Tibermacine, Salah Sadou

To cite this version:
Mohamed Lamine Kerdoudi, Mohamed Lamine Kerdoudi, Chouki Tibermacine, Salah Sadou. Spot-
lighting Use Case Specific Architectures. ECSA: European Conference on Software Architecture, Sep
2018, Madrid, Spain. pp.236-244, �10.1007/978-3-030-00761-4_16�. �lirmm-02124337�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02124337
https://hal.archives-ouvertes.fr


Spotlighting Use Case Specific Architectures

Mohamed Lamine Kerdoudi12, Chouki Tibermacine2, and Salah Sadou3

1 Computer Science Department, University of Biskra, Algeria
2 LIRMM, CNRS and Montpellier University, France

3 IRISA- University of South Brittany, France
lamine.kerdoudi@gmail.com, Chouki.Tibermacine@lirmm.fr,

Salah.Sadou@irisa.fr

Abstract. Most of the time a large software system implies a com-
plex architecture. However, at some point of the system’s execution,
its components are not necessarily all running. Indeed, some compo-
nents may not be concerned by a given use case, and therefore they do
not consume/use or register the declared services. Thus, these architec-
tural elements (components and their services) represent a “noise” in the
architecture model of the system. Their elimination from the architec-
ture model may greatly reduce its complexity, and consequently helps
developers in their maintenance tasks. In our work, we argue that a
large service-oriented system has, not only one, but several architectures,
which are specific to its runtime use cases. Indeed, each architecture re-
flects the services, and thereby the components, which are really useful
for a given use case. In this paper, we present an approach for recovering
such use case specific architectures of service-oriented systems. Architec-
tures are recovered both through a source code analysis and by querying
the runtime environment and the service registry. The first built archi-
tecture (the core architecture) is composed of the components that are
present in all the use cases. Then, depending on a particular use case,
this core architecture will be enriched with only the needed components.

1 Introduction

The context of this work is the architecture of large-sized service-oriented soft-
ware systems. By large-sized systems, we mean systems that are composed of
hundreds to thousands of components, registering and consuming hundreds of
services. Architectures of systems in general are important to be explicitly mod-
eled, and this is particularly critical for large systems. When such architecture
models are not explicit, it becomes important to recover them from the system’s
artifacts (e.g., source code). Architecture recovery is a challenging problem, and
several works in the literature have already proposed contributions to solve it
(e.g., works cited in [8, 13, 15]). Architectures recovered from large systems are
however complex and difficult to “grasp”. Indeed, architectures of large systems
model a lot of components, their contracts (required and provided interfaces) and
their numerous and tangled interconnections. If we add, to these architecture el-
ements, services that are registered and consumed by components (which enrich
their contracts), these architectures can be easily assimilated to “spaghetti” code.



We noticed that at some point in the execution of such large systems, not
all their components are running/active. Components that are not running and
their properties (services and their connections) represent a “noise” in a recov-
ered (complex –“spaghetti”) architecture. Their elimination reduces thereby the
complexity of this architecture and helps the developers in their maintenance
tasks. In this work, we argue that large systems do not have a single large and
complex architecture, but rather several architectures depending on the use con-
text. In this paper, we present an approach (Section 2) which enables to recover
the architecture of a service-oriented system, depending on a particular use case.
This approach contributes with a process that analyzes the source code of the
system and interacts with the runtime environment, including the service reg-
istry, to build a first core architecture modeling the components of the system
that always run. Then, this core architecture is enriched with new elements that
reify the runtime entities involved in a particular use case, of interest for the de-
veloper (in which a bug occured, for instance). Simplifying architecture models
in this way enables developers to make like a quick “inventory” of what is con-
cretely running, among all what composes their system, at a particular execution
time. They can easily identify which component is consuming a particular failing
service, for instance. In the literature there is no efficient process for recovering
these dynamic use case architectures from running systems (see Section 5).

We implemented the proposed process for the OSGi platform (see Section 3)
and we experimented it on a set of real-world Eclipse-based applications (see
Section 4). At the end of the paper, we highlight the interests and limitations of
the proposed process, as well as some future directions of this work (Section 6).

2 General Approach

The problem with traditional architectural models of a software system is that
they describe all involved components and their potential dependencies. The
proposed process (see Figure 1) enables to produce an architecture model that
can be used by the developer to solve a maintenance problem related to a given
use case. First, we create the core architecture, which represents only components
that exist in the system whatever the executed application’s use case. In the
second step, we use traces obtained by executing scenarios corresponding to the
application’s use cases to identify what we call “use case”-specific (or use-case)
architectures. The latter are built around the core architecture with variants
(adding new components, services, etc.) concerning the executed use case.

Recovering the Core Architecture : To create the core architecture, we
use first a static analysis to collect all the components involved at the system’s
starting time. The core architecture will be comprehensive once the dynamic
elements are identified. Indeed, some dependencies exist only through requests
for services made during execution time. To identify these dependencies, we
launch the application without applying a use case (“Use Case 0” in Figure 1).

Recovering Use Case Architectures : During a maintenance activity, the
developer focuses on a given use case of the application. Thus, we ask a developer
to execute a set of use cases and we capture all traces produced by the involved



Fig. 1: Proposed Approach

components. After that, we parse the code of the newly activated components in
order to identify their dependencies. The collected information is used to enrich
the core architecture in order to build the “use case”-specific architecture.

3 Implementation of the Approach: Case of OSGi

We implemented our approach for OSGi-based systems. OSGi is a specification
that defines a component model and a framework for creating highly modular
Java systems[16]. An OSGi component is known as a bundle that packages a
subset of the Java classes, and a manifest file. The OSGi framework introduces a
service-oriented programming model. Indeed, a bundle (provider) can publish its
services into a Service Registry, while another bundle searches the registry to use
available services. We take as a running example an Eclipse-based application
that runs on top of Equinox, which is the reference implementation of the OSGi
specification. We used the release: Eclipse JEE for Web Developers, Oxygen.21.

3.1 Recovering the Eclipse Core Architecture

In order to recover the core architecture of the Eclipse-based application, we
first perform a static analysis of the source code and the manifest files of the bun-
dles that are needed to start this application. These bundles refer to components
that have the state “ACTIVE”. They are recognized by querying the runtime
environment. Indeed, we have added listeners in the Eclipse plugin which imple-
ments the proposed process. We rely on SCA2 for the modeling of the obtained
architecture. SCA has been chosen because of its simplicity and the existence of
good tools support for the graphical visualization. First, each bundle is modeled
as an SCA component which has as a name the bundle’s symbolic name. Then,
by parsing the manifest files, we identify the dependencies between components.
Indeed, we consider each declared interface in the exported package as a provided
interface and the declared interfaces in the imported packages are considered as
required interfaces. The SCA Wires are used to represent the connections. After
that, we hide the required interfaces that are not concretely used in code.

1 Downloaded from repository: https://lc.cx/P2Qw
2 SCA is a set of specifications which describe SOA systems: https://lc.cx/AEP3.



Besides, in the context of OSGi components, services are defined by dedi-
cated classes that are instantiated and registered with the OSGi Service Reg-
istry either programmatically or declaratively (i.e., using the OSGi DS frame-
work). Services declared with DS framework are identified by parsing the
“OSGI − INF/component.xml” files. For the programmatically registered ser-
vices, we parse the following two statements: <context>.registerService(..)
and <context>.getServiceReference(..). Then, the core architecture is en-
riched by dynamic features. Indeed, we query at runtime the execution environ-
ment and Service Registry to identify what are the concretely registered dynamic
services and consumed services. Therefore, we hide the static information.

3.2 Recovering Eclipse Use Case Architectures

Once the core architecture is recovered, we ask the developer to execute a set of
scenarios corresponding to use cases. New components related to each scenario
can be activated and new services can be registered. These components and ser-
vices, are identified by querying at runtime the execution environment and the
Service Registry. As consequence, for each scenario, we generate a runtime use
case architecture by adding to the core architecture the newly activated com-
ponents, interfaces, and services. For instance, after executing the following use
case: “Accessing the Toolbar Menu, Opening Help− >Install New Software...”,
11 new components are activated. Figure 2 shows an excerpt of the recovered
use case architecture for this scenario. We show in this figure the new activated
components (surrounded by bold lines) which are connected to the core architec-
ture components. For reasons of readability, we show only some core architecture
elements that are directly connected to the newly activated components.

Fig. 2: A “Use Case”-specific Architecture

Besides, we offer also to the developers a way to refine the recovered use case
architecture and spotlight the implicit service-oriented architecture (pure SOA),
which contains only services (without interfaces) and the active components
that register or consume services. In this way, we enable them to focus only on
services-based dependencies, which simplify greatly the architecture model.



4 Empirical Evaluation

We evaluated our approach starting from two Eclipse-based applications of dif-
ferent sizes. The aim is to measure the gain in the reduction of complexity of the
recovered runtime use case architectures. Indeed, we have compared the com-
plexity of the architecture that is obtained by a static code analysis of all the
system components with the complexity of the recovered use case architectures.
Table 1 describes the chosen systems3. For each system, we executed 4 use cases
related to the installed projects. In order to measure the complexity of the re-
covered architectures, we have used a complexity metric (CM) proposed in [10]:
CM = AC

ACw
, where, AC is Absolute Complexity of a use case architecture and

ACw is the worst architecture complexity which corresponds to the static ar-
chitecture complexity. To estimate AC, we create an adjacency matrix from the
architecture and we calculate the influence degree of each component on the rest
of the system.

Table 1: Selected Eclipse-Based Applications
S. Id. description installed projects # of bundles # of classes SLOC

1
Eclipse JEE for Web
Developers Oxygen.2

WTP, BPEL,
Axis Tools.

1040 131282 4.11M

2
Eclipse Modeling
Tools Oxygen.2

ArchStudio, Papyrus,
BPMN2.

1502 151471 4.90M

4.1 Complexity Measurement Results

The obtained results are presented in Table 2. As we can see in column 2, the
static architectures of the two candidate systems are very complex and this is
particularly true for the largest application. Column 4 presents the number of
actions on the graphical user interface in order to describe quantitatively each
use case. We can see (in Column 5) that the complexity of all the obtained use
case architectures is greatly less than the complexity of the static architectures
(ACw). This confirms our intuition that focusing on the runtime use case ar-
chitectures greatly reduces the complexity of the architecture compared to the
static one. Second, the obtained CM values (Column 6) are good for all the re-
covered use case architectures. However, we noticed that these values decrease
when we increase the size of the system. If we take UC2 in the two systems,

Table 2: Experiment Results
S. Id. ACw Use Case # of GUI Actions AC CM # of Active Components

1 5637

UC 0 0 1076 0.19 163
UC 1 11 1195 0.21 174
UC 2 28 1777 0.31 242
UC 3 35 1907 0.33 248
UC 4 55 1941 0.34 259

2 9014

UC 0 0 2153 0.23 392
UC 1 4 2197 0.24 394
UC 2 27 2330 0.25 413
UC 3 30 2429 0.26 425
UC 4 49 2885 0.32 473

3 They have been downloaded from the following repository: https://lc.cx/m77k



which have almost equal number of GUI actions, we can see that CM value in
the second system is less than in the first system (0.25 vs. 0.31). This because,
the ACw increases with the system size, while the AC vary in a stable interval.
Third, we can observe in column 7 that the average number of newly activated
components is equal to 50 components per use case. This can be considered as a
good value for a system that contains more than a thousand components. Devel-
opers recover and understand the core architecture once (it is common to all use
cases), which is considered as the initial overhead of our approach. After that,
they can focus only on the newly activated components for a use case. At the
end, we can observe the high correlation between the number of GUI actions
and CM values (correlation coefficient equal to 0.86 for System 1 and 0.88 for
System 2). The more the GUI actions we do, the greater CM values we obtain.
But CM values remain very low, AC is thereby kept far below ACw.

4.2 Performance Measurement

We evaluated the performance of our approach by estimating the time for re-
covering each architecture. We ran our experiments in a machine with a CPU
4.20GHz Intel Core i7-7700K, with 8 logical cores, 4 physical cores, and 32 GB
of memory. The recovering of the static architectures takes 4 hours for the first
System and 9 hours for the second System. Besides, the average time for recover-
ing a use case architecture is 45 minutes for the first System and 2 hours for the
second System. Therefore, this results demonstrate the efficiency our approach.

4.3 Threats to Validity

This experiment may suffer from some threats to the validity of its results:

Internal validity In order to evaluate the accuracy of our approach, we need
to compare the recovered architectures with “ground-truth” use case architec-
tures. A “ground-truth” architecture is an architecture that has been verified
as accurate by the architects [9]. Obtaining this architecture is challenging. To
mitigate this threat, we have verified manually the component dependencies of
large parts of the recovered use case architectures by analyzing and checking
manually source code and the manifest files of the candidate components.

External validity Our evaluation is based on set of OSGi systems which limits
our study’s generalizability to other kind of systems. To mitigate this threat, we
selected systems providing different functionalities (BPMN, BPEL,...) and sizes.

5 Related Work

A framework comprising a set of principles and processes for recovering systems’
ground-truth architectures has been proposed in [9, 13]. The authors in [15] pro-
vide a review of the hierarchical clustering techniques which seeks to build a
hierarchy of clusters starting from implementation level entities. In our work,
we focus on runtime use case architectures, instead of recovering whole static
architectures. However, if the recovered use case architectures remain complex
for a human analysis, we can use of one of the existing clustring methods for
abstracting those architectures. The works in [5, 21, 4, 3] focused on extracting
component-based architectures from existing object-oriented systems. Seriai et



al. in [20] used FCA to identify the component interfaces. Unlike these works, in
our work, we deal with reducing the size of the recovered architecture by focusing
on particular use cases, and we include dynamic features in this architecture.

Besides, several SOA recovery approaches have been proposed in the liter-
ature as part of the process of migrating systems to SOA solutions [18]. Most
of these approaches are based on static code analysis of the target system. Ex-
amples of these works are [17, 2, 11]. A number of works such as [7, 22, 12] have
been proposed to detect SOA patterns from service oriented applications. Our
approach focused on the recovery of pure SOAs. Using SOA design patterns
may be a good complement to our approach for a better understanding of the
recovered architecture. More particularly, this helps in better understanding the
design decisions made during the modeling of the analyzed system.

Managing complex architectures of large software systems became a topic
of interest of several research works. Some authors proposed to organize archi-
tectural information using a Dependency Structure Matrix [19, 14]. The authors
in [6] have proposed an architectural slicing and abstraction approach for reduc-
ing the model complexity. Abi-Antoun et al. [1] proposed a technique to statically
extract a hierarchical runtime architecture from object-oriented code. In our ap-
proach, we deal with architectures at a higher level of granularity (component
ones) and not low level ones (at object-oriented program level).

6 Conclusion and Future Work

In this work, we noticed that recovering the whole architecture of a large system
produces models that are not tractable for developers due to their size and
complexity. In this paper, we proposed a process for recovering the architecture
of large component-/service-oriented systems. Since services in these systems are
not provided and consumed all together, in a given use case, and components
are not all active in the same time, we defined in this process a method to reduce
the size and the complexity of the architecture. Thanks to a runtime analysis
and taking into consideration only specific use cases of interest for the developer
(related to a bug occurrence, for instance), we spotlight the active elements
(components and services) in the recovered architecture. We benefited from the
OSGi framework capabilities to implement such a process, and we experimented
it on a set of Eclipse-based applications. The results showed the potential of the
approach in recovering the architectures of these large systems, while reducing
their complexity by spotlighting essential elements.

As a future work, we plan to make the recovered architecture models dy-
namic: they evolve (elements are shown and hidden) while the system is running
by following debugger-like behaviors. In this way, we help the developer to mon-
itor and evolve her/his system directly via its architecture. In addition, we want
to make them interactive, by enabling developers to control components and
services just by clicking, dragging and dropping the visualized elements.

References

1. Abi-Antoun, M., Aldrich, J.: Static extraction and conformance analysis of hier-
archical runtime architectural structure using annotations. In: Proc. of the ACM



OOPSLA (2009)
2. Alahmari, S., Zaluska, E., De Roure, D.: A service identification framework for

legacy system migration into soa. In: Proc. of the IEEE SCC 2010. IEEE (2010)
3. Allier, S., Sadou, S., Sahraoui, H.A., Fleurquin, R.: From object-oriented applica-

tions to component-oriented applications via component- oriented architecture. In:
Proc. of WICSA, Colorado, USA. IEEE (2011)

4. Allier, S., Sahraoui, H.A., Sadou, S., Vaucher, S.: Restructuring object-oriented
applications into component-oriented applications by using consistency with exe-
cution traces. In: Proc. of the 13th CBSE’10. pp. 216–231. Springer (2010)

5. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Extraction of component-
based architecture from object-oriented systems. In: Proc. of WICSA. IEEE (2008)

6. Colangelo, D., Compare, D., Inverardi, P., Pelliccione, P.: Reducing software ar-
chitecture models complexity: A slicing and abstraction approach. In: Proc. of
FORTE’06. Springer

7. Demange, A., Moha, N., Tremblay, G.: Detection of soa patterns. In: Proc. of the
11th ICSOC’13. Springer (2013)

8. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented
taxonomy. IEEE TSE 35(4), 573–591 (2009)

9. Garcia, J., Ivkovic, I., Medvidovic, N.: A comparative analysis of software archi-
tecture recovery techniques. In: Proc. of IEEE/ACM ASE (2013)

10. Jiao, F., Hu, C., Zhao, C.: A software complexity metric for sca specification. In:
Proc. of the CSSE. IEEE (2008)

11. Kerdoudi, M.L., Tibermacine, C., Sadou, S.: Opening web applications for third-
party development: a service-oriented solution. Journal of SOCA 10(4), 437–463
(2016)

12. Liang, Q.A., Chung, J.Y., Miller, S., Ouyang, Y.: Service pattern discovery of web
service mining in web service registry-repository. In: Proc. of ICEBE’06 (2006)

13. Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidovic, N., Kroeger,
R.: Measuring the impact of code dependencies on software architecture recovery
techniques. IEEE TSE 44(2), 159–181 (2018)

14. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex
software designs: An empirical study of open source and proprietary code. Man-
agement Science 52(7), 1015–1030 (2006)

15. Maqbool, O., Babri, H.: Hierarchical clustering for software architecture recovery.
IEEE TSE 33(11) (2007)

16. McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating highly modular
Java systems. Addison-Wesley Professional (2010)

17. O’Brien, L., Smith, D., Lewis, G.: Supporting migration to services using software
architecture reconstruction. In: Proc. of STEP. IEEE (2005)

18. Razavian, M., Lago, P.: A systematic literature review on soa migration. Journal
of Software: Evolution and Process 27(5), 337–372 (2015)

19. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proc. of the ACM OOPSLA. ACM (2005)

20. Seriai, A., Sadou, S., Sahraoui, H., Hamza, S.: Deriving component interfaces after
a restructuring of a legacy system. In: Proc. of WICSA. IEEE (2014)

21. Seriai, A., Sadou, S., Sahraoui, H.A.: Enactment of components extracted from an
object- oriented application. In: Proc. ECSA. Springer (2014)

22. Upadhyaya, B., Tang, R., Zou, Y.: An approach for mining service composition
patterns from execution logs. Journal of Software: Evolution and Process 25(8),
841–870 (2013)

View publication statsView publication stats

https://www.researchgate.net/publication/327647205

