
HAL Id: lirmm-02127618
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127618

Submitted on 13 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of Input Addition in Learning for Adaptive
Games: Towards Learning with Structural Changes

Iago Bonnici, Abdelkader Gouaich, Fabien Michel

To cite this version:
Iago Bonnici, Abdelkader Gouaich, Fabien Michel. Effects of Input Addition in Learning for Adaptive
Games: Towards Learning with Structural Changes. EvoApplications 2019 - 22nd International Con-
ference on the Applications of Evolutionary Computation, Apr 2019, Leipzig, Germany. pp.172-184,
�10.1007/978-3-030-16692-2_12�. �lirmm-02127618�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127618
https://hal.archives-ouvertes.fr

Effects of Input Addition in Learning for
Adaptive Games: Towards Learning with

Structural Changes

Iago Bonnici1, Abdelkader Gouaïch1, and Fabien Michel1

LIRMM, Université de Montpellier, CNRS, Montpellier, France
{iago.bonnici,gouaich,fmichel}@lirmm.fr

http://www.lirmm.fr/

Abstract. Adaptive Games (AG) involve a controller agent that contin-
uously feeds from player actions and game state to tweak a set of game
parameters in order to maintain or achieve an objective function such
as the flow measure defined by Csíkszentmihályi. This can be consid-
ered a Reinforcement Learning (RL) situation, so that classical Machine
Learning (ML) approaches can be used. On the other hand, many games
naturally exhibit an incremental gameplay where new actions and ele-
ments are introduced or removed progressively to enhance player’s learn-
ing curve or to introduce variety within the game. This makes the RL
situation unusual because the controller agent input/output signature
can change over the course of learning. In this paper, we get interested
in this unusual “protean” learning situation (PL). In particular, we assess
how the learner can rely on its past shapes and experience to keep im-
proving among signature changes without needing to restart the learning
from scratch on each change. We first develop a rigorous formalization of
the PL problem. Then, we address the first elementary signature change:
“input addition”, with Recurrent Neural Networks (RNNs) in an idealized
PL situation. As a first result, we find that it is possible to benefit from
prior learning in RNNs even if the past controller agent signature has
less inputs. The use of PL in AG thus remains encouraged. Investigating
output addition, input/output removal and translating these results to
generic PL will be part of future works.

Keywords: adaptive games · reinforcement learning · transfer learning
· recurrent networks.

1 Introduction

Adaptive Games Video games are part of our digital culture and economy
with many applications in ranging from entertainment to training and sport. A
video game has a specific feature: It is a software that interacts with players
to create a subjective experience that mixes rationality, emotion and aesthetics.
The degree to which the player values this experience determines how much the
video game is accepted and successfully used as an entertainment or training

http://www.lirmm.fr/

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

means. The subjective nature of the player’s experience reinforces the need for
adaptation to better take into account individual characteristics during the play.

This defines an adaptive game (AG) as a game that exposes some parame-
ters to be tweaked by an external controller in order to maintain some metrics –
often related to player’s experience – in an acceptable range of values. AG there-
fore requires a particular component, called a control agent, that continuously
feeds from player actions and game state and tweaks a set of game parameters
so that player’s experience metrics remain optimal. This can be considered a
Reinforcement Learning situation (RL) [1,2], so classical machine learning ap-
proaches (ML) can be used. With the development of neural networks, in par-
ticular Recurrent Neural Networks (RNNs) that are well suited for sequential
processing [3,4], new opportunities are offered to develop a game controller using
machine learning techniques.

The protean situation Games that aim to create elaborated and original
experiences need to provide a rich set of actions and rules. Due to this intrinsic
complexity, these games cannot be designed, neither exposed to players, as a
monolithic block. In fact, an incremental approach is often required to gradually
introduce the gameplay, follow player’s learning curve and ease understanding
of the game mechanics. This incremental approach is also followed by many
training strategies where trainees are trained with only a subset of the whole
system and additional concepts are introduced only when this subset is mastered.
For instance, Chess can be introduced with sequential subgames involving only
pawns and kings, then bishops and rooks, etc. Also, the richness of the set of
actions and rules is sometimes explored back and forth, with the succession of
various game levels where the player’s abilities vary from one situation to the
other (e.g. can fly vs. cannot, senses enemies vs. does not). In a sense, the game
structure changes, leading to changes in the control agent’s set of inputs, outputs
and feedbacks. We refer to this set as the agent’s “signature”.

Suppose now that a control agent has been trained using ML techniques
and tools, such as RNN, to optimize the player’s metrics under the first game
signature ∆0. The question asked is: How can this agent, trained with ∆0, be
used later under other signatures like ∆1, ∆2, etc.? Is it more interesting to
restart the training from scratch on each signature change or is it possible to
benefit from previous experience even though the signature is not the same?

In this paper, we trial this question by exploring and evaluating a learning
solution which capitalizes on past experiences, even when the signature partially
changes. We use the adjective protean to characterize this variable nature of the
control agent signature, and refer to the situation as a generalization of RL to
Protean Learning (PL). After a succinct overview of related works (next sec-
tion), we shall offer a formalization of PL (section 2.2), and a description of the
experimental setting (section 2.3). Section 3 shall expose and discuss our first
results before we finally conclude.

Title Suppressed Due to Excessive Length

Related work Situations similar to PL are known in the domain of Transfer
Learning (TL). In TL, the agent has already learned tasks called “source” tasks,
and the challenge is to benefit from this previous “knowledge” while tackling a
new “target” task. In other words, the TL agent is expected to generalize not only
within tasks, but also across tasks [5,6]. This domain is transversal to ML as it
applies both to Supervised Learning (SL) and RL. TL may be invoked in various
situations: (1) The source training process has been successful but costly: one
wishes to benefit from transfer to tackle a new target task more efficiently [7,5].
(2) The target task is challenging: one wishes to split it up into several easier
source tasks, expecting that the overall TL process will be more efficient than
direct tackling of the target [5,8,9]. (3) Several tasks must be learned at once:
one wishes that TL occurs from the ones to the others, and speeds up the parallel
process [10]. (4) It is known that the task at hand will undergo future changes:
one wishes to design an agent able to adapt these changes and benefit from
transfer from one task to the next. AG controllers are in the latter situation. PL
is an instance of this situation.

PL is also related to Concept Drift (CD), a situation where the environment
is assumed to undergo changes while the agent keeps learning [11,12]. It is also
related to Continual Learning (CL) or "lifelong learning", an AI design where
the agent keeps learning although its environment is changing and it regularly
faces new challenges [13,14]. To our knowledge, even though the environment
function is expected to change in TL, CD, CL, the signature of the agent is
often assumed to be fixed. Here, we focus on the various changes in signature
that may occur during the learning process (e.g. new input, change in output
domain, input loss), and how transfer can be achieved in each case with the
classical RNNs tools.

2 Material and Methods

2.1 Approach

Studying PL in AGs must first be conducted with small AGs that optimize basic
player’s metrics. For instance, the metric optimized may be Csíkszentmihályi’s
flow, a psychological state universally perceived as a positive experience [15,16].
The video game flOw already does this adaptation [17,18], and would easily be
adapted so that its signature changes from one level to the other. This will serve
as an experimental setup in subsequent works.

To reach this objective, we first need to formalize the system that we call PL.
This is done in in section 2.2. Before testing PL in AGs, the basic relevance of
PL has to be asserted. In section 2.3, we conduct an experiment involving RNNs
in a idealized PL situation to assess the first operation among 6 elementary
signature changes: input addition, input removal, output or feedback addition
or removal. This experiment verifies that adding an input to the agent during
the learning process does not dramatically alter learning, and that a protean
learner performs better in this situation than a learner resuming from scratch

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

on a signature change. Therefore, it encourages subsequent works towards the
PL AG objective.

2.2 Formalization of PL

In this section, we sum up a formalization of PL situation, based on detailed
report [19]. It is offered as a generalization of RL to non-fixed signature learning
situations.

A RL agent is continuously fed with inputs, so its inputs can be seen as
signals: values that change over time. It also feeds from feedback signals, and
produces output signals. Therefore RL can be viewed as a case of signal process-
ing, where the learner continuously transforms the inputs signals into output
signals, with the objective that feedback signals are kept high. On the other
hand, the environment continuously transforms the output signals into input
signals and feedbacks, by strict application of the universe rules.

The agent signature is the number and the type of signals it produces and
feeds from. In other words, it is the collection of domains the various signals
take their value from. The idea with this formalization is to make the signature
a signal itself. As such, it may also change in time, which makes the agent protean
and extends RL to PL.

We formalize signals with plain functions of continuous time that we call
flows: h : IR+ → D. They take their value in arbitrary domains D. Flows can be
discretized in time with arbitrary precision ε ∈ IR+∗ by sequences εh : IN → D
such that:

∀t ∈ IN, εh(t) = h(tε) (1)

Flows transform into each other. Viewed another way, a flow can be determined
by another flow. We call a determination function f a function able to determine
an outgoing flow k from an incoming flow h no matter the precision ε considered:

∀ε ∈ IR+∗, ∀t ∈ IN∗, εk(t) = fε(
εh(t), εh(t− 1), . . . , εh(0)) (2)

Flow determination has a memory in that current value of k may depend on past
values of h, so it is not Markovian in general. However, it is always causal in that
future values of k cannot be determined given only the current and past values
of h. We shall use the following graphical alias for the determination relation (2):

h (f) k (3)

The symbol in parentheses represents the determination function, the symbol
pointed by the arrow head is the consequence flow, and the symbol pointed by
the line with no head is the cause flow. For instance, i (P) o means that
the inner agent process P feeds from input signal i to produce the output signal o
in a causal, yet potentially non-Markovian way. And o (E) i means that
the environment E works the other way round.

Title Suppressed Due to Excessive Length

Multiple flows h carry both a flow of domains h∆ (or “signature”) and a
flow of actual values hν . Domains are a tuple of sets (S1, S2, . . .) and values
are a tuple of elements of these sets (v1 ∈ S1, v2 ∈ S2, . . .). For instance, at
t = 0.9, an agent that is sensitive to both “wind direction and player speed” in the
game simulation may receive h∆(0.9) =

(
[0, 2π[, IR+

)
and hν(0.9) = (0.2, 50).

The particularity of PL is that the flow of domains is not constant. We call
transformation of the agent any variation of h∆ resulting in that the agent may
later receive values with different domain signatures, e.g. “player speed and rain
intensity” h∆(1.1) =

(
IR+, J1, 5K

)
and hν(1.1) = (31, 4).

At the highest level, a PL learner agent can be represented by 3 multiple flows
(i, o, φ) and 1 flow of determining functions P with the following determination
scheme:

(E∗)

o∆

φ

(A)

oν(P)i

o

(4)

The latter scheme can be considered a set of formal equations according to (3)
and (2). Each color corresponds to one determination triplet, where:

– E represents the environment in which the agent is immersed. The * denotes
that initial values for i, φ, o∆ are determined by E. For a control agent in
AG, E represents both the player and the game engine.

– i represents the agent’s inputs or sensors. In AG, i informs the agent of
player’s actions and game state. Their nature may change in time as the
signature i∆ evolves (e.g. among game levels).

– o represents the agent’s outputs or actuators. In AG, o controls the game
parameters that need to be adjusted to maintain good player’s metrics. Their
nature may also change in time as o∆ evolves. Note that output values oν
are determined by the agent, but the output signature o∆ is determined by
the environment.

– φ represents the agent’s feedback, rewards or objectives, a continuously fed
evaluation of the actions it undertakes. In AG, φ may represent the player’s
experience metrics like Csíkszentmihályi’s flow. They also may change in
nature as φ∆ evolves.

The environment determines i, φ and o∆, so the agent cannot directly decide its
input or feedback data, nor its output signature.

– P represents the agent current behavior. It is an inner computational proce-
dure that determines current output values based on current input/feedback
values and all their history.

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

– A is the abstract strategy of the agent, which is continuously adapting its
behavior P based on environmental information.

Only two objects are not depending on time here: the environment E and the
inner agent strategy A.

The classical RL problem of “maximizing reward” [1] can be reformulated
in PL as: Given environment E and a corresponding flow of rewards φ with all
domains being numerical, find an agent procedure A such that all values taken by
signal φν are maximized. A is considered an interesting learner if it can maximize
the rewards for a whole family of environments, and no matter the changes in
signatures i∆, o∆ or φ∆.

In other words, an AG control agent is interesting if it can maintain good
experience metrics no matter the player skills, or the game evolution.

2.3 Experiments

As a preliminary to the construction of generic PL agents, we design an exper-
iment to assess viability of the first type of signature change during learning:
“input addition”. To this end, we restrict ourselves to an ideal situation where
we, as experimenters, know the optimal behavior P̂ . The agent A will be able to
access a set of example optimal realizations T = {(ik, ôk)}k∈J1, 1000K with every

ik (P̂) ôk (see section 2.2). This will constitute a training set so the agent

search for an approximation of P̂ can be solved by a supervised learning approach
(SL). To simulate the signature change, we stop the SL procedure, change the
dimension of each ik along with the signature of P̂ , and resume SL. Comparison
is made with an agent that directly learns with the second signature. The less
efficient the second agent compared to the first one, the more encouraging it is
in favor the PL approach.

Relative efficiency of these agents is measured in various experimental set-
tings to address results robustness. In the next section, we shall describe protocol
for the generation of T , the SL approximation, the signature change simulation
and the comparison of the agents, along with the variable experimental settings.

Inputs Generation Idealized input ik, are 2-dimensional signals generated in
two different ways, depending on the first experimental parameter:

– In the noisy setting, each value is drawn from a uniform distribution so that
inputs have no structure: ik(t) ↪→ U

(
[−1, 1]2

)
.

– In the smooth setting, each dimension of the signal is generated indepen-
dently as a combination of sine waves, so that inputs are autocorrelated.
The generation procedure is described as follows (example Fig. 1 top panel):

for each dimension:
Draw the number of sine waves from a Poisson distribution P(500)

Title Suppressed Due to Excessive Length

Fig. 1. Example of smooth processed signals. Top: 2D input signal ik. Bottom: 1D
output signal ôk. In this mem example, p = 0.8 (high influence of first dimension of the
signal (solid one)) and c = 1 (highly skewed output result).

for each sine wave:
draw the pulsation ω from uniform U([0, 30])
draw the phase φ from uniform U([0, 2π])
evaluate sin(ω t+ φ) for 120 values of t evenly spaced between 0 and 2

end for
sum all sine waves into one combined signal sequence
draw the final amplitude a from uniform U([0, 1])
rescale the sequence so it has desired amplitude: sequence← a× sequence

max(|sequence|)
end for
join both sequences into one input signal ik : J1, 120K→ [−1, 1]2

Optimal Outputs Generation Training outputs examples ôk are generated
using idealized behavior P̂ . Depending on the experimental setting, two differ-
ent formulae are used for P̂ to address the effect of task complexity: one is
instantaneous while the other exhibits a temporal memory.

– In the nomem setting, P̂ has no memory and performs a plain combina-
tion of the 2 input signals dimensions i1k and i2k that is affine in the atanh
transformed space:

ôk(t) = tanh
(
p atanh

(
i1k(t)

)
+ (1− p)atanh

(
i2k(t)

)
+ c
)

(5)

With p ∈ [0, 1]. The higher p, the more information contained in the first
input signal dimension i1k, and not in the second i2k. The further c is from
zero, the more skewed is the resulting output signal ôk (see Fig. 1 bottom
panel). The settings c = 0 and c = 1 are tested, in interaction with p being
given the values 0, 0.2, 0.5 and 0.8.

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

– In the mem setting, the processor is more complex because it exhibits a
1-step memory, so it is non-Markovian. It performs the same combination
with the exception that 5× (idk(t)− idk(t− 1)) is used instead of atanh

(
idk(t)

)
in (5). In other words, the derivative of the input signals are used instead of
their actual values.

Agent Structure The agent approximates P̂ with its produced actual P . P
takes the form of a Recurrent Neural Network (RNN) [3,4]. We use a standard
Gated Recurrent Unit (GRU) [20]. P produces the agent actual outputs accord-
ing to ik (P) ok . Two different structures are used for P to address their
effect on PL.

– In the flat setting, 1 GRU cell is used with 1 internal state, used as network
output. So P is Markovian.

– In the deep setting, 2 GRU cells are used as different network layers with 6
internal states, the last one being used as the network output. So P may be
non-Markovian.

Loss function The loss function to optimize is a classical Mean-Squared-Error
(MSE) between the agent predictions ok and the expected results ôk.

The learning procedure A processes training examples by batches of 10, and
updates the weights parameters of P with a stochastic gradient descent respect-
ing Adam update rule [21] (learning rate = 0.01).

Convergence is achieved using pytorch [22] for 1000 iterations.

Realization of Signature Change Three convergences are achieved on each
run (see Fig. 2), according to the following protocol:

– first, one protean “first-form” agent Af1 is constructed with a 1D-1D signa-
ture. Its parameters are randomly initialized, then it is trained against the
training set T but it only feeds from the first dimension i1k of input signals,
being blind to i2k.

– second, one protean “second-form” agent Af2 is constructed with a 2D-1D
signature. Its parameters are initialized by copying the final value of all
homologous parameters from Af1 , and setting additional parameters to zero.
Then, it is trained against the whole training set T , not ignoring the second
dimension i2k anymore.

– third, one classical “direct” agent Ad is constructed with a 2D-1D signature.
Its parameters are randomly initialized, then it is directly trained against
the whole training set T .

The (Af1 , Af2) agent is the experimental model of a PL agent in the idealized
learning situation. It experiences the signature change “input addition”.

1000 such replicates are run for each combination of experimental settings.

Title Suppressed Due to Excessive Length

Fig. 2. example of experimental learning curves l: evolution of the log10(MSE): the
“first form” learner Af1 (lAf1

in blue) is trained to predict a combination of a 2D signal,
but it can only access the first dimension as an input so it has incomplete information.
The “direct” learner Ad (lAd in black) is trained on the same task, but it can access
the whole information so it performs better. The “second-form” learner Af2 (lAf2

in
green) can also access the whole information so it has the same signature as Ad. But
Af2 parameters are grown from previous Af1 instead of being randomly initialized. The
gain score (in red ≈ 5.242) measures the benefit of PL (based on previous experience)
compared to starting the learning from scratch on a signature change. The signature
change “input addition” occurs at t = 1000.

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

Measure of the Advantage The advantage of PL compared to direct learning
is estimated on learning curves l by a score (see Fig. 2). Score is calculated on
each run as a gain according to:

score = mean

(
log2

(
lAd

lAf2

))
(6)

A score = 1 means that the second-form agent error is twice as low as the
direct agent on average. A score = 0 means that the second-form agent and the
direct agent perform similarly.

3 Results

The scores obtained on each run are summarized and illustrated in Fig. 3.

Fig. 3. Violin plot: Comparison of scores in various PL situations differing by the RNN
structure of P (flat or deep), the task complexity P̂ (nomem or mem), the input data
ik properties (smooth or noisy) and the relative informativeness of partial information
(c, p). The benefit of PL differs depending on the situation, but is overall positive.
Within each violin, the dashed line represents mean value for the group, the solid line
represents median value, and the two gray areas represent 50% and 90% percentiles.
Blue circles represent predictions of the linear model fitted on the data.

To address relevance of the observed variations, we fitted a linear model on
the data, testing all interactions between experimental settings considered as
factors and one nested slope for parameter p considered numerical (degrees of
freedom: 63698, residual stde: 0.7689). Convergence and analysis of the model
have been achieved with R-Cran software [23]. All effects were different from zero
with high significance p-value ≤ .001 with the only exception of the nested slope

Title Suppressed Due to Excessive Length

flat:mem:smooth:c=0:p (p-value = .8118). We therefore consider that all trends
among groups observable on Fig. 3 are relevant to discuss, except the latter slope
that must be considered null.

However, convergence of the network and good approximation of P within
the setting flat:mem is impossible because P (non-Markovian then) uses a mem-
ory information that neither Af1 , Af2 nor Ad (Markovian then) can access. As
a consequence, they all poorly approximate P so these score values must be
considered carefully. Correctly interpreting these values requires further inves-
tigations under conditions where networks fail to converge, which is out of the
scope of this paper.

As expected, no matter the experimental setting, the measured score is
mostly positive on average. This reflects the advantage of the second-form agent
Af2 compared to the direct agent Ad after the signature change. When the
event “add input” occurs on 1D-1D Af1 , it is better to transform it into a 2D-1D
adapted Af2 — and keep its parameters that have converged so far, than to
replace it with a new, naive 2D-1D Ad — and forget everything that has been
learned so far. This advantage needs to be qualified depending on the learning
situation:
– the lower p, the lower the advantage: The lower p, the less informative the

first dimension i1k that Af1 is sensitive to, because it has low impact on the
desired output. As a consequence, there is less learning gain to harvest for the
protean agent during the first phase of PL. This confirms a naive intuition
that PL is only interesting if past experience of the learner is somehow
relevant.

– the higher c, the higher the advantage: The higher c, the more skewed the
target output ôk. Regardless of the informativeness of i1k, Af1 can always
benefit from the first PL phase to learn this skew. With high c, and during
the second phase, Ad has to learn both the skew and the formula P̂ , so it
is disadvantaged against Af2 that already approximates the skew correctly.
Interestingly, this advantage remains even if p=0. We must therefore con-
sider that the “relevance of past learner experience” does not only lie in the
informativeness of the inputs it was sensitive to, but also in the skews and
patterns of the objective behavior P̂ itself.

– PL advantage is higher with smooth input signals: Smooth signals are more
structured than the noisy ones. Regardless of the informativeness of i1k, Af1
can always benefit from the first PL phase to learn this structure. During
the second smooth phase, Ad will have to learn both the structure and the
formula P̂ , so it will be disadvantaged against Af2 that already relies on the
structure correctly. Interestingly, this advantage remains even if p=0 and
c=0. Therefore, the “relevance of past learner experience” also lies in the
very structure of past processed data.

– PL advantage is lower with deep RNNs (at least in nomem setting for we
do not discuss flat:mem): Deeper RNNs are more flexible in the sense that
there exists more combinations of their parameters that approximate the

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

objective function P̂ correctly. As a consequence, it is easier for Ad to find
a path down the loss function and converge during the second PL phase,
which makes Af2 advantage less decisive at this stage.

As a summary, we observe that PL seems mostly beneficial after an “input
addition”, not only if past inputs were relevant (p > 0), but also if the learning
data is somehow structured (c=1, smooth). Our interpretation is that prior Af1
learner can learn and transmit partial information about this structure to current
Af2 agent via RNN parameters. One possibility could be that Af1 sometimes
converges towards a “dead-end” direction during the first phase of the experi-
ment, so that it has to “unlearn” during the second phase and be disadvantaged
against Ad — a phenomenon known as negative transfer [5] — but this is not
the average behavior we observe here.

There exists several potential advantageous effects of TL for the second-form
agent Af2 that benefits from transfer [5] (see Fig. 2). First, Af2 initial loss may
be lower than Ad, because Af1 has already started convergence; this is known as
jumpstart benefit. Second, Af2 loss may decrease faster than Ad, so Af2 is said
to learn faster. Lastly, Af2 final loss may be lower than Ad, so Af2 is said to learn
better. In our experiment, the gain measured according to (6) is an aggregated
estimation of these 3 potential advantages. Therefore, we cannot distinguish
them from each other. However, considering that the only difference between Ad
and Af2 is their initial RNN parameter values, we strongly conjecture that the
jumpstart effect is the major benefit of PL in this experiment.

This experiment is idealized because the agent can access a whole training
set of optimal outputs ôk, and it is directly guided by the loss gradient relative
to its inner P RNN parameters. However, it is an instance of the generic PL
procedure formalized in section 2.2. Benefiting from these preliminary results in
AG is therefore a matter of relaxing the ideal hypotheses and rely more on RL
than SL approaches. In addition, PL can be used in other game-related problems
like generation of believable behaviors [24,25,26].

In subsequent works, consistently with our general approach (section 2.1),
PL will be used again to address other types of signature changes like input
removal, and output/feedback addition/removal. Then, actual PL agents will
be constructed and trained against an abstract PL benchmarking task. When
stabilized, they will be tested as control agents in simple adaptive games like
experimental extensions of flOw.

4 Conclusion

AG demand that a controller agent continuously adapts to the player. This is a
case of RL. However, complex games make this learning special because the agent
has to face changes in its signature. We generalize the idea of RL to a broader PL
theoretical situation explicitly taking these changes into account. This enables a
rigorous assessment of how this kind of learners could be developed. With a con-
trolled idealized PL experiment, we have shown that considering input addition

Title Suppressed Due to Excessive Length

for protean learners can be addressed efficiently at least with RNNs. Moreover,
the benefits of PL in this situation are both easy to use (simply pad RNN with
zeroes) and robust to changes in the learning context (informativeness of par-
tial input, task complexity, data structure). These first results are encouraging,
suggesting that the protean approach can be both simple and robust, and that
controlling complex, changing AGs with PL is promising. The assessment of PL
is still incomplete, since other basic operations must be tested: input removal
and output/feedback addition/removal. Moreover, exporting these results from
idealized PL to generic PL tasks still needs to be done.

Like any ML approach, PL is generic and can be applied in any other domain
where a signature change in RL is identified. For instance, modular robotics
could benefit from PL controllers. Long-term learners that cannot discard their
past experience on a signature change also need to capitalize on it. And more
generally, any bio-inspired agent that need to transform, split or merge, while
keeping on learning, can benefit from a PL approach.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive
computation and machine learning series, MIT Press, Cambridge, Mass, 2nd edn.
(2018)

2. Hanna, C.J., Hickey, R.J., Charles, D.K., Black, M.M.: Modular Reinforcement
Learning architectures for artificially intelligent agents in complex game environ-
ments. In: Computational Intelligence and Games. pp. 380–387. IEEE, Copen-
hagen, Denmark (Aug 2010)

3. Elman, J.: Finding structure in time. Cognitive Science 14(2), 179–211 (Jun 1990)
4. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks

61, 85–117 (Jan 2015)
5. Taylor, M.E., Stone, P.: Transfer Learning for Reinforcement Learning Domains:

A Survey. Journal of Machine Learning Research 10(7), 1633–1685 (2009)
6. Lazaric, A.: Transfer in Reinforcement Learning: A Framework and a Survey. In:

Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning, vol. 12, pp. 143–173.
Springer (2012)

7. Tanaka, F., Yamamura, M.: Multitask reinforcement learning on the distribution
of MDPs. In: International Symposium on Computational Intelligence in Robotics
and Automation. Computational Intelligence in Robotics and Automation for the
New Millennium. vol. 3, pp. 1108–1113. IEEE, Kobe, Japan (2003)

8. Devin, C., Gupta, A., Darrell, T., Abbeel, P., Levine, S.: Learning Modular Neural
Network Policies for Multi-Task and Multi-Robot Transfer. CoRR abs/1609.07088
(2016)

9. Frans, K., Ho, J., Chen, X., Abbeel, P., Schulman, J.: Meta Learning Shared Hi-
erarchies. CoRR abs/1710.09767 (2017)

10. Teh, Y.W., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell, R.,
Heess, N., Pascanu, R.: Distral: Robust Multitask Reinforcement Learning. CoRR
abs/1707.04175 (2017)

11. Tsymbal, A.: The Problem of Concept Drift: Definitions and Related Work (2004)
12. Heng Wang, Abraham, Z.: Concept drift detection for streaming data. In: Inter-

national Joint Conference on Neural Networks. pp. 1–9. IEEE, Killarney, Ireland
(Jul 2015)

Iago Bonnici, Abdelkader Gouaïch, and Fabien Michel

13. Ring, M.B.: Continual Learning in Reinforcement Environments. Ph.D. thesis, Uni-
versity of Texas at Austin, Austin, TX, USA (1994)

14. Xu, J., Zhu, Z.: Reinforced Continual Learning. CoRR abs/1805.12369 (2018)
15. Sweetser, P., Wyeth, P.: GameFlow: A model for evaluating player enjoyment in

games. Computers in Entertainment 3(3), 3 (Jul 2005)
16. Holt, R., Mitterer, J.: Examining video game immersion as a flow state. 108th

Annual Psychological Association, Washington, DC (2000)
17. Chen, J.: flOw. http://jenovachen.info/flow/ (Jan 2019)
18. Chen, J.: Flow in games (and everything else). ACM Communications 50(4), 31

(Apr 2007)
19. Bonnici, I., Gouaïch, A.: Formalisation of metamorph Reinforcement Learning.

Tech. rep., LIRMM, Montpellier, France (Nov 2018)
20. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio,

Y., Bahdanau, D.: Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. CoRR abs/1406.1078 (2014)

21. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR
abs/1412.6980 (2014)

22. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (2017)

23. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2018)

24. Le Hy, R., Arrigoni, A., Bessiere, P., Lebeltel, O.: Teaching Bayesian Behaviours
to Video Game Characters. Robotics and Autonomous Systems 47, 177–185 (2004)

25. Tencé, F., Buche, C.: Automatable Evaluation Method Oriented toward Behaviour
Believability for Video Games. CoRR abs/1009.0501 (2010)

26. Polceanu, M., Mora, A., Jimenez, J., Buche, C., Fernandez-Leiva, A.: The Believ-
ability Gene in Virtual Bots. In: 29th International Flairs. p. 4. AAAI Press, Key
Largo, Florida (2016)

	Effects of Input Addition in Learning for Adaptive Games: Towards Learning with Structural Changes

