
HAL Id: lirmm-02127456
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127456

Submitted on 16 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keeping Track of User Steering Actions in Dynamic
Workflows

Renan Souza, Vítor Silva, José J. Camata, Alvaro L G A Coutinho, Patrick
Valduriez, Marta Mattoso

To cite this version:
Renan Souza, Vítor Silva, José J. Camata, Alvaro L G A Coutinho, Patrick Valduriez, et al.. Keeping
Track of User Steering Actions in Dynamic Workflows. Future Generation Computer Systems, 2019,
99, pp.624-643. �10.1016/j.future.2019.05.011�. �lirmm-02127456�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127456
https://hal.archives-ouvertes.fr

R. Souza et al. Keeping Track of User Steering Actions in Dynamic Workflows. Author preprint of
manuscript accepted at Future Generation Computer Systems, 2019.

Keeping Track of User Steering
Actions in Dynamic Workflows

Renan Souza1,2, Vítor Silva1*, Jose J. Camata3,
Alvaro L. G. A. Coutinho1, Patrick Valduriez4, Marta Mattoso1

1COPPE/Federal University of Rio de Janeiro, Brazil
2IBM Research

3Department of Computer Science, Federal University of Juiz de Fora
4Inria and LIRMM, Montpellier, France

Abstract

In long-lasting scientific workflow executions in HPC machines, computational scientists
(the users in this work) often need to fine-tune several workflow parameters. These tunings
are done through user steering actions that may significantly improve performance (e.g.,
reduce execution time) or improve the overall results. However, in executions that last for
weeks, users can lose track of what has been adapted if the tunings are not properly registered.
In this work, we build on provenance data management to address the problem of tracking
online parameter fine-tuning in dynamic workflows steered by users. We propose a
lightweight solution to capture and manage provenance of the steering actions online with
negligible overhead. The resulting provenance database relates tuning data with data for
domain, dataflow provenance, execution, and performance, and is available for analysis at
runtime. We show how users may get a detailed view of the execution, providing insights to
determine when and how to tune. We discuss the applicability of our solution in different
domains and validate its ability to allow for online capture and analyses of parameter fine-
tunings in a real workflow in the Oil and Gas industry. In this experiment, the user could
determine which tuned parameters influenced simulation accuracy and performance. The
observed overhead for keeping track of user steering actions at runtime is less than 1% of
total execution time.
Keywords
Parameter Tuning; Computational Steering; Provenance Data; Dynamic Workflows.

1. Introduction

In typical High-Performance Computing (HPC) scientific workflows, or workflows for
short, computational scientists (the users in this work) need to set-up several configuration
parameters. These users are specialists in computational models or simulations to solve
complex physical problems. They select initial values for the parameters based on their
domain expertise. These parameters include solver options, tolerances, and error thresholds.
Because of the exploratory nature of those computations, it is hard to determine, before the
execution, which configuration values will work best, even for the most experienced users.
For this reason, dynamic workflows (i.e., workflows that can be changed at runtime) allow
for fine-tunings of specific parameters [1]. These workflow dynamic adaptations are known
as user steering actions. After the initial setups, the user starts the computation and, based on
online intermediate data analysis, fine-tunes data. Online intermediate data analysis is
supported by monitoring tools [1,2] and user steering involves several actions, such as

* Vítor Silva is currently at Dell EMC.

defining steering points, checking-points and rolling-back, refining loop conditions, reducing
datasets, modification of filter conditions, and parameter tuning [3]. Parameter tuning is by
far the mostly supported one by computational steering solutions [1,2,4–10]. Due to the large
number of parameters and combinations of values, uncontrolled parameter fine tunings may
lead to rework and difficulties in overall data analysis.

In iterative workflows, where several parameters drive each iteration, analyzing results
from initial executions may suggest better settings for the parameters in the following ones.
For example, training deep neural networks in large datasets is complex, time consuming,
demands parallel computation, and user steering. Often, machine learning experts fine tune
the training hyperparameters (e.g., learning rate, batch size, number of training iterations)
based on the evolution of the performance of the model and the training time [11]. In
Astronomy applications, users may set up data and input parameters to assemble custom
mosaics of the sky. During the execution, data analyses may identify that certain input
parameters produced images with poor image resolution or quality, making it harder to
identify an interesting celestial object. Such parameters can be modified at runtime. In
Computational Fluid Dynamics applications, users tune several parameters of the underlying
numerical methods [12]. As a result, fine tunings can generate major improvements in
performance, resource consumption, and quality of results [13]. Despite the current initiatives
to support computational steering in large-scale scientific computing, such as surveyed in
[1,2], it remains an open problem [13,14].

Computational steering solutions [1,2,4–10] allow for steering actions. Capturing and
registering user steering data (e.g., why the user decided to tune, what were the values before
and after the tuning, who and when tuned), relating them to other relevant data (e.g., domain-
specific strategic values, execution state of the simulation when the tuning happened,
performance data), and allowing all these data to be efficiently integrated and queried at
runtime deliver important advantages to the user. They contribute to online data analysis and
data-driven decisions. On the other hand, failing to capture steering data has several
disadvantages. It may compromise experiment reproducibility and results’ reliability as users
hardly remember what and how dataflow elements were modified (especially modifications
in early stages), and what happened to the execution because of a specific adaptation. This is
more critical when users adapt several times in long experiments, which may last for weeks.
In addition to losing track of changes, one misses opportunities to learn from the adaptation
data (i.e., data generated when humans adapt a certain dataflow element) with the associated
dataflow. For example, by registering adaptation data, one may query the data and discover
that when parameters are changed to certain range of values, the output result improves by a
defined amount. Moreover, opportunities to use the data for AI-based assistants
recommending on what to adapt next, based on a database of adaptations, are lost.

In this work, we build on provenance data management to address the problem of keeping
track of online parameter fine-tuning in dynamic workflows steered by users. In two recent
surveys [13,14], the authors report that solutions for online provenance management and
human-in-the-loop of workflows are lacking. To capture and manage provenance of the
steering actions online, we consider three steps and their challenges:

Challenge 1: Online data analysis. Online data analysis is essential for monitoring,
debugging and user steering. In workflows with several parameters to be setup, the user needs
to inspect the evolution of results, correlate them with specific input parameter values, and

determine which input value is influencing specific outputs [2]. Otherwise, the user will
hardly know what or when it should be tuned. According to a recent report [13], current
online data analysis solutions are not aware of parameter combinations and their relations
with output values.

Challenge 2: Register the steering action. Several systems support user steering and
parameter fine-tuning [1,2,4–10], but none of them track the steering actions. Not tracking
the steering actions jeopardizes the experiment reproducibility. In [13], the authors also state
that it is still a challenge to develop a sufficiently descriptive and detailed provenance model
to represent steering to enable processing, optimization, validation, interpretation, and
reproducibility.

Challenge 3: Evaluate the steering action. Enabling online data analyses aware of
human adaptations supports data-driven decisions, retrieval of recorded human actions, and
understanding of how they relate to the workflow execution status (e.g., how a user action
impacts the processing time?). To evaluate the adaptations, the user needs an online query
support to access who, when, what was adapted, and how the steering action relates to other
data.

In previous works [15,16], we show how applications can benefit from online analysis
for steering, supporting Challenge 1, but we are not aware of other works that have addressed
the latter two challenges. In [17], we presented an abstract with preliminary ideas to
investigate the potential for registering steering actions. In this paper, we formalize steering
actions and propose DfAdapter, a lightweight solution to capture and analyze online steering
actions in workflows.

To evidence the benefits of keeping track of online parameter fine-tuning, we explore a
motivating real case study in the Oil and Gas industry. There are over 50 configuration
parameters and their values have a direct impact on the simulation. With the aid of online
data analysis, the user can understand which parameters are needed to be tuned and do the
adjustment, often several times. For example, the user may identify online regions of interest,
which should have more iterations and higher resolution, and regions that can be processed
in a lower resolution. This requires adapting several times rather than choosing one single
best configuration for the whole workflow execution.

There are several advantages in using DfAdapter with an HPC machine to control online
the fine-tuning of the workflow. First, users can evaluate which specific parameter and which
ranges of values they modified at runtime led to reduction of memory consumption. Second,
DfAdapter helps the user with more data and ways to query these data to allow for better
data-driven decisions. More specifically, by using data captured by DfAdapter, the users can
verify which parameters were modified, at which iteration in the loop, and when (in time)
their steering actions caused the simulation execution time to be reduced by a certain amount,
leading their simulation to finish faster, with results they found satisfying. Finally, we
observe that the overhead added by DfAdapter for provenance and steering action tracking
account for less than 1% of the total execution time.

Paper organization. Section 2 presents our motivating case study work. Section 3
presents related work. Section 4 presents our approach for tracking online steering in
dataflows. Section 5 presents DfAdapter. In Section 6, we discuss our approach applied to
two real-world scientific workflows in the Astronomy and in the Oil and Gas domains.
Section 7 shows the experiments. Section 8 concludes.

2. Motivating Case Study

The case study explored in this paper is based on a real Computational Fluid Dynamics
application in the Oil and Gas domain, called libMesh-sedimentation [18]. It is a simulation
solver, implemented in C++ with source code available on GitHub [19], built on top of a
widely used parallel fine element framework, libMesh [20], which supports parallel
simulation of multiscale, multiphysics applications. libMesh interfaces with several libraries
for Computational Science and Engineering applications (e.g., PeTSc, Metis, Parmetis,
LAPACK). Also, scientific visualization tools like ParaView [21], are typically used in these
applications to gain insight from the computations. In this class of applications, users need
to set-up the goals of the computation, and parameters for the numerical methods. Examples
of parameters are tolerances for linear and nonlinear solvers, number of levels for mesh
adaptation, tolerances for space and time error estimates, etc. These parameters have a direct
influence on the accuracy and simulation costs, and bad choices may lead to inaccuracies and
even to a simulation crash. As an example, the number of finite elements predicted by the
mesh adaptation procedure may exceed the memory available in a processor, and the
simulation is halted with an error message. In simulations with complex dynamics, it is often
very difficult to set-up a priori a maximum number of finite elements per core that will
guarantee the necessary accuracy without exhausting the available resources. Thus,
Quantities of Interest (QoIs) like number of finite elements predicted must be tracked and
analyzed during execution. The resulting application can be seen as an iterative workflow, as
illustrated in Figure 1.

Figure 1. Keeping track of user steering in the libMesh-sedimentation (adapted from previous work [18]).

In libMesh-sedimentation, users identify a workflow within the simulation code. They

...
…
…
for (unsigned int t_step = init_tstep;

(t_step < n_time_steps) && (time < tmax);
t_step++) {
parameters = reload_parameters();
provenance.initTimeIteration();
...
for (unsigned int nonlinear_step = 0;

nonlinear_step < max_nonlinear_steps;
++nonlinear_step) {
...
provenance.initFluidSolver();
flow_system.solve();
provenance.finalizeFluidSolver();
...

}
...
…
provenance.finalizeTimeIteration();

}

libMesh-sedimentation source code instrumentation

XDMF/HDF5 file pointers

AMR Setup

Simulation Setup

Fluid Solver

Sediment Concentration Solver

Adaptive Mesh Refinement

Input Mesh

Loop
Evaluation

(mesh size, AMR parameters)

(maximum time, flow linear

tolerance, flow non-linear tolerance)

(final linear residual,

final non-linear residual)

(final linear residual,

final non-linear residual)

(before active elements,

after active elements)

XDMF/HDF5 Writer

(points, velocity, pressure,

sediment concentration)

Catalyst Adaptor

param_settings.in

while t < tmax

libMesh-sedimentation workflow

Provenance
Database

online
parameter tuning

online
data analyses

Dataflow Data Transformation

Provenance Management in Computational Steering

In-situ visualization

Parallel Workflow running…

Provenance
Database

shared data
resource

parameter
values

provenance
capture

Interface

Analyzer
queries

change
parameters

online dataflow
adaptation

online
dataflow analysis

Adaptation Controller
Dataset Adapter

Provenance Collector

adaptation provenance capture

change
parameters

instrument the code to capture monitoring data, which are relevant data for online analysis,
and add a steering point (after the for loop in time < tmax, in Figure 1). Monitoring data
captured are stored in a provenance database that follows W3C PROV standards and, in this
work, we introduce the track of steering actions to be registered and properly related in a
provenance database.

To be able to accomplish this, we present a methodology that describes the steps needed
to register and evaluate steering actions. Some of these steps occur offline, before the
execution starts, whereas others occur online, during the execution. The offline steps are
mainly related to invoking DfAdapter services at the user code, which is a common practice
in scientific applications [2]. The user code works as a script, which automates the execution
of tasks and often does calls to parallel libraries or other services. We extended our previous
methodology [22] to add user steering support. Figure 2 summarizes all high-level steps for
enabling workflow steering.

Methodology. In Step 1, users identify inputs and outputs of relevant parts of their code

to form a workflow of chained activities with a dataflow between activities. These inputs and
outputs are often domain-specific relevant data (like QoIs) for the users so they can monitor
the evolution of the simulation, analyze intermediate data, and understand partial results
during the long run. Also, users specify the initial settings and input datasets. In Step 2, users
insert service calls in the workflow code to add monitoring points. In monitoring points, input
and output data elements in the dataflow are specified so they can be captured for monitoring
and online data analysis. In Step 3, users identify parts of the code that can be dynamically
modified at runtime and add steering points in those parts. Steering points should be added
in safe points of the code to avoid execution or data inconsistencies. Usually, users know
where to add steering points. A typical example occurs in iterative workflows where each
new iteration is an opportunity to redefine parameters or input datasets preset beforehand. In
this case, a steering point is added in the beginning of the iteration. Each iteration is often
executed as a whole. When a user steers, the steering will take effect only at the next iteration,
rather than changing values during an iteration. This helps to make data and execution
consistent to what the user decided to steer during the iteration.

After these three initial offline steps, the workflow is submitted to parallel execution in
an HPC machine. In Step 4, those monitoring data specified at Step 2 are captured and can
be analyzed online. In Step 5, based on the analyses, users may decide to execute a steering
action. In Step 6, the system tracks steering actions and relates to the data being captured.
Finally, in Step 7, users analyze the consequences of their actions relating to domain-specific
relevant data and execution data (e.g., time taken to execute a processing). We highlight that,

1 Identify a workflow in the user code
Before

execution 2 Add monitoring points in the code
3 Add steering points in the code
4 Online data analysis

During
execution

5 Execute a steering action
6 Steering action tracking
7 Steering action analysis

Figure 2. Methodology for workflow steering.

to the best of our knowledge, Steps 6 and 7 are not supported in Computational Steering
systems [1,2,4–10].

3. Related Work in Computational Steering in Scientific Workflows

In a recent survey [23], the authors discuss past, present, and future of scientific
workflows. As a challenge, they argue that "monitoring and logging will be enhanced with
more interactive components for intermediate stages of active workflows." We did not find
any work that registers steering actions in dynamic workflows in logs or provenance
databases. Thus, there is no related work on tracking steering data and querying workflow
data considering steering actions. Therefore, we initially analyze the main issues on
computational steering, and then the related work on HPC computational steering, afterwards
steering in application-specific scenarios, and finally we discuss steering support specifically
in Parallel Workflow Management Systems (WMSs) and science gateways. The capability
to track steering actions we are proposing is complementary in systems that already provide
steering support.

Mattoso et al. [1] investigate six aspects of computational steering in large-scale
workflows: interactive analysis, monitoring, human adaptation, notification, interface for
interaction, and computing model. Despite the importance of each of them individually, the
first three are essential for online analysis, tracking and evaluation steering actions (the
challenges addressed in this work). Users will know how to adapt the workflow if they can
analyze intermediate data during a long-term execution. Online provenance data
management is an essential asset for interactive intermediate data analyses and monitoring,
which are important ways to help gaining insights from the data being generated during
execution. For monitoring, users set up monitoring analyses and wait for the results to be
generated. Results might be presented as graphical dashboards or three-dimensional in-situ
data visualizations. As users gain insights from monitoring results, new data exploration
through interactive analysis can be done, and the monitoring can be adapted [15]. Human
adaptation is the most important aspect of computational steering. There are several types of
expertise in humans that are involved in a long-lasting workflow execution [15]. Domain
scientists (e.g., biologists, geologists) are experts in defining the hypothesis behind the
experiment and interpretation of the results. Computational scientists (e.g.,
bioinformaticians, numerical analysts) are experts in programming the computational models
that do the simulations or in using programs that require HPC. They usually also have a good
knowledge of the application domain. Computational scientists are the users responsible for
computational steering [1–10].

Data-oriented solutions for workflows facilitate online human adaptation. When a user
adapts the dataflow, new data (user steering data) are generated, and thus their provenance
must be registered. Not tracking may negatively influence results reliability, validation, and
reproducibility.

For example, if a user removes subsets of a dataset (data reduction), the tasks (execution
data) that would consume them will not need to be processed [15]. If a user fine-tunes
parameters of a program, the overall result may be changed. In addition to reliability and
reproducibility, having such data enables users to learn from their own adaptations: for
example, they may find that when they tune certain parameters to a given range of values,
the convergence of the linear equation solver improves by a certain amount. Finally, these

adaptation data allow for building AI-based systems that help users while they are steering
simulations [24], as they can extend their training database with provenance of adaptations.

Computational steering in parallel applications is a necessity for HPC users for decades
[6]. Several systems provide steering support. Examples are SCIRun [25], CUMULVS [26],
ParaView Catalyst Live [21], GRASPARC [27], Cactus [28], RealityGrid [29], and many
others [2,5,6,30–34]. Similarly to our approach, these systems also allow for monitoring and
parameter tuning, and require code instrumentation via libraries or API calls, which is an
approach often adopted in Computational Science and Engineering [2,22,32] applications.
Nevertheless, tracking of steering actions is not provided in any of those systems.

In addition to those systems, there are steering solutions for specific applications or
domains. Often, examples that need user steering come from parallel scientific applications
in the Oil and Gas industry [35]. For instance, BSIT [12] is a platform tailored for seismic
applications that supports adaptations in parameters, programs, datasets, but it does not
register provenance or allow for adaptation data analysis. Other examples are applications
for Computational Fluid Dynamics [36].

With respect to WMSs, only a few [7–10] support user steering. Pegasus [37] provide a
database with execution data to help debugging. Lee et al. [7] propose an extension to
Pegasus to execute scientific workflows adaptively based on the analysis of Pegasus'
database. However, in case a replacement on a data transformation occurs, because the
adaptation is not registered, analyzing the average of execution time of a data transformation
might give inconsistent results. Likewise, OpenMole [8] is a WMS for simulation models
that need continuous adaptation and improvement. Users can replace programs in the
workflow during its execution. Due to the lack of registering when, what, and who did the
replacement, a different user may choose an already tested configuration disregarding
previous efforts. Both Pegasus with its extensions [7] and OpenMole could benefit from our
approach to register their supported steering actions.

FireWorks is a WMS [9] that uses a DBMS-driven workflow execution engine. It has a
JSON-based approach for state management and uses MongoDB to query JSON documents
to monitor workflow execution. However, no other steering action is supported. Copernicus
WMS [10] also allows for dynamic workflow steering via parameter tuning, sharing similar
motivations to ours. It also aims at analyzing data to steer exploration towards undiscovered
regions of a solution space. Typical parameters tuned by users are initial seeds, number of
samples, and parameters specific to the analysis method. These systems evidence the need
for tracking and querying steering actions like we propose in this work.

Chiron WMS enables users to change filter values and adapt loop conditions of iterative
workflows [38], and reduce input datasets [15]. These works show that online adaptations
significantly reduce overall execution time, since users can identify a satisfactory result
before reaching the programmed number of iterations. However, tracking the adaptation has
not been addressed in Chiron.

WorkWays [4] is a powerful science gateway that enables users to dynamically adapt the
workflow by reducing the range of some parameters. It uses Nimrod/K as its underlying
workflow engine, which is an extension of the Kepler workflow system [39]. It presents
several tools for user interaction in human-in-the-loop workflows, such as graphic user
interfaces, data visualization, and interoperability among others. Such graphical
functionalities can highly benefit the user experience with the steering solution, and hence

could be incorporated to DfAdapter for future work.
WINGS [40] is a WMS concerned with workflow composition and its semantics. WINGS

facilitates the iterative process of designing workflows. This is complementary to our
solution, as we need to identify the dataflow behind a computational model or simulation
before the execution starts. WINGS also focuses on assisting users in automatic data
discovery. It helps generating and executing multiple combinations of workflows based on
user constraints, selecting appropriate input data, and eliminating workflows that are not
viable. However, it does not allow for online parameter tuning, nor does it record the
provenance of adaptations at runtime.

While WMSs and science gateways provide for efficient parallel workflow execution,
this can be an issue when the workflow is already a parallel application. Simulations that use
highly parallel libraries or adaptive parallel algorithms, already implement parallel execution
control and scheduling on HPC machines. Often, this application parallelism conflicts with
the scheduling and parallel execution of WMSs or science gateways.

Therefore, none of these systems, WMS, science gateways or other systems with steering
support, provide steering action data tracking. The steering action definitions in Section 4
and the system design principles presented in Section 5 to track steering actions give
directions that may complement current approaches to add the track of steering actions for
dataflow analysis integrated with dynamic steering, following data provenance standards, all
with negligible performance overhead.

4. User Steering Actions Definitions

Two data categories should be analyzed online to support human adaptation: domain
dataflow and workflow execution [1]. While workflow execution is often associated to the
control of task flow between chained activities [14], dataflows are often associated to datasets
being transformed by the chaining of data transformations [16]. Each data transformation
operates on input datasets and transforms it into output datasets. In parallel executions,
elements in the datasets are mapped to workflow activity tasks.

Domain dataflow. The datasets that are produced or generated in the flow between data
transformations are part of the domain application data that compose the domain dataflow.
To analyze intermediate data with its context, domain dataflow must be available for
interactive analysis and monitoring, while the workflow runs. Keeping track of the raw data
files while keeping their context and relating their content to provenance improves online
data analyses [16].

Workflow execution data. Data related to the workflow execution performance is very
helpful in interactive data analysis, monitoring, and debugging. Users may monitor the
execution data to control the amount of computational resources being used. Users are
frequently interested in knowing how long tasks are taking or how much memory or CPU
they are consuming. This information can deliver interesting insights when linked to domain
dataflow data. For example, users can investigate which values are making a task consume
more memory than expected.

Scientific workflows are data-centric and so are steering actions. Therefore, we follow a
dataflow approach as opposed to a workflow control-based approach. Inspired by dataflow
concepts proposed by Ikeda et al. [41], in previous works [15,16] we proposed a

conceptualization for the flow of data elements in running workflows. In the present work,
we refine and extend such concepts aiming to add semantics to data elements and to define
steering actions. These semantics represent the role of data elements in the steered execution,
for example, a parameter and a loop condition. Next, we define these concepts formally.
Definition 1: Dataset, data elements, and data values. A dataset 𝐷𝑆 is composed of data
elements, i.e., 𝐷𝑆 = {𝑒&, … , 𝑒)}. Each data element 𝑒,, 1	 ≤ 𝑖 ≤ 𝑚, is composed of data values,
i.e., 𝑒, = {𝑣&, … , 𝑣3}. Datasets are further specialized into Input Datasets (𝐼56) and Output
Datasets (𝑂56).
Definition 2: Data schema and attributes. Data elements in a dataset 𝐷𝑆 have a data
schema 𝓢(𝐷𝑆) = 	 {𝑎&, … , 𝑎3}, where each element data value 𝑣<	has an attribute 𝑎<,	1	 ≤ 𝑗 ≤
𝑢. Thus, an element data value can also be represented as a set of ordered pairs
{(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒)}, s.t., 𝑒, = 	 {(𝑎&, 𝑣&), … , (𝑎3, 𝑣3)}. Moreover, attributes have a data
type (e.g., numeric, textual, array, etc.).
Definition 3: Data transformation. A data transformation is characterized by the
consumption of one or more input data sets 𝐼56 and the production of one or more output data
sets 𝑂56. A data transformation is represented by 𝐷𝑇, where 𝑂56 = 𝐷𝑇(𝐼56).
Definition 4: Data dependency. Let 𝐷𝑇D and 𝐷𝑇E be data transformations and let {𝑒} ⊂
𝐷𝑆	be a set of data elements produced in an output dataset 𝐷𝑆 generated by 𝐷𝑇D. If
𝐷𝑇E	consumes {𝑒}, then 𝐷𝑆 is also an input dataset of 𝐷𝑇E. In this case, there is a data
dependency between 𝐷𝑇D and 𝐷𝑇E through {𝑒} ⊂ 𝐷𝑆. A data dependency is represented as
j	 = ({𝑒}, 𝐷𝑇D, 𝐷𝑇E).
Definition 5: Dataflow. A dataflow is represented by 𝐷𝑓 = (𝑇, 𝑆, ∅), where 𝑇 is the set of
all data transformations participating in the dataflow, 𝑆 is the set of all datasets consumed or
produced by the data transformations, and ∅ is the set of all data dependencies between the
data transformations (adapted from background work [15,16,41]).
Definition 6: Semantics of attributes. We further group each attribute 𝑎, ∈ 𝓢(𝐷𝑆) by its
semantics Σ(𝐷𝑆), so that: Σ(𝐼56) 	= 	 {𝐹K, 𝑉K, 𝑃K, 𝐿K} and Σ(𝑂56) 	= 	 {𝐹O, 𝑉O, 𝐶O, 𝐿Q}, where:
• 𝐹K and 𝐹Q	contain attributes that represent pointers to input and output files, respectively.
• 𝑉K	and 𝑉Q	 contain attributes for extracted data or metadata from input and output files,

respectively.
• 𝑃K contains attributes for general purpose input parameter values of the data

transformation.
• 𝐿K contains attributes used by in iteration loop, i.e., used for data transformations that

evaluate a loop.
• 𝐿Q	contains output values especially related to an iteration in case of data transformations

that evaluate a loop.
• 𝐶Q	contains attributes for any output values that are explicit data transformation results.

•
Such added semantics improves the data modeling of the dataflow and allows specifying

which attributes of a 𝐷𝑆 are parameters to be steered. Parameters 𝑃K	are the main target of
fine tunings. For example, parameters are numerical solver configurations, thresholds, or any
other parameter that can be adjusted.

𝐹K and 𝐹Q are often large raw (textual, imagery, matrices, binary data, etc.) scientific data

files in a wide variety of formats depending on the scientific domain (e.g., FITS for
astronomy, SEG-Y for seismic, NetCDF for computational fluid dynamics simulations).
These data are typically not tuned, but are important for data analyses.

In the case of output data, examples are QoI. Some applications write calculated values,
like the QoI results of a data transformation into files and they often need to be tracked.
𝑉Q	represents these special resulting extracted data, which are often scalars, useful for domain
data analyses [15,16,18]. 𝑉K	and 𝑉Q	 can be seen as views over the actual large raw data files,
as users can have a big picture of the content of the files through them.

Besides large scientific data files produced by data transformations, they may produce
explicit output results, 𝐶Q, often scalar values or simple arrays that are very meaningful for
the overall result. Since they may be of high interest for the user, these values are typical
provenance data that need to be registered.

Moreover, the semantics of a dataset 𝐷𝑆 may not be applicable to all attributes. For
example, if a data transformation does not evaluate a loop, 𝛴(𝐷𝑆) of this data transformation
does not contain 𝐿K or 𝐿Q. Examples of 𝐿K are loop-stop conditions (e.g., “max” in case of
“while counter < max” loops or “threshold” in case of “while error > threshold” loops), or
any other parameter used inside the iterations. In data transformations that evaluate loops,
each iteration may be modeled as a loop evaluation execution and produces 𝐿Q. They are
attribute values that contain current values being used to evaluate a loop, which are updated
at each iteration (e.g. “counter” or “error”).
Definition 7: Steering action. A steering action 𝑆𝐴 is an interaction between a user who
analyzes or monitors or dynamically adapts one or more elements of 𝐷:

𝐷′ ← 𝑆𝐴D(𝐷)
where 𝐷 is a 𝐷𝑓 or a 𝐷𝑇 or a 𝐷𝑆 and 𝛼 is a steering action clause that defines the analysis or
monitoring or adaptation that result in 𝐷′.

For example, when 𝐷 is a 𝐷𝑓, users might need to monitor (or analyze or adapt) the
composition of data transformations of the dataflow. When 𝐷 is a 𝐷𝑇, users might need to
monitor (or analyze or adapt) the 𝐷𝑇 structure. In case of 𝐷𝑆, users might need to monitor
(or analyze or adapt) data elements in the 𝐷𝑆. Depending on the operand 𝐷, 𝛼 specifies which
elements the user will interact. When 𝑆𝐴 is monitoring or analysis, 𝐷′ contains the result of
the monitoring query or analysis. When 𝑆𝐴 is adaptation, 𝐷′ contains the resulting data
modified by the user.
Definition 8: User steering data. To register a steering action 𝑆𝐴, user steering data need to
be tracked. User steering data is denoted by (𝐷, 𝛼, 𝐷W, 𝑈,T), where	𝐷, 𝐷′ and 𝛼 are the data
and the clause, respectively, involved in 𝑆𝐴; 𝑈 contains data about the user who performed
𝑆𝐴; and T	 is a set of data transformation executions related to 𝑆𝐴. Any other data that benefit
the register of the steering action 𝑆𝐴 can optionally be tracked and associated to 𝑆𝐴. For
example, the current wall time at which the 𝑆𝐴 occurred, or textual annotations informed by
the user at the moment of 𝑆𝐴 can benefit its register.

Considering that parameter fine tuning is the main action within adaptations in a 𝑆𝐴, we
define a special case of 𝑆𝐴, named 𝑇𝑢𝑛𝑒.
Definition 9: Tune.	𝑇𝑢𝑛𝑒 is a steering action for parameter tuning as follows:

𝐼56W ← 𝑇𝑢𝑛𝑒(Z,[)(𝐼56)

where the operand 𝐼56 contains old values of attributes being tuned into 𝐼56W with the new
values. 𝐼56W 	follows the same schema 𝓢(𝐼56) and semantics	Σ(𝐼56). (𝜂, 𝐶) is the steering
action clause. 𝜂 is a set of ordered pairs (𝑝, 𝑣), where 𝑝 ∈ 𝑃K is the parameter being tuned
and 𝑣	is its new value. 𝐶 expresses a predicate to address a specific data element that will
have its parameters tuned. In case of an 𝐼56	that contains a single data element, 𝐶 is optional.

To register a 𝑇𝑢𝑛𝑒 operation, the user steering data tracked are: (𝐼56, 𝜂, 𝐶, 𝐷W, 𝑈,T, 𝑑),
where 𝑑 is an optional argument that contain useful data related to the steering action context.

5. DfAdapter

In this section, we present DfAdapter, a lightweight solution aimed at capturing
provenance of online steering actions in dataflows and storing the related dataflow
provenance to enable understanding of the impacts of the action. Section 5.1 shows the main
system design principles followed by DfAdapter. Section 5.2 shows how steering actions are
captured in different workflow execution models. Section 5.3 presents the system
architecture. Section 5.4 provides a general overview of how to use DfAdapter. Sections 5.5
and 5.6 present the provenance data model and its implementation using the relational data
model, respectively. Section 5.7 provides a formalism to calculate DfAdapter’s overhead.

5.1 System Design Principles

In this section, we explain the core system design principles followed by DfAdapter.
Asynchronous service calls. DfAdapter is coupled to adaptable applications, like

systems that support computational steering [1,2] or adaptable simulations as our case study.
In either case, an API for DfAdapter is used so it can be called from the adaptable application.
Provenance capture calls are placed in monitoring points in the workflow code to capture
provenance of the dataflow and execution of data transformations. Similarly, to capture
provenance of steering actions, DfAdapter calls placed in the steering points, allowing
DfAdapter to track the steering actions in data transformations at runtime.

Attaining low performance overhead is a basic requirement in DfAdapter, otherwise
computational scientists, used to high performance systems, will not use the tool. For this,
calls to DfAdapter are asynchronous, meaning that when the user adapts the running
workflow, the track of steering actions is done in such a way that the main computational
process will not wait until the track finishes. The same approach is valid for any added
monitoring data tracking in the code. In addition, the most computationally costly
components in DfAdapter, such as the ones that store steering data in the provenance database
during workflow execution, are deployed in separate hardware, different from where the
main computational process runs, but in same internal network (e.g., the nodes in the cluster
has local access to the node that runs DfAdapter’s provenance server) to reduce
communication costs, following in-situ and in-transit approaches [2]. This avoids making
DfAdapter and the main computational process compete for resources. Following these
principles, the utilization of DfAdapter attains low added performance overhead for
provenance of steering actions, such as less than 1% in our case study (Section 7).

Adapter service and communication between DfAdapter interface and the running
workflow. Adding steering points in an adaptable workflow means that in those points there
will be data communication between the running workflow and DfAdapter, so that the data
flowing in the workflow can be modified. To represent this communication between the front
end (from which the user sends steering commands) and the back end (which receives the
commands and effectuates an adaptation in the running workflow), we use the notion of an
adapter service. The adapter service in an adaptable workflow has the communication
protocol capable of adapting a running application. The basic idea is that the user uses
DfAdapter interface that communicates with the front end of the adapter service, which sends
steering commands to the back end of the adapter service that does the adaptation in the
running workflow, and finally DfAdapter registers the provenance of the steering action.
There are different ways to implement such data communication between the back and front
ends of an adapter service [2,5,6]. DfAdapter can be coupled to any of these implementations.
These implementations are the following.

(i) File-based checks. This is a simple yet widely used way to implement data
communication [2]. In this case, there are files in a storage resource that are accessible both
by the front and by the back ends of the adapter service. In that case, when the user uses
DfAdapter interface to steer the workflow, the front end of the adapter service modifies a file
according to the user inputs. When the program pointer in the running workflow reaches a
steering point, the back end of the adapter service verifies if files were modified and, in case
of modification, the adaptation is carried out and DfAdapter is called to register the
adaptation. Although file-based checks are a simple approach, it is widely used especially by
users that implement their own ad-hoc way to make their simulation steerable, as in our case
study. However, it requires that front and back ends share access to files in a storage resource,
which may not be always possible.

(ii) Message passing. It is another way to implement data communication. In this case,
when the user uses DfAdapter interface, the adapter service’s front end sends a message to
its back end in the running workflow. When the steering point is achieved, the adapter
service’s back end verifies if a message has arrived and effectuates the adaptation
accordingly, and DfAdapter is called to register the adaptation. MPI, sockets, or RESTful
HTTP messages can be used as communication protocol to implement this. Many systems
with steering support use message passing to implement data communication [29–31]. This
is an alternative to file-based checks, as it does not require files to be shared in a storage
resource by the adapter’s front and back ends.

(iii) DBMS-driven. It is an alternative to message passing and file-based checks. It is
similar to file-based checks in the sense that there is a DBMS that is accessible both by the
DfAdapter interface (via the front end in the adapter service) and the running workflow (via
the back end). It is similar to message passing in the sense that it does not require files to be
shared in a storage resource. Rather, data that can be modified at runtime are managed by the
DBMS that can even run in-memory, depending on the DBMS. In this implementation, when
the user adapts using DfAdapter, the adapter front end modifies data in the DBMS. When the
program pointer achieves the steering point in the running workflow, the steered end checks
if the data have been modified, carries the adaptation accordingly, and DfAdapter is called
to register the adaptation. We implemented the data communication and steering action
tracking in a synthetic workflow example using the parallel frameworks Apache Spark and
Redis, a lightweight in-memory Key Value store, as the DBMS between the workflow and

DfAdapter. The source code is available on GitHub [42].
DBMS and data model for the Provenance Database. DfAdapter needs a DBMS to

manage the provenance database. Several data models can be used for provenance databases,
such as graph and relational data models. The usage pattern in DfAdapter is that the running
workflow only produces insertions to the provenance database, while the user typically runs
provenance queries for online data analyses to support decision-making, i.e., OLAP queries.
This usage pattern, both by the workflow system and by the user, is benefited from column-
oriented relational DBMSs, as shown in some of our previous works [16,18]. Moreover, since
there may be many appends to this database during execution, the DBMS must be able to
handle parallel requests from clients. Thus, DfAdapter follows this principle and uses a
DBMS, called MonetDB†, which has these characteristics.

Provenance data modeling. Provenance data management is at the core of DfAdapter.
Instead of creating new standards, DfAdapter follows the well-stablished W3C PROV
recommendation, and extends to add the specific parts for the track of parameter tuning. By
adhering to W3C PROV standard, DfAdapter aims at allowing for interoperability among
provenance databases. In addition, another important principle in DfAdapter is that the
provenance data model is abstract and flexible enough to be used in different domains or
applications. Our previous works show that similar provenance data modeling used by
DfAdapter has been shown useful to capture relevant domain-specific data as well as generic
dataflow provenance in other applications, such as in the Oil and Gas domain [15] and
Astronomy [16]. The provenance data model (Section 5.5) is thereafter implemented in a
relational data model (Section 5.6).
5.2 Keeping Track of Parameter Tuning in Different Workflow Execution Models

Workflow execution models are acyclic or cyclic. Acyclic model is the most commonly
supported in workflows (often modeled as a Directed Acyclic Graph), although the cyclic
model need to be supported for extreme-scale workflows [14]. We design our solution for
tracking user steering actions to support both models.

 In case of acyclic models, after the user tunes attributes in an 𝐼56, provenance data
collectors register which attributes were modified with their old and new values, and
execution data of tasks that were running at the time of the adaptation.

Both sequential and concurrent execution models can be iterated in a cyclic model. Thus,
at runtime, when the workflow is running in a specific cycle, a user can tune parameters.
Cyclic execution models can be further distinguished between (i) loops without dependencies
between iterations, also known as parameter sweeps; and (ii) loops with dependencies.
Examples of loops with dependencies are counting loops, such as for i=0; i < max; i++, or
conditional loop, such as “while error > threshold”. Additionally, Dias et al. proposed
“external steering” loops, where the user adapts loop-stop conditions [38].

For (i) parameter sweep loops, the user may want to modify parameters that are to be
swept. For (ii) loops with dependencies, the current iteration counter is an important value to
be tracked. In those cases, the evaluation of a loop can be modeled as a data transformation
[38] in a dataflow. Thus, the 𝑇𝑢𝑛𝑒 operation represents the tuned attributes that will be used
inside the cycle in 𝐿K; and 𝑑 (optionally tracked when 𝑇𝑢𝑛𝑒 occurs) contain the current
iteration counter. Thus, 𝑑 is tracked with the current iteration counter of the loop, alongside

† https://www.monetdb.org

with 𝜂, 𝜃, 𝜖, as in previous execution models.

5.3 DfAdapter Architecture and Details

In this section, we present details about DfAdapter architecture following the design
principles previously presented. DfAdapter controls the front end of the adapter service. That
is, when the user submits a steering command using DfAdapter interface, it registers the
beginning of the steering action and makes the front end of the adapter service call its back
end. DfAdapter’s API method to be inserted in the steering points of the workflow code
implements the 𝑇𝑢𝑛𝑒 operator. When the back end of the adapter service effectuates the
adaptation, an API call to DfAdapter is executed, which tracks the steering action and stores
in the provenance database. Figure 3 shows DfAdapter system architecture and Figure 4
shows an UML sequence diagram that represents the steps that occur when the user issues a
steering command.

Figure 3. DfAdapter system architecture.

Figure 4. Sequence diagram for the track of steering actions.

The sequence of steps that occur when a user steers using DfAdapter are as follows: First,
during workflow execution, (0) monitoring data specified in monitoring points are sent to the
Provenance Server via Monitoring data tracker API calls. Then, (1) Provenance Server
stores monitoring provenance in the Provenance Database. While the workflow runs, user can
use Query Interfaces and Dashboards to follow the intermediate data results and decide for
a steering action. If the user decides for a steering action, (2) the user sends a steering
command using DfAdapter’s Steering Command Interface, which (3) calls the Adapter
Service front end , which (4) calls the Steering data tracker API method to (5) register
the beginning of a steering intention. The Adapter Service front end reacts to DfAdapter’s
call and (6) communicates with the Adapter Service back end, which (7) has adapters that
are able to effectuate the adaptation. When (8) the running workflow notices that an

Query Interfaces and
Dashboards

User side

Adapter Service
(front end)

Steering data tracker
API

Steering command
interface

Server side

Steering
points

Monitoring
points

Provenance API
Monitoring data tracker

API

Steering data tracker
API

Adapter Service
(back end)

Provenance Server
Monitoring data tracker

Steering data tracker

Workflow
running…

Adapter service data communication

Provenance Database

User

2. steering command
3. Call adapter 4. initiate steering

intention

0. monitoring data
tracking 1. store monitoring

provenance

6. Communicate
adaptation 7. adapt

9. steering data
tracking 10. store steering

provenance

5. store steering
provenance

8. notice
adaptation

11. steering action and dataflow analysis

Steering
command
interface

Adapter
service
(front end)

Provenance
Server

Adapter
service
(back end)

Running
Workflow

Provenance
Database

adaptation occurred (e.g., it verifies that a file or a data structure, depending on the adapter
service implementation, has been changed because of a steering action), the (9) Steering
data tracker API method inserted in the steering point is called. (10) Provenance Server
receives the calling and stores steering provenance in the Provenance Database. After that,
the workflow continues to run normally together with monitoring data that are continuously
tracked and stored, and (11) the user can run user steering action analysis.

The 𝑇𝑢𝑛𝑒 operator is implemented in DfAdapter system in the Steering data tracker
API method inserted in the steering point (9th step in the sequence diagram Figure 4). It is
implemented as shown in Algorithm 1, where we denote as 𝜃 the set of ordered pairs with
the old values for the tuned parameters. Algorithm 1 is responsible to register new domain
data that were modified in the adaptation as well as register their corresponding old values.
It tracks current execution data, iteration counter values (in case of iterative workflows), and
user data. Then, it stores user steering data relating to all other data being continuously
tracked during workflow execution.

5.4 DfAdapter Utilization

To describe how DfAdapter is used, we resort to the methodology listed in Figure 2. We
explain how it can be added to dynamic workflows before execution and how it can be used
to track steering actions.

Before execution. The user identifies a workflow by specifying parts of the code that can
be modeled as data transformations and their datasets, and the data dependencies. Monitoring
and steering points are added, as in Figure 1 of our case study. Then, DfAdapter API calls
are inserted in the workflow code to capture provenance of the steering actions. Figure 5
shows an example using an excerpt of our case study workflow code. In Line 6, a method
calls the DfAdapter API that implements Algorithm 1. The remainder provenance methods
(Lines 3, 10, 13, 16) contain library calls inserted in the user code for monitoring so the user
will know how to steer during execution.

Algorithm 1: DfAdapter using the Tune operator.
Input:
 𝐼56: The 𝐼56 in the dataflow containing the parameters to be tuned.
 𝜂: key-value data structure containing the parameters and their new values.
 𝐶: (optional) criteria to specify the data element that will be adapted.

1. prov ← get_provenance_server() //programming interface to the Provenance Server
2. 𝜃 ← 	∅
3. 𝑑 ← ∅
4. T	 ← prov.get_running_execution_data()
5. 𝑈 ← prov.get_user()
6. 𝑡 ← get_current_wall_time()
7. current_data_element ←	prov.get_element(𝐼56, 𝐶) //if C is null, get the only data element in 𝐼5c5
8. attribute_semantics ← prov.get_semantics(𝐼56)
9. for all key-value pairs (p, current_value) in current_data_element do

10. if p ∈ keys(𝜂) then
11. 𝜃[p] ← current_value
12. if p ∈	attribute_semantics[𝐿K] and 𝑑 = ∅ then //tuning a loop attribute. Get iteration data
13. 𝑑 ←	prov.get_current_iteration_data(𝐼56)
14. end if
15. end if
16. end for
17. prov.store_steering_data(𝐼56, 𝜂, 𝐶, 𝑈,T, 𝑑, 𝑡, 𝜃)

During execution. DfAdapter wraps the front end of the adapter service. When users use

DfAdapter interface to adapt the running workflow, the provenance of the steering actions
are captured. The interface is command line-based, to be used in a terminal connected to the
HPC machine where the workflow runs. In the command line, users only need to inform the
input dataset 𝐼56 to be adapted, and a simple key-value data structure containing the
parameters and their new values. For flexibility, the key-value data structure can be passed
directly using the argument --p or write it in a file and pass its path as the argument. We add
an optional argument --reason to allow users to annotate that specific steering action. Keeping
the interface simple helps computational scientists to adhere to DfAdapter utilization. Figure
6 shows an example of DfAdapter’s command line interface.

5.5 W3C PROV for the Provenance of Parameter Tuning

In this section, we propose a data provenance representation of parameter tunings. We
build on our previous PROV-DfA [3], a representation for provenance of steering actions in
dataflows, which is an extension of the W3C recommendation PROV-DM [43]. In this paper,
we specialize PROV-DfA for parameter tuning in user-steered dataflows. In Figure 7, we use
a class diagram to present the provenance data representation for parameter tuning. The
classes in white background represent prospective provenance and in gray background
represent retrospective provenance. The main added class is ParameterTuning. Parameter
tunings at runtime are registered as retrospective provenance as they occurred while the

1. ...
2. for (unsigned int t_step = p.init_tstep; (t_step < p.n_time_steps) && (time < p.tmax); t_step++) {
3. provenance.initTimeLoop();
4. if (parameters_modified()) {
5. p = reload_parameters();
6. provenance.steeringTimeLoop();
7. }
8. ...
9. for (unsigned int nonlinear_step = 0; nonlinear_step < p.max_nonlinear_steps; ++nonlinear_step) {

10. provenance.initFluidSolver();
11. flow_system.solve();
12. ...
13. provenance.finalizeFluidSolver();
14. }
15. ...
16. provenance.finalizeTimeLoop();
17. }
18. ...

Figure 5. Excerpt of libMesh-sedimentation code with provenance and steering calls.

1. $> ./DfAdapter --user='Bob'
2. $> ./DfAdapter --tune
 --dataset='I_Iteration_Params'
 --p='{"max_linear_iterations":500}'
 --reason="checking how linear iterations affects
 convergence"

3. $> echo '{
 "flow_initial_linear_solver_tolerance": 1.0e-6,
 "amr/c_fraction": 1.0e-5
 }' > new-values.json

4. $> ./DfAdapter --tune
 --dataset='I_Iteration_Params'
 --p='new-values.json'

Figure 6. Command lines to call DfAdapter.

workflow is in execution.
ParameterTuning represents provenance of a 𝑇𝑢𝑛𝑒 operation (c.f. Definition 9). It has two

relationships (WasInfluencedBy) with AttributeValue. The first one is to relate to the new
values of parameters being tuned. Values of parameters are modeled as AttributeValue
(derived from the prospective entity Attribute), part of a DataElement of a Dataset (the
𝐼56	having its parameters tuned). Using W3C PROV relationships, we model the new
attribute value of a parameter being tuned as a revision of (WasRevisionOf) the old parameter
value, which is also an attribute value; hence the auto-relationship in AttributeValue. Thus,
these relationships are for representing the new and old values for the parameters tuned, i.e.,
𝜂 and 𝜃. The second WasInfluencedBy relationship between ParameterTuning and
AttributeValue is to relate the tuning with 𝑑 values, which are also modeled as
AttributeValues.

To relate the ParameterTuning with 𝜖, we add the relationship WasInfluencedBy between
ParameterTuning and ExecuteDataTransformation, which is the most representative class for
workflow execution data (Section 4). For user data 𝑈, we relate ParameterTuning with Person,
via the added WasSteeredBy relationship. We also create a new class, Adapter, which is a
PROV SoftwareAgent, to store data about the program or service that can effectively adapt
the dataset. We relate the tuning with the Adapter class via WasAssociatedWith to explicitly
represent which Adapter call was used to tune the parameters. For example, one could use
this relationship to store the arguments used by the service call to adapt the dataflow. Finally,
ParameterTuning can be further extended for any other data that the user may find relevant,
such as descriptions for the tuning or the criteria 𝐶 used to select the data element that will
be tuned.

Therefore, with this W3C PROV-extended provenance data model, we can represent
provenance of online parameter fine-tunings in dataflows steered by users. In the next
section, we present one possible implementation of this provenance model using the
relational data model.

Figure 7. PROV-DfA [3] with Parameter Tuning classes.

5.6 Implementing the Provenance Database Schema for DfAdapter

We use the relational data model to represent the W3C PROV-extended provenance
model presented in Section 5.5. An excerpt of the relational database schema is in Figure 8,
whereas a complete figure can be found on GitHub [42]. Whenever a user issues a steering
command to tune parameters, a new instance of parameter tuning action is stored in the
ParameterTuning table. Since a parameter tuning may modify one or many attributes, and the
same attribute may be modified by many steering actions, there is a many-to-many
relationship between ParameterTuning and Attribute tables. The associative table,
ParameterTuned, has fields to store old and new values. The 𝐼56 is a specialization of the table
Dataset. Each tuple in Dataset table is a data element. Each ParameterTuning instance may
directly affect one or many data elements in 𝐼56	and a same data element in 𝐼56 may be
affected by many parameter tuning actions, hence there is a many-to-many relationship
between ParameterTuning and Dataset tables, via the ModifiedDataElement associative table.
Moreover, as 𝑂56	is also specialization of Dataset, we use InfluencedDataElement associative
table between another many-to-many relationship between ParameterTuning and Dataset
tables to store output data elements directly influenced by a tuning, such as iteration counter
data in case of parameter tunings in data transformations that evaluate loops. Finally, we
relate execution data about the current state of the execution when a tuning action happened
via the associative table InfluencedTask. Tasks are directly mapped to
ExecuteDataTransformation in the provenance model, and execution data are further extended
with performance data via the relationship between Task and Performance tables. The person
who steered and the adapter program used in that specific tuning are related and stored to
ParameterTuning. Thus, because of these entities and relationships being populated during
execution of the workflow in a user-accessible database, users can drive their analyses and
decisions at runtime using these data.

Figure 8. Excerpt of the database schema.

5.7 DfAdapter Overhead Analysis

The adoption of DfAdapter depends on how much execution overhead it implies. The

overhead depends on data needed for monitoring and steering. For monitoring, it depends on
the workflow data identified in the simulation code that needs to be tracked. That is, which
input and output data values, for each data transformation, should be monitored during
execution. For steering, which steering points should be added and how many steering actions
actually happened during execution. In both cases, the overhead will depend on data collected
for monitoring and for steering actions, always based on user decisions.

We use the dataflow concepts presented in Section 4 to express the overhead. Whenever
a task 𝜏 is executed to perform a data transformation 𝐷𝑇e, the execution cost of 𝜏, 𝑐(𝜏), is
given by its actual computational cost 𝑐𝑜𝑚𝑝(𝜏) (i.e., the inherent cost of executing 𝐷𝑇e) plus
the introduced overhead 𝑜(𝜏). Let the overhead 𝑜(𝜏) of a task 𝜏 be expressed as a function
of monitoring 𝑚(𝜏) and steering 𝑠(𝜏) overhead as in

 𝑜(𝜏) = 𝑚(𝜏) + 𝑠(𝜏) (1)

The overall overhead is given by the sum of 𝑜(𝜏)	for all tasks 𝜏, of all data transformations
𝐷𝑇e in 𝐷𝑓. Next, we detail the monitoring and steering components.

Analyzing monitoring overhead. Monitoring overhead 𝑚(𝜏) is defined by the
provenance data tracking overhead 𝑝𝑟𝑜𝑣(𝜏) and raw data extractions 𝑒𝑥𝑡(𝜏) during each
data transformation execution identified by the user as relevant for monitoring, as in

 𝑚(𝜏) = 	𝑝𝑟𝑜𝑣(𝜏) + 𝑒𝑥𝑡(𝜏) (2)

 where 𝑒𝑥𝑡(𝜏) = 0	if there are no extracted data values in the execution of 𝜏.
Provenance tracking overhead 𝑝𝑟𝑜𝑣(𝜏) depend on the number of data values of each data

element tracked at a task execution 𝜏. Each execution 𝜏 of a data transformation 𝐷𝑇e
consumes input data elements in 𝐼e and produces output data elements in 𝑂e. In DfAdapter,
data elements are stored at once in the beginning (input data elements) and at the end (output
data elements) of each task 𝜏. Provenance tracking overhead is due to preparing provenance
tuples to be sent to the provenance database. Since provenance management services and the
database system run in a separate computing resource and sending provenance data to be
stored occurs asynchronously, provenance tracking overhead account only for preparing
tuples to be sent. This represents a very low overhead, in the order of few milliseconds per
task.

The raw data extraction overhead 𝑒𝑥𝑡(𝜏) depends on the number of data values the user
wants to extract from raw data files at each execution of a 𝐷𝑇e. Let 𝑉l be the set of all data
values extracted when 𝜏 is executed. Each extracted data value 𝑣, ∈ 𝑉l has an associated data
attribute 𝑎, in 𝑉K or in 𝑉Q, depending on if 𝑣, is in a data element in 𝐼e or 𝑂e, respectively –
c.f. Definition 6. 𝑒𝑥𝑡(𝜏) for each 𝜏 to execute a 𝐷𝑇e is therefore given by the summation of
costs to extract each 𝑣, ∈ 𝑉l:

 𝑒𝑥𝑡(𝜏) =m 𝑒𝑥𝑡(𝑣,)
no∈pq

 (3)

The cost to extract a data value will depend on application-specific raw data extractors [16].
Extracting data values from raw data files to store in a provenance database for monitoring
is done synchronously. Depending on the amount of data and how the raw data extractor is
implemented, overhead may not be negligible, as we show in previous works [18].

Analyzing steering overhead. The steering overhead occur in data transformations that

have a steering point. Steering overhead also depend on when a steering action happens.
When a steering action happens, all those operations presented in the sequence diagram of
Figure 4 are triggered. Let 𝑆 be the subset of all data transformations 𝐷𝑇e	in 𝐷𝑓 that have
steering points. For example, in our case study, the data transformation that evaluates the
time loop has a steering point. Thus,

 𝑠(𝜏) = 	 𝑠rO,st(𝜏) + 𝑠uvt,Os(𝜏) (4)

where 𝑠rO,st(𝜏) is the overhead associated to adding steering points to 𝐷𝑇e, and 𝑠uvt,Os(𝜏)
is the overhead associated to DfAdapter to compute that a steering action happened.
𝑠uvt,Os(𝜏) = 0 if no steering action has been associated to the task 𝜏 and 𝑠rO,st(𝜏) =
	𝑠uvt,Os(𝜏) = 0, ∀𝐷𝑇e ∉ 𝑆. The overhead 𝑠rO,st(𝜏) is a simple check to verify if a data
structure has been modified during execution. Such simple verifications are nearly constant
and milliseconds-long.

Putting it all together. The overall cost 𝑐(𝐷𝑓)	to compute a dataflow 𝐷𝑓 is given by the
sum of costs to compute the actual computation, 𝑐𝑜𝑚𝑝(𝐷𝑓), provenance tracking,
𝑝𝑟𝑜𝑣(𝐷𝑓), raw data extractions 𝑒𝑥𝑡(𝐷𝑓), steering points 𝑠rO,st(𝐷𝑓), and steering actions
𝑠uvt,Os(𝐷𝑓), that is,

𝑐(𝐷𝑓) = 𝑐𝑜𝑚𝑝(𝐷𝑓) + 𝑜(𝐷𝑓)

= 𝑐𝑜𝑚𝑝(𝐷𝑓) + 𝑚(𝐷𝑓) + 𝑠(𝐷𝑓)
= 𝑐𝑜𝑚𝑝(𝐷𝑓) + 𝑝𝑟𝑜𝑣(𝐷𝑓) + 𝑒𝑥𝑡(𝐷𝑓) + 𝑠rO,st(𝐷𝑓) + 𝑠uvt,Os(𝐷𝑓)

 (5)

where 𝑐(𝐷𝑓) = ∑ 𝑐(𝜏), 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡𝑎𝑠𝑘𝑠	𝜏, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝐷𝑇el in 𝐷𝑓. Analogously, all components
of 𝑐(𝐷𝑓) can be obtained by the summation of each individual component for all tasks. That
is, 𝑝𝑟𝑜𝑣(𝐷𝑓) = ∑ 𝑝𝑟𝑜𝑣(𝜏)l , 𝑒𝑥𝑡(𝐷𝑓) = ∑ 𝑒𝑥𝑡(𝜏)l , and so on.

Therefore, the overall cost of a dataflow depends on the number of workflow tasks and
the overall DfAdapter overhead depends on the number of tracked tasks and raw data
extraction. We may consider that raw data extraction is a powerful support for data analysis,
but not necessarily for fine-tuning, which may rely on provenance data monitoring. The raw
data cost will depend on how much the user is willing to pay for data analysis. Therefore, we
may separate the raw data extraction overhead from the remaining overhead costs.

We observe, on the scientific domain, that 𝜏 is often a complex task, where its 𝑐𝑜𝑚𝑝(𝜏)
takes at least a few seconds, but often minutes long [44]. By analyzing the individual elapsed
time of the components, 𝑝𝑟𝑜𝑣, 𝑠rO,st, 𝑠uvt,Os	of 𝑜(𝜏), we observe that, on average, they are
close to constant and typically milliseconds-long. Therefore, we can assume that in scientific
applications 𝑐𝑜𝑚𝑝(𝜏) >> 𝑜(𝜏), which leads to the negligible overhead of tracking user
steering actions. In addition, because such operations occur asynchronously and in a different
computing resource, the time for the individual components of 𝑜(𝜏) is “hidden” by the actual
computation, which is significantly higher. This contributes to reduce the impact on the
workflow execution performance.

If we consider 𝑒𝑥𝑡(𝐷𝑓), which depends on the user settings, it is still typically very much
smaller than all raw data that is being generated and stored on files. As we show in our real
case study, the overall 𝑜(𝐷𝑓), including the costs for 𝑒𝑥𝑡(𝐷𝑓), is less than 2%, which is still
negligible.

6. DfAdapter in Action: Montage and Sedimentation workflows

In this section, we present two real-world workflows modeled using the dataflow
concepts and illustrated with steering actions. The parameter tuning cases are presented in
increasingly order of complexity. First (Section 6.1), we illustrate the 𝑇𝑢𝑛𝑒 operation applied
to Montage [45], a well-known workflow with a parameter sweep execution model. Montage
exemplifies the applicability of our solution in a simple, yet typical case. Second (Section
6.2), we apply 𝑇𝑢𝑛𝑒 to our case study workflow, libMesh-sedimentation [18], showing the
impact of fine-tuning in the performance.

6.1 Steering in Montage

Montage [45] is a toolkit for assembling Flexible Image Transport System (FITS) files
into custom mosaics, used for identifying potential objects of interest in the sky. It has been
used for large-scale data analyses in the astronomy domain since 2005. Montage provides a
service to build mosaics, according to common astronomy coordinate systems, arbitrary
image sizes and rotations, and all World Coordinate System (WCS) map projections. It uses
algorithms to maintain the calibration and positional fidelity of images to provide mosaics
based on user-defined parameters of projection, coordinates, and spatial scale. It has
independent modules for analyzing the geometry of images, and for creating and managing
mosaics.

Before executing the workflow in the HPC machine, the user prepares the input data to
be processed. Montage’s mArchiveList module can be used for downloading FITS files,
which are the inputs of this workflow. Each execution of mArchiveList has the input
parameters: survey (represent source of the astronomy repository – possible values are
2MASS, DSS, etc.), band (the band or filter of the downloaded images – possible values are
j, h, k, dss1, dss1b, etc.), location (name or coordinate of a mosaic region), and width and
height (size of the area of interest, in degrees). These parameters represent regions in the sky
and can be used to drive the analyses, as certain regions may be less or more likely to contain
interesting celestial objects or, depending on these values, the assembled mosaic figure may
have a better or worse resolution in a specific region of interest. See mArchiveList module‡
for further details on each of these parameters. Furthermore, the output of a mArchiveList
execution is a file containing a list of URLs of FITS files that can be downloaded. Then, we
download each of those FITS files and compress them in a zip file. The input parameters
used to execute mArchiveList are modeled as 𝑃K attributes in an 𝐼56 named I_List_FITS. The
parameter values used in each mArchiveList execution, to download a list of FITS files
(compressed in a zip file) compose a data element in I_List_FITS. Thus, the parameter values
in one data element in I_List_FITS identify one zip file. Figure 9 shows a small subset of
I_List_FITS.

‡ http://montage.ipac.caltech.edu/docs/mArchiveList.html

Figure 9. User steering the dataflow in Montage workflow.

Then, data transformations (mapped to Montage modules) in this dataflow are modeled
as follows. The first data transformation (List FITS) extracts each of those zip files. Each
input FITS file has 20 types of domain-specific values (modeled as 𝑉K). The second data
transformation (Projection) computes the projection of these astronomy-positioning
references into a specific plane (extraction of 21 𝑉Q attributes). After that, Select
Projections joins FITS projection files that are associated to the same mosaic (two
𝐹Q	attributes). Create Uncorrected Mosaic creates a mosaic without overlap interferences and
color corrections and, as a result, it creates a JPG image (one 𝐹Q	attribute, the JPG file). The
other data transformations from the Montage dataflow are defined to consider overlap
interferences and color corrections to create a corrected custom mosaic.

Furthermore, Figure 9 gives details of the first data transformation, List FITS. List FITS
data transformation uses the values in the data elements of I_List_FITS to get the zip file
(stored in the directory informed in fits_dir attribute) to be processed in that execution. The
workflow can be executed in a parameter sweep fashion (cyclic) with acyclic concurrent
tasks, where the concurrent execution of each data element in I_List_FITS (going from this
first data transformation until the last data transformation) represents a cycle in the parameter
sweep (with attributes in I_List_FITS as the parameters to be swept). Then, for each FITS
file in this extracted zip file, the data transformation List FITS creates a new data element in
the output dataset (named O_List_FITS, which is input for the Projection data
transformation). Each data element contains the file set it came from (FILE_SET) and a FITS
file identifier (CNTR), allowing for tracing back, and two extracted elements from the input
FITS files (CRVAL1 and CRVAL2, modeled as 𝑉K attributes) that represent two coordinate values
to determine a position in the native image coordinate system (e.g., RA, Dec), and the FITS
file (modeled as 𝐹K attribute for Projection data transformation). Other attributes are
extracted at runtime in these data transformation and in all others throughout the dataflow,
allowing for more online data analyses.

With such online data analytical support, the user is able to better understand the status
of the execution and steer it. Users analyze the generated output mosaic images to investigate

List FITS

Projection Select Projections

Create Uncorrected
Mosaic

Calculate Overlaps

Extract Differences

Calculate Difference

Fit Plane

Create Mosaic

Provenance Database

FITS files

! PI

" file_set survey band location width height fits_dir
1 2mass j m31 0.5 0.5 /data/fits
2 sdss u m101 0.2 0.2 /data/fits
3 dposs j m34 0.55 0.55 /data/fits

! VI FI

" file_set cntr crval1 crval2 file_name
1 0 210.4218461 54.4753195 aJ_asky_1n.fits

1 1 210.4218115 54.205875 aJ_asky_2n.fits

1 2 210.6292274 54.260823 aJ_asky_3n.fits

1 3 210.6292066 54.5302674 aJ_asky_4n.fits

I`_List_FITS

#_%&'(_)#*+,
{.&/0_'0(= 2},

4567, 8 ,
9&7(ℎ, 0.3 ,
ℎ0&>ℎ(, 0.3

Tune
List FITS

I_List_FITS

Original dataflow
User-steered dataflow

Legend
Original Data

Transformation

Dynamically Inserted
Data Transformation

User steering

excerpt of O_List_FITS

Prov. data capture

! PI

" file_set survey band location width height fits_dir
1 2mass j m31 0.5 0.5 /data/fits
2 sdss r m101 0.3 0.3 /data/fits
3 dposs j m34 0.55 0.55 /data/fits

for interesting celestial objects in each analyzed region. Leaving the workflow to process the
entire I_List_FITS dataset with no steering actions takes a long time, even though not all
parameter values need to be processed. As the users gain insights from the online data
analyses, they verify that certain values of the parameters in I_List_FITS (e.g., width, height,
survey) will not lead to finding interesting celestial objects. A bad choice for those parameters
result in specific regions in the mosaic image with bad resolution or quality. If that region
had an interesting object, it would be hard to identify. Thus, the user needs to tune the input
parameters that are to be processed in order to change the region of interest. The execution
may last for long hours. The user may decide on what is considered of interest several times.
The situation may get worse when they tuned parameters that identify a region (with the
objective of improving the quality of the resulting image), but the resulting mosaic does not
have the expected quality or image resolution to validate her scientific hypothesis (the
existence of a specific celestial object). Then, they need to tune the parameters in that region
again to try to get better quality or resolution. Tracking such steering actions facilitates this
process, allows for online data analyses of the steering actions, and improves reproducibility.
In Figure 9, the user steers the dataflow during execution by tuning the parameters band,
width, and height to specify a different file set to try to obtain mosaics with different
resolutions in the region of interest. The 𝑇𝑢𝑛𝑒 operation transforms I_List_FITS into
I`_List_FITS with the modified parameters, and the dataflow continues normally as if no
tune happened.

6.2 Steering a Sedimentation Simulation

libMesh-sedimentation workflow is our motivating case study (Section 2). Users
typically set-up the QoIs and several parameters for the numerical methods. Examples of
parameters are tolerances for linear and nonlinear solvers, number of levels for mesh
adaptation, tolerances for space and time error estimates, etc.

Using the dataflow concepts, the QoIs in libMesh-sedimentation and the numerical
solvers’ parameters are modeled as data elements in datasets flowing in the dataflow.
Moreover, function calls and other parts of the simulation source code are identified as data
transformations. The dataflow has two acyclic setup data transformations, then the simulation
enters in a time loop, configuring a cyclic execution model with loops with dependencies.
There are five data transformations in the loop, including the solvers. Each solver runs in
parallel, using all computing resources available in the HPC machine. The dataflow is
modeled so that at each data transformation execution that evaluates the time loop, the
parameters may be modified as the user steers. In Figure 10, we show the dataflow with an
excerpt of the 𝐼56 (named I_Iteration_Params in the dataflow) that contains input parameters
used inside the loops (i.e., 𝐿K attributes). Also, at each iteration, the t_step and time are
captured, which are 𝐿Q attributes in the O_Iteration_Params, which is the 𝑂56 for the time
loop. Although only the datasets for the time loop are magnified in the figure, each arrow
representing the original dataflow represents datasets for the data transformations, thus their
data elements are being captured and stored in the provenance database.

In this scenario, we show the 𝑇𝑢𝑛𝑒 operator being used while the user steers (dashed
lines in the figure) the dataflow by changing parameter values online. We can see that the
original dataflow is modified by the user when the old value for the flow solver linear
tolerance was tuned from 10-8 to 10-6, generating I`_Iteration_Params. When the user

requests an adaptation, the 𝑇𝑢𝑛𝑒 operation will trigger the adapter to carry the adaptation
and collect and relate steering data in the provenance database. In this case, as an iterative
execution model with loops with dependencies, 𝑇𝑢𝑛𝑒 also relates the tuning with values of
attributes in 𝐿Q of the 𝑂56	of this loop evaluation data transformation.

Figure 10. User steering the dataflow in sedimentation simulation.

7. Experimental Analysis

This section presents the tracking of online parameter fine-tunings in a real workflow
from the Oil & Gas industry. We show that keeping a structured history of the steering actions
supports the interpretability and validation of the results (Challenge 2). Also, we introduce
how users can evaluate, at runtime, the impact of adaptations, through adaptation-aware
online data analysis relating to provenance, domain, and execution data (Challenge 3). In
Section 7.1, we present details of using DfAdapter in the case study and the experimental
setup. In Section 7.2, we present a small-scale experiment from the same domain,
highlighting different uses of our solution, and then a large-scale experiment in Section 7.3.

7.1 Implementation Details in a Numerical Solver and Experimental Setup

Implementation in a Numerical Solver. We conduct the experimental evaluation on
libMesh-sedimentation workflow, shown in Figure 1, which provides a real and rich case for
parameter tuning. First, it is an HPC simulation with over 70 parameters, which may be
modified by the user for better performance and accuracy of results [18]. Second, as this
simulation may last for weeks, the user does several tunings and there is no tracking for them.
Third, there is a strong potential for richer online data analyses with user steering data by
correlating the steering data to domain-specific values (mainly QoIs) and other data in the

Adaptive Mesh

Refinement Setup
Simulation Setup

Input mesh files

! LI
" flow lin. tol. amrc frac tmax

1e-8 0.01 16200

Provenance Database

#_#%&'(%)*+_,('(-.,
01*2 1)+ %*1, 1056

Tune Parameters

in Iteration

User steering

Fluid Solver

AMRXDMF/HDF5 Writer

Catalyst Adapter
Time Loop
while t < tmax

Sediment Solver

! LI
" flow lin. tol. amrc frac tmax

1e-6 0.01 16200

! LO
" t_step time

1403 33.55

excerpt of I_Iteration_Params

excerpt of I`_Iteration_Params

Original dataflow

User-steered dataflowLegend Original

Data Transf.

Dynamically Inserted

Data Transformation
Prov. data capture

excerpt of

O_Iteration_Params

solver_params.in

provenance database. libMesh-sedimentation is implemented in C++ and its code with
instrumentation for analysis and steering is available on GitHub [19].

The first step to use DfAdapter is modeling libMesh-sedimentation simulation as a
workflow and identifying monitoring and steering points. Application-specific data are
modeled as new tables of the relational database schema for the provenance database, and
related to the existing ones accordingly (Figure 8). The main 𝐼56 that the user adapts is the
input for the loop evaluation data transformation, named I_Iteration_Params, which contains
input parameters for the numerical solvers. The users specify parameters in a setup
configuration file. The simulation code checks, at every time step, if any modification has
been made to this file. If a modification occurred, the parameters are redefined according to
the new values. That is, libMesh-sedimentation workflow implements a file-based checks
approach for the adapter service (Section 5.1). Modifications in this file are implemented as
an adapter service front end, which basically receives parameters and new values, and
modifies the file according to the inputs. Then, its execution is controlled by DfAdapter
interface. The last step is to insert DfAdapter API calls in the steering points. In libMesh-
sedimentation code, it is inserted immediately after the parameters are reloaded when there
is a modification in the configuration file. Finally, when the user steers using DfAdapter
interface, it captures provenance, domain and steering data every time it detects online user
steering actions.

Experimental Setup. For the large-scale test, we use 480 cores from Lobo Carneiro
cluster, an SGI ICE X with 252 nodes, each with a 24-core processor and 64 GB RAM,
summing 6,048 cores and 16 TB RAM. The nodes are interconnected via FDR InfiniBand
and share a Lustre file system with 500 TB. In this experiment, the provenance server and
MonetDB are deployed in a separate node in the cluster, different from the ones used by the
main computational process for libMesh-sedimentation. For the small-scale test, we use a
Dell precision T3610 workstation, 8 cores, 16 GB RAM.

7.2 Small-scale experiment

The small-scale experiment is used by scientists as a benchmark to evaluate
sedimentation solvers. It simulates the laboratory test carried out by de Rooij and Dalziel
[46] with a lock-exchange configuration. The objective of this experiment is to show the data
analytical potential of our solution, how we record structured parameter-tunings, and how
users can query the user steering data to enhance their analyses.

The computational setup used in this test case consists of a plane channel with dimensions
20 x 2 filled with sediments in suspension and clear fluid at rest. In the laboratory, a lock-
gate is used to separate the fluids before the beginning of the experiment. When the gate is
removed, a mutual intrusion flow develops in which the particle-laden front travels along the
bottom to the right. In this simulation, the lock-gate is located at x = 0.75. The non-
dimensional parameters used are Grashof number = 5.0×10-6, Schmidt number = 1.0, and
settling velocity 0.02. Adaptive mesh refinement is used to track the interface between
sediments concentration and clear water. Figure 11 shows the concentration of sediments in
suspension and the adapted mesh at simulation time t = 10.

Figure 11. 2D visualization of the tank and the concentration of sediments. This figure was generated at

simulation time t = 10 using ParaView.

In this simulation, the user is interested in analyzing possible performance gains when
the number of nonlinear and linear (in this case, GMRES) iterations is tuned at runtime.
Specific fine-tunings on different input parameters may impact the solvers and hence the
simulation time considerably. During the execution, the user submits analytical queries to
DfAdapter, addressing Challenge 1. Based on the analyses of nonlinear and GMRES
iterations, the user decides to fine-tune the solver’s parameters. In total, the user chooses to
do six fine-tunings in 10 hours of simulation. Query 1 (whose description and tabular results
are in Figure 12) shows the provenance of the adaptation. It lists all the parameters tuned by
a user (say, Bob), correlated to the time steps. By using Query 1, other researchers are aware
that Bob adapted this workflow execution six times. The times and values are well-structured
and recorded in the provenance database by DfAdapter, thus addressing Challenge 2.

Query 1: List all user tunings correlating with time step.
This query does a join on tables: ParameterTuning, ParameterTuned,

InfluencedDataElement, and Attribute, filtering by tunings made by ‘Bob’. The result is:
Parameter

Tuning t_step Parameter
Tuned

Old
Val

New
Val

1 1401 flow_initial_linear_solver_tolerance 1e-8 1e-6
2 1474 minimum_linear_solver_tolerance 1e-8 1e-6
3 1484 flow_initial_linear_solver_tolerance 1e-6 1e-4
4 1755 max_linear_iterations 500 300
5 10061 amr/c_fraction 0.01 0.05
6 10128 max_linear_iterations 300 200

Figure 12. Query 1 results.

To inspect the consequences of adaptations, a more sophisticated analytical query is
needed. Query 2 (whose description and tabular results are in Figure 13) shows the average
values of strategic quantities ten iterations before and after each of the four fine-tunings. The
results include nonlinear and linear (GMRES) iterations, which are output values of the
solver, and the number of finite elements, which is an output of the mesh refinement process
and depends on other inputs of the solver. This query shows an integration of provenance of
the domain dataflow, performance data (average of elapsed times in 10 iterations), and the
new fine-tuning data introduced in this paper. The results of Query 2 (we highlight the main
findings) show that the Tunes #3, #4, and #6 impacted the average elapsed time and the
average number of GMRES iterations, which are of high interest to the user. Tune #5 barely
changed the other values but reduced the number of mesh elements by about 11.15%, while
keeping the overall simulation accuracy. This reduction is important because when there are
too many elements, out-of-memory errors may happen (see next experiment). In Figure 14,
we plot the evolution of these variables over time and annotate the tunings (Tune #1 to Tune
#6) so the user can evaluate the adaptations, addressing Challenge 3.

Figure 14. Plots of monitoring queries for number of GMRES iterations, non-linear iterations, and mesh elements

over time. We highlight the tune actions.

Based on the adaptation-aware online data analyses, the user can evaluate decide whether
or not new tunes are needed, also supporting the Challenge 3. Moreover, suppose a scenario
where another research team analyzes the provenance of the results. The team sees abrupt
changes in the results and can correlate these results with Bob's adaptation through SQL
queries in the provenance database. They can check if sudden changes are related to one of
the adaptations Bob did. Thus, they will have a better understanding of the results, thus

Query 2: Average of domain values (QoIs) and simulation time estimate
10 iterations before and after the tunings.

This query does a join on tables ParameterTuning, ParameterTuned, Attribute,
InfluencedDataElement, O_Sedimentation_Solver, O_Fluid_Solver, Task, and

Performance. It also does an average on the output values of O_Sedimentation_Solver
and O_Fluid_Solver, and on Execution Time in Performance table. The result is:

Parameter
Tuning

Avg
Time (s)

Bef

Avg
Time (s)

Aft

Avg
nonlin.

Bef

Avg
nonlin

Aft

Avg
gmres

Bef

Avg
gmres

Aft

Avg
Elems

Bef

Avg
Elems

Aft
1 17.3 18.5 3.8 3.9 2.03e3 2e3 5.32e3 5.38e3
2 16.9 18.1 4.1 4.3 2.05e3 2.03e3 5.44e3 5.41e3
3 17.4 13.2 4.2 4.3 2.02e3 1.54e3 5.45e3 5.43e3
4 12.7 9.6 3.9 4.2 1.49e3 1.01e3 5.51e3 5.49e3
5 14.4 14.8 4.3 4.0 1.06e3 1.01e3 6.28e3 5.58e3
6 15.6 11.2 4.05 4.1 647 445 5.72e3 5.62e3

Figure 13. Query 2 results.

addressing Challenges 2 and 3.

7.3 Large-scale experiment

In this experiment, the user sets up the libMesh-sedimentation workflow with a
simulation of the deposition of sediments carried by a turbidity current over a real
experimental channel. A mixture of sediments is continuously injected into a channel that
deposits sediments in the tank. The tank has length = 135, width = 40, and height = 50
(dimensionless units).

The dimensionless simulation parameters are settling velocity = 5.36×10-6, Grashof
number = 3.42×107, Schmidt number = 1.0, and fixed time step = 0.01. It uses a 3D
simulation with a spatial discretization using an initial unstructured mesh with 1.2 million
tetrahedra. AMR/C is employed and three levels of uniform refinement are applied before
the time loop. The user specifies input parameter values for the sedimentation solver (i.e.,
linear and non-linear tolerances, maximum number of linear iterations, tolerances for
AMR/C error estimation and refinement and coarsening fractions) aiming at attaining a high-
fidelity simulation. One strategic simulation data that quantifies such level of detail is the
number of elements obtained in the mesh refinement data transformation (second one in the
time loop). Although a large number of elements in the mesh means high level of details, it
also means more memory and time consumed by the simulation. Depending on the parameter
values specified for the solver, the simulation might run out of memory. Thus, the user does
not know beforehand which range of parameters is best for a good level of detail with
acceptable memory consumption.

To support the user in following the evolution of strategic values, we use the approach
presented in [15] to monitor results using provenance and domain data. We set up several
monitoring queries to plot simulation data at each time step. One query shows linear and
nonlinear iterations, residual norms, and the number of elements in the mesh at each time
step. Additionally, ParaView Catalyst is set up to plot 3D visualizations of the channel and
the sediment deposits over time. Then, the user sees, for example, that the number of elements
generated by the AMR/C is close to a maximum preset number of elements. At that rate, the
simulation may crash, running out of memory. The user knows that by changing some of the
solver parameters, the number of elements tend to decrease. Thus, the user issues a command
to adapt the solver parameters and DfAdapter automatically tracks and registers this tuning.

In Figure 15, we show the plot of the monitoring query for the number of elements. We
see how the number is increasing when the user decided to fine-tune the input parameters
online aiming at reducing the number of elements. This action prevented the simulation to
result in an out-of-memory error, which would interrupt the simulation, requiring offline
tunings and job resubmission to the HPC machine.

In Figure 16, we show the 3D visualizations and the evolution of the strategic values and

how the sediments flow in the channel over time. Then, the user can run analytical queries to
analyze the consequences of the fine-tunings, like Queries 1 and 2. In Table 1, we show a
small excerpt of these results, where we can see that the simulation time is cut down to 17
days, thanks to the fine-tunings. If we consider the average solver time by iteration before
the fine-tunings, the simulation time would be approximately 27 days, i.e., a reduction of
37%.

Figure 15. Plot of monitoring query showing number of elements over time.

Steering at t = 33.52 TIME

NU
M

BE
R

OF
EL

EM
EN

TS
(in

m
illi

on
s)

Number of elements in the mesh

Figure 16. Snapshots of 3D visualization of the tanks and the sediments over time. Steering action occurs at t =

33.53 and steering data are recorded.

Parameter Before
steer

After
steer

Flow nonlinear tolerance 1.0e-4 1.0e-3

Transport nonlinear tolerance 1.0e-4 1.0e-3

Flow initial linear solver tolerance 1.0e-6 1.0e-1

Transport initial linear solver tolerance 1.0e-6 1.0e-1

t =
24.5

t =
58.0

t =
83.0

t =
108.0

Steering action

Flow Final linear residual: 1.68641e-13
Flow Final nonlinear residual: 2.03266e-08
Sediment Final linear residual: 1.49932e-13
Sediment Final nonlinear residual: 1.51098e-08
Number of elements in the mesh: 2463183

Flow Final linear residual: 4.46403e-14
Flow Final nonlinear residual: 7.10668e-09
Sediment Final linear residual: 4.06513e-14
Sediment Final nonlinear residual: 9.09405e-09
Number of elements in the mesh: 1743485

Flow Final linear residual: 6.09749e-14
Flow Final nonlinear residual: 9.20302e-09
Sediment Final linear residual: 4.75423e-14
Sediment Final nonlinear residual: 7.4835e-09
Number of elements in the mesh: 1700729

Flow Final linear residual: 5.78688e-14
Flow Final nonlinear residual: 8.11125e-09
Sediment Final linear residual: 6.5936e-14
Sediment Final nonlinear residual: 6.40164e-09
Number of elements in the mesh: 2335832

time

t =
33.52

Analyzing the computational time in details. We use the concepts and equations

presented in Section 5.7 to analyze computational time of libMesh-sedimentation in this
experiment and added overhead due to provenance capture, data extraction, and steering
capabilities. Results are in Table 2. To obtain them, we first calculate each overhead
component per task applying the Equations 1 to 4 using DfAdapter’s logging data joining
with tasks’ performance data in the provenance database. Finally, we sum each contribution
to the overall computational time as in Equation 5.

For monitoring, provenance-tracking overhead account for 0.3% caused by preparing the
tuples to be sent to the provenance server. libMesh-sedimentation workflow has a steering
point in the beginning of the time loop iteration. Raw data extractors extract convergence
values from raw data files written as XDMF/HDF5 so the user can monitor and detect
possible misbehavior of nonlinear and linear solvers. In total, these raw data extractions
account for 1.49% of the total computation time. For steering, since libMesh-sedimentation
uses a file-based checks implementation, it verifies if a file has been modified at each new
time iteration. This file verification is synchronous because the simulation code must verify
if a change has happened before it can continue. In total, this check at each new iteration adds
0.03% overhead. When a steering action happens, the internal data structure that contains the
solver parameters is reloaded and steering data are tracked and sent to the provenance
database. Since the user steered 6 times during execution of this workflow, the overhead for
steering action tracking is close to 0%.

Such reduced overhead is due to our system design principles related to asynchronicity
and to the fact that the most costly data tracking operations occur in a separate node. Also,
because libMesh-sedimentation tasks are seconds-long on average (Figure 13), the
distributed CPUs spend significantly more time computing the application tasks than
computing provenance or steering functions. Therefore, considering approximately 17 days
(about 1.4×106 s) of total execution time, provenance and steering tracking together account
for less than 1% overhead, whereas summing with raw data extractions, the total overhead is
less than 2%.

Table 1. Results of parameter-tuning.

 Before After Reduction

Avg. Solver Time by
iteration 3.82 min 2.21 min 42.14%

Avg. Number of
elements 2.4x106 1.7x106 29.24%

Total execution time (expected) ~27
days

(real)
~17 days

37%

Any overhead caused by this solution is greatly compensated by the benefits we make

available to the user. For example, keeping the registry of the adaptations related to the
provenance of the results benefits reproducibility, validation, and interpretation (Challenge
2). Also, observing at runtime that the adaptation reduced the execution time in ten days
(Challenge 3) is relevant for further online tunings and result analyses.

8. Conclusion

In this paper, we proposed a solution for keeping track of user steering actions in dynamic
workflows. We provided a formal definition for steering action and the tracking of parameter
tuning in dataflows of workflows. We extended a W3C PROV provenance model for data
representation of fine-tuning of parameters, which is very frequent steering action available
in several computational steering systems. We also presented DfAdapter, a tool to facilitate
scientists to fine-tune parameters online while managing provenance of steering actions for
the tunes. DfAdapter works in the same way as visualization libraries like ParaView are used
in workflows. Strategic calls to DfAdapter tracking services are inserted at the adaptation
service invocations of the user workflow. DfAdapter captures provenance of steering actions
and stores in its database, relating with data for workflow execution, dataflow provenance,
and especially with strategic domain values, like QoI. The database is available for online
data analyses via structured query or graphic interfaces.

We developed a case study of DfAdapter using a real sedimentation simulation dynamic
workflow in the Oil and Gas industry, using large and small-scale experiments. By using data
captured by DfAdapter, the user could verify which parameters contributed to a reduction of
simulation time. Also, the steering data registry enabled the user to verify that tuning specific
parameters made it finish successfully. The user could run, for example, Query 2, which
integrates data for provenance, performance, and the new fine-tuning data introduced in this
paper. The user was able to perform steering actions based on the analysis of the impact of
each previous tune as registered by DfAdapter. Without DfAdapter support, fine-tuning
could be error prone and compromise the reliability of the results. We also observed that the
added overhead for DfAdapter for provenance and steering accounted for less than 1% of
total simulation time.

Table 2. Provenance and steering overhead account for less than 1%, whereas data extraction account for 1.49% overhead.

 Total CPU time (sec) Total time (%)

Application
computation
𝑐𝑜𝑚𝑝(𝐷𝑓)

1,407,967.18 98.18%

Monitoring

Provenance 	
𝑝𝑟𝑜𝑣(𝐷𝑓) 4,259.18 0.3%

Data extraction 	
𝑒𝑥𝑡(𝐷𝑓) 21,367.60 1.49%

Steering

Steering point 	
𝑠rO,st(𝐷𝑓)

473.24 0.03%

Steering action 	
𝑠uvt,Os(𝐷𝑓)

2.44 1.7e-5%

 Total 	
𝑐(𝐷𝑓) 1,434,069.64 100%

Therefore, in this work we contributed to provenance management and online analysis of
user steering actions in the context of putting humans in the loop of dynamic workflows,
which is considered a challenge. Thus, in addition to typical uses of provenance data (i.e.,
result reproducibility, reliability, and validation), we exploit them for online data analysis,
supporting users in their decision-making process. In future work, we plan to explore other
types of steering actions in workflows.

ACKNOWLEDGMENTS

This work was partially funded by CAPES, CNPq, FAPERJ and Inria (MUSIC and
SciDISC projects), EU H2020 Programme and MCTI/RNP-Brazil (HPC4E grant no.
689772), and performed (for P. Valduriez) in the context of the Computational Biology
Institute.

REFERENCES

[1] M. Mattoso, J. Dias, K.A.C.S. Ocaña, E. Ogasawara, F. Costa, F. Horta, V. Silva, and D. de Oliveira, 2015, Dynamic
steering of HPC scientific workflows: a survey, Future Generation Computer Systems, v. 46, n. C, p. 100–113.

[2] A.C. Bauer, A. H., Ahrens J., Childs H., Geveci B., Klasky S., Moreland K., O’Leary P., Vishwanath V., et al., 2016, In
situ methods, infrastructures, and applications on high performance computing platforms, Computer Graphics Forum,
v. 35, n. 3, p. 577–597.

[3] R. Souza and M. Mattoso, 2018, Provenance of dynamic adaptations in user-steered dataflows, In: International
Provenance and Annotation Workshop, p. 16–29

[4] H.A. Nguyen, D. Abramson, T. Kipouros, A. Janke, and G. Galloway, 2015, WorkWays: interacting with scientific
workflows, Concurrency and Computation: Practice & Experience, v. 27, n. 16 (Nov.), p. 4377–4397.

[5] J.D. Mulder, J.J. van Wijk, and R. van Liere, 1999, A survey of computational steering environments, Future Generation
Computer Systems, v. 15, n. 1, p. 119–129.

[6] R. Van Liere, J. D. Mulder, and J.J. van Wijk, 1997, Computational steering, Future Generation Computer Systems, v.
12, n. 5, p. 441–450.

[7] K. Lee, N.W. Paton, R. Sakellariou, and A.A.A. Fernandes, 2011, Utility functions for adaptively executing concurrent
workflows, Concurrency and Computation: Practice & Experience, v. 23, n. 6, p. 646–666.

[8] R. Reuillon, M. Leclaire, and S. Rey-Coyrehourcq, 2013, OpenMOLE, a workflow engine specifically tailored for the
distributed exploration of simulation models, Future Generation Computer Systems, v. 29, n. 8, p. 1981–1990.

[9] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese, et al., 2015,
FireWorks: a dynamic workflow system designed for high-throughput applications, Concurrency and Computation:
Practice & Experience, v. 27, n. 17, p. 5037–5059.

[10] I. Pouya, S. Pronk, M. Lundborg, and E. Lindahl, 2017, Copernicus, a hybrid dataflow and peer-to-peer scientific
computing platform for efficient large-scale ensemble sampling, Future Generation Computer Systems, v. 71, p. 18–31.

[11] R. Souza, L. Neves, L. Azeredo, R. Luiz, E. Tady, P. Cavalin, and M. Mattoso, 2018, Towards a human-in-the-loop
library for tracking hyperparameter tuning in deep learning development, In: VLDB Workshops: Latin American Data
Science, p. 84–87

[12] M. Hanzich, J.E. Rodriguez, N. Gutierrez, J. Puente, and J.M. Cela, 2014, Using HPC Software Frameworks for
Developing BSIT: A Geophysical Imaging Tool, In: World Congress on Computational Mechanics, p. 181–189

[13] E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K. Kleese van Dam, K. Moreland, M. Parashar, L. Ramakrishnan,
M. Taufer, et al., 2017, The future of scientific workflows, International Journal of HPC Applications, v. 32, n. 1, p.
159–175.

[14] R. F. da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deelman, 2017, A characterization of workflow
management systems for extreme-scale applications, Future Generation Computer Systems, v. 75, p. 228–238.

[15] R. Souza, V. Silva, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso, 2017, Data reduction in scientific workflows
using provenance monitoring and user steering, Future Generation Computer Systems, v. online, p. 1–34.

[16] V. Silva, J. Leite, J.J. Camata, D. de Oliveira, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso, 2017, Raw data
queries during data-intensive parallel workflow execution, Future Generation Computer Systems, v. online

[17] R. Souza, V. Silva, J. Camata, A. Coutinho, P. Valduriez, and M. Mattoso, 2017, Tracking of online parameter fine-
tuning in scientific workflows, In: ACM/IEEE Supercomputing workshops: Workflows in Support of Large-Scale
Science

[18] J. Camata, V. Silva, P. Valduriez, M. Mattoso, and A.L.G.A. Coutinho, 2018, In situ visualization and data analysis
for turbidity currents simulation, Computers & Geosciences, v. 110, n. C, p. 23–31.

[19]. Workflow Sedimentation GitHub Repository. URL: https://github.com/hpcdb/workflow-sedimentation.

[20] B.S. Kirk, J.W. Peterson, R.H. Stogner, and G.F. Carey, 2006, libMesh : a C++ library for parallel adaptive mesh
refinement/coarsening simulations, Engineering with Computers, v. 22, n. 3–4, p. 237–254.

[21] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, and J. Mauldin, 2015, ParaView Catalyst:
enabling in situ data analysis and visualization, In: ACM/IEEE Supercomputing workshops: In Situ Infrastructures for
Enabling Extreme-scale Analysis and Visualization, p. 25–29

[22] V. Silva, R. Souza, J. Camata, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso, 2018, Capturing provenance for
runtime data analysis in computational science and engineering applications, In: International Provenance and
Annotation Workshop, p. 183–187

[23] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, 2017, Scientific workflows: Past, present and future, Future
Generation Computer Systems, v. 75, p. 216–227.

[24] B. Silva, M.A.S. Netto, and R.L.F. Cunha, 2018, JobPruner: A machine learning assistant for exploring parameter
spaces in HPC applications, Future Generation Computer Systems, v. 83, p. 144–157.

[25] S.G. Parker and C.R. Johnson, 1995, SCIRun: a scientific programming environment for computational steering, In:
ACM/IEEE conference on Supercomputing, p. 52–71

[26] J.A. Kohl, T. Wilde, and D.E. Bernholdt, 2006, Cumulvs: Interacting with high-performance scientific simulations for
visualization, steering and fault tolerance, The International Journal of High Performance Computing Applications, v.
20, n. 2, p. 255–285.

[27] K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay, 1993, GRASPARC: a problem solving
environment integrating computation and visualization, In: IEEE Conference on Visualization, p. 102–109

[28] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf, 2003, The Cactus Framework and
Toolkit: Design and Applications, In: Proceedings of the 5th International Conference on High Performance Computing
for Computational Science, p. 197–227

[29] S.M. Pickles, R. Haines, R.L. Pinning, and A.R. Porter, 2005, A practical toolkit for computational steering,
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, v. 363, n. 1833 (Aug.), p.
1843–1853.

[30] S. Figueira and S. Bui, 2004, CS_LITE: A lightweight computational steering system., In: International Conference
on Parallel and Distributed Computing and Networks, p. 1–6

[31] J. Knezevic, J. Frisch, R.-P. Mundani, and E. Rank, 2011, Interactive computing framework for engineering
applications, Journal of Computer Science, v. 7, n. 5, p. 591.

[32] O. Coulaud, M. Dussere, and A. Esnard, 2004, Toward a computational steering environment based on CORBA, p.
151--158

[33] Q. Wu, M. Zhu, Y. Gu, and N.S.V. Rao, 2010, System Design and Algorithmic Development for Computational
Steering in Distributed Environments, IEEE Trans. Parallel Distrib. Syst., v. 21, n. 4 (Apr.), p. 438–451.

[34] A. Atanasov, H.-J. Bungartz, J. Frisch, M. Mehl, R.-P. Mundani, E. Rank, and C. van Treeck, 2010, Computational
steering of complex flow simulations, High Performance Computing in Science and Engineering, Garching/Munich
2009, p. 63–74.

[35] B. Swift, A. Sorensen, H. Gardner, P. Davis, and V. Decyk, 2015, Live Programming in scientific simulation,
Supercomputing Frontiers and Innovations: an International Journal, v. 2, n. 4 (Mar.), p. 4–15.

[36] M. García, J. Duque, P. Boulanger, and P. Figueroa, 2015, Computational steering of CFD simulations using a grid
computing environment, International Journal on Interactive Design and Manufacturing (IJIDeM), v. 9, n. 3 (Aug.), p.
235–245.

[37] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, et
al., 2015, Pegasus, a workflow management system for science automation, Future Generation Computer Systems, v.
46, p. 17–35.

[38] J. Dias, G. Guerra, F. Rochinha, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso, 2015, Data-centric iteration in
dynamic workflows, Future Generation Computer Systems, v. 46, n. C (May.), p. 114–126.

[39] D. Abramson, C. Enticott, and I. Altinas, 2008, Nimrod/K: Towards massively parallel dynamic grid workflows, In:
Supercomputing, p. 24:1–24:11

[40] Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and E. Deelman, 2011, Wings: intelligent
workflow-based design of computational experiments, IEEE Intelligent Systems, v. 26, n. 1 (Jan.), p. 62–72.

[41] R. Ikeda, A. Das Sarma, and J. Widom, 2013, Logical provenance in data-oriented workflows?, In: International
Conference on Data Engineering, p. 877–888

[42] DfAdapter GitHub, 2018. DfAdapter Repository. URL: https://github.com/hpcdb/DfAdapter.
[43] L. Moreau and P. Missier, 2013. PROV-DM: The PROV Data Model. URL: https://www.w3.org/TR/prov-dm/.
[44] I. Raicu, I.T. Foster, and Y. Zhao, 2008, Many-Task Computing for Grids and Supercomputers, In: ACM/IEEE

Supercomputing workshops: Many-Task Computing on Grids and Supercomputers
[45] J.C. Jacob, D.S. Katz, G.B. Berriman, J.C. Good, A.C. Laity, E. Deelman, C. Kesselman, G. Singh, M.-H. Su, et al.,

2009, Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking, International
Journal of Computational Science and Engineering (IJCSE), v. 4, n. 2, p. 73–87.

[46] F. De Rooij and S.B. Dalziel, 2001, "Time- and space-resolved measurements of deposition under turbidity currents",
In: W. McCaffrey, B. Kneller, and J. Peakall, eds., Particulate Gravity Currents, Oxford, UK: Blackwell Publishing
Ltd., p. 207–215.

