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Abstract—In this paper we present a new algorithm for
Polynomial Linear System Solving (via evaluation/interpolation)
with errors. In this scenario, errors can occur in the black box
evaluation step. We improve the bound on the number of errors
that we can correct, using techniques inspired by the decoding
procedure of Interleaved Reed-Solomon Codes.

I. INTRODUCTION

The problem of decoding a Reed-Solomon code (shortly
RS), also known as the Polynomial Reconstruction Problem
(PR) has been largely studied in Coding Theory [1]–[3]. In [7],
Bleichenbacher et al. proposed a new scenario of the PR prob-
lem, called Simultaneous Polynomial Reconstruction (SPR).
This problem was associated to the decoding of Interleaved
Reed-Solomon codes. Instead of the separate reconstruction
of each interleaved codeword, the main idea was to correct
several codewords simultaneously in order to gain an error
correction capability which depends also on the amount of
messages received (interleaving parameter). They proposed an
algorithm that, under some hypotheses on the error distribu-
tion, allows to correctly decode Interleaved RS codewords,
beyond the unique decoding bound, with a certain probability.
This probability depends on the number of errors and on
the order of the field of the coefficients. Interleaved Reed
Solomon codes (IRS) are widely studied in the last 20 years.
In the original work [7] the key equations for recovering the
codewords are a generalization of Berlekamp-Welch decoding
method for RS. A more general scenario is due to [10]
(improved by [11]) where codewords are issue of differents RS
codes ( namely Heterogeneous IRS ) and the decoding method
is based on Berlekamp-Massey algorithm as for the classical
BCH codes. Recently, in [9] by applying Power Decoding
method for generating independent key equations [12], the IRS
decoding radius is significantly improved.

The purpose of the present work is to introduce a new
algorithm, inspired by SPR problem, to solve a full rank
consistent linear system A(x)y = b(x) where erroneous
evaluations occur.
In order to solve this system, a classical technique (see for
example [4]) consists in evaluating in a certain number of
points, solving the evaluated system and then interpolating
these evaluated solutions. The solution is a vector of rational

functions f(x)
g(x) , where f is a vector of polynomials and g(x)

is the least common denominator.
In [5], [6], authors studied the problem in a scenario where
some evaluations can be erroneous. They introduced an algo-
rithm that recovers the solution by fixing a certain number
LBK of evaluation points. This method is a generalization of
the Berlekamp-Welch algorithm for PR. Thus, the error cor-
rection capability coincides with the unique decoding bound.

In this work, we generalize the SPR problem to the Simul-
taneous Rational Function Reconstruction (SRFR) in order to
solve a polynomial linear system with errors. In the special
case where the matrix A is the identity matrix, we observe
that our problem reduces to the SPR, or equivalently, to
the problem of decoding an Interleaved RS code. Still in
this special case, we can apply the decoding technique of
Interleaved RS codes and correct more errors than [5] under
the probabilistic hypotheses of [8]. In order to generalize this,
we reexamine the scenario of [5], [6] with a probabilistic
assumption. In this context, we introduce a new algorithm that
can be seen as the generalization of the decoding algorithm of
Interleaved RS codes. Our algorithm can correctly reconstruct
the vector solution of our system with a smaller number of
points LGLZ ≤ LBK . However it can fail for a small fraction
of possible errors as in [8]. In our case, the fraction is at most
dg+e
q where dg is the degree of the common denominator of

the rational function vector, e is the number of errors and q
the order of the field.

II. POLYNOMIAL LINEAR SYSTEM SOLVING WITH ERRORS

In [5] and [6], authors studied the problem of solving a
consistent linear system

A(x)y(x) = b(x) (1)

where,
• A(x) is a full rank m × n matrix whose entries are

polynomials in K[x], K is a field and m ≥ n ≥ 1;
• b(x) is an m-th vector of polynomials in K[x].

The system admits a solution whose coordinates are rational
functions and, since the matrix is full rank, there is a unique
solution

y(x) =
f(x)

g(x)
=

(
f1(x)

g(x)
, . . . ,

fn(x)

g(x)

)



where g is the monic least common denominator, and

GCD(f , g) = GCD(GCDi(fi), g) = 1. (2)

In general, this solution can be found by evaluating the
system at a certain number, say L, of distinct points αl ∈ K
with l ∈ {1, . . . , L}, solving the evaluated system and then in-
terpolating the parametric solution from the evaluated solution
[4]. The authors in [5] proved that it is possible to reconstruct
the solution even if some evaluations are erroneous. They
focused on a model where there is a black box that, for any
evaluation point αl, provides Al ∈ Km×n and bl ∈ Km which
may not be equal to A(αl) and b(αl). More specifically, the
resulting evaluations Al and bl are considered erroneous if
Alf(αl) 6= g(αl)bl. In this scenario they proved that with

L ≥ LBK := df + dg + 2e+ t+ 1 (3)

number of points, it is possible to uniquely reconstruct the
solution of the linear system (1), where
• df ≥ deg (f) := max1≤i≤n deg (fi),
• dg ≥ deg (g),
• e ≥ |E| is a bound on the erroneous evaluations where

E := {l | Alf(αl) 6= g(αl)bl}

• t ≥ |R| is a bound on the rank drops where

R := {l | Alf(αl) = g(αl)bl and rank(Al) < n}

Their method consists in solving the homogeneous linear
system Al


ϕ1(αl)
ϕ2(αl)
...

ϕn(αl)

− ψ(αl)bl = 0


l∈{1,...,L}

(4)

where
• ϕ = (ϕ1, . . . , ϕn) ∈ (K[x])n and for any 1 ≤ i ≤ n,

deg(ϕi) ≤ df + e,
• ψ ∈ K[x], deg(ψ) ≤ dg + e.

The unknowns of the linear system (4) are the coefficients of
ϕi and ψ. In particular, they proved the following:

Theorem 1 ( [5]). Under previous assumptions, let
(ϕmin, ψmin) be the solution of (4) of minimal degree and
ψmin monic. Then

ϕmin = Λf , ψmin = Λg

where
Λ(x) =

∏
l∈E

(x− αl)

is the error locator polynomial.

From now on we omit the rank drops study and we assume
t = 0.

This method is a generalization of the Berlekamp-Welch
decoding algorithm for Reed-Solomon codes [1]. In fact, if

K = Fq , m = n = 1, Al = I1 and g is the constant polynomial
1, then {

bl = f(αl) l /∈ E,
bl 6= f(αl) l ∈ E.

Hence, in this case, the problem of recovering the solution of
the linear system (1) with errors, coincides with the problem
of decoding of RS code and the linear system (4) is exactly
the key equation of the classical Berlekamp-Welch method.

We now define the Interleaving RS encoding procedure.
Let C be an [n, k]q RS code.
• we consider r codewords ci ∈ C. For any i ∈ {1, . . . , r},
ci = (fi(α1), . . . , fi(αn)) where fi ∈ Fq[x] has degree
deg(fi) ≤ k − 1 and {α1, . . . , αn} is the set of distinct
evaluation points;

• we arrange these codewords row-wise and we obtain the
r × n matrix (ci)1≤i≤r = (fi(αj))1≤i≤r

1≤j≤n
;

• by interpreting this matrix as a row vector
(f(αj))1≤j≤n ∈ (Fqr )n, we obtain a codeword of
an Interleaved RS code of length n, dimension k over
Fqr . The number of codewords r is the amount of
interleaving.

Definition 1 (Simultaneous polynomial reconstruction [7]).
Let n, k, e ∈ N and α1, . . . , αn distinct points in Fq . An
instance of the SPR is (yij)1≤i≤r

1≤j≤n
, that verifies the following.

There exists
• E ⊂ {1, . . . , n} with |E| ≤ e,
• polynomials (f1, . . . , fr), with deg(fi) ≤ k − 1

such that
yij = fi(αj), j /∈ E

The solution of the SPR is the tuple (f1, . . . , fr).

The SPR problem is exactly the problem of decoding an
Interleaved RS code with length n, dimension k and amount
of interleaving r.

We can now observe that,

Remark 1. If K = Fq , m = n, Al = In and g is the constant
polynomial 1, then the linear system (1) becomes{

bl = f(αl) l /∈ E,
bl 6= f(αl) l ∈ E.

Hence, the problem of solving the linear system (1) with errors
coincides with the problem of decoding an Interleaved RS code
(SPR [7]) with length L, dimension df + 1 and amount of
interleaving n.

In [7], the authors proposed an algorithm that, under some
hypotheses on the error distribution, allows to decode an
Interleaved RS code with a certain probability. In particular,
they introduced key equations,

[m1(αj) = y1jE(αj)]1≤j≤n

. . .

[mr(αj) = yrjE(αj)]1≤j≤n

(5)



The unknowns of this linear system are the coefficients of mi

and E, polynomials of degrees at most respectively k+ e and
e. This linear system (5) has rn equations and r(k+e)+e+1
unknowns. Moreover,

Theorem 2 ( [7]). Let (yij)1≤i≤r
1≤j≤n

the received word of an

Interleaved RS code, or equivalently an instance of the SPR
problem, where

e := |E| ≤ r(n− k)

r + 1

and for each i ∈ {1, . . . , r},
(i) if j ∈ E, yij are uniformly distributed over Fq

(ii) if j /∈ E, yij = fi(αj) and f1, . . . , fr are uniformly
distributed over the vector space of polynomials of Fq[x]
of degree at most k − 1;

then the linear system (5) admits at most one solution with
probability at least 1− e/q.

Since if r ≥ 1,
r(n− k)

r + 1
≥ n− k

2
,

then they proved that, under the probabilistic assumptions (i)
and (ii), it is possible to correctly decode the received word
beyond the unique decoding bound. The failing probability, i.e.
the probability that the algorithm fails, is then upper bounded
by e/q.

In a following paper [8], the probabilistic assumptions are
reduced and it was proved that the failing probability is
O(1/q) which is independent of the number of errors. In
detail,

Theorem 3 ( [8]). Given (yij)1≤i≤r
1≤j≤n

the received word of an

Interleaved RS code, where

e := |E| = r(n− k)

r + 1

and for each i ∈ {1, . . . , r},
(i) if j ∈ E, yij are uniformly distributed over Fq

(ii) if j /∈ E, yij = fi(αj),

then the linear system (5) admits at most one solution with
probability at least 1− exp(1/(qr−2))

q−1 .

In this paper, starting from Remark 1 we reexamine the
problem of solving the linear system (1) with errors as a
generalization of the decoding of an Interleaved RS code under
some hypotheses on the error distribution. In particular, fol-
lowing the [7] approach, we prove that the failing probability
is at most dg+e

q (where dg is the degree of the common
denominator of the vector of rational functions). We stress
out that, in our scenario, we relax the hypotheses on the error
distribution as in [8]. However we are not able to prove a
bound on the failing probability as tight as [8] (see Section IV
for more comments).

III. GENERALIZATION OF DECODING OF INTERLEAVED RS
CODES

We study the problem of solving a consistent, full rank,
linear system (1), A(x)y(x) = b(x) with polynomial entries
over a finite field Fq .
In a first instance, we focus on the square case, i.e. n = m.
Let y = f(x)

g(x) be the reduced unique solution as in (2).
We fix L evaluation points with

L ≥ LGLZ :=

⌈
n(df + e+ 1) + dg + e

n

⌉
(6)

where
• df ≥ deg (f) := max1≤i≤n deg (fi),
• dg = deg (g),
• g(αl) 6= 0 for 1 ≤ l ≤ L,
• e = |E| is the number of erroneous evaluations where

E = {l | Alf(αl) 6= g(αl)bl and rank(Al) = n}.

Remark 2. In this way, since if n ≥ 1, we reduce the number
of evaluation points,

LGLZ ≤ LBK .

We slightly modify the black box scenario described in the
previous section, by introducing a probabilistic assumption.
More specifically, we assume that for any erroneous evalua-
tion, l ∈ E, the entries of Al and bl are uniformly random
elements of Fq . Moreover, since we skip the rank drops study,
we also suppose that all the Al are always full rank.

We study, for any l ∈ {1, . . . , L}, the homogeneous linear
systems

Alγl − σlbl = 0. (7)

Remark 3. Let Cl be the coefficients matrix of any of these
linear systems,

Cl = [Al| − bl].

Since any system have n equations and n+ 1 unknowns and
Al is full rank, the rank of Cl is n and in particular, the kernel
of any Cl is one dimensional.

Proposition 1. Let (γl, σl) = (γl1, . . . , γln, σl) be the vector
that generates the right kernel of Cl, with l ∈ {1, . . . , L}.
Then,

γl

σl
= f(αl)

g(αl)
∀l /∈ E.

Proof. By our assumptions, g(αl) 6= 0 for any l /∈ E.
Now, since the right kernel is one dimensional, its generator
(γl, σl) = (γl1, . . . , γln, σl) is the nonzero vector, and also
σl 6= 0. Let l /∈ E, be a correct evaluation. Since Alγl−σlbl =
0 and Alf(αl) = g(αl)bl, then Al(f(αl)σl − g(αl)γl) = 0.
The matrix Al is full rank, hence f(αl)σl − g(αl)γl = 0.
Then we can conclude that γl

σl
= f(αl)

g(αl)
.

Following the previous notations, if we denote by yl := γl

σl
=

1
σl

(γl1, . . . , γln) ∈ (Fq)n, for any l ∈ {1, . . . , L} we have that

yl =
f(αl)

g(αl)
, l /∈ E (8)



Remark 4. By our probabilistic assumption, (yli)l∈E are
uniformly random elements of Fq .

In this way, we reduce the problem of solving the linear system
(1) to the reconstruction of a vector of rational functions
with errors. In particular, we observe that if g is the constant
polynomial 1, our problem coincides exactly with the decoding
of an Interleaved RS code, with length L, dimension df + 1
and amount of interleaving n. This is why we can consider
our problem as a generalization of the decoding of Interleaved
RS codes.

Now, we study the key equations
ϕ(α1) = y1ψ(α1)

. . .

ϕ(αL) = yLψ(αL)

or, in other terms, if we denote yl = (yl1, . . . , yln) for l ∈
{1, . . . , L}, 

[ϕ1(αl) = yl1ψ(αl)]1≤l≤L

. . .

[ϕn(αl) = ylnψ(αl)]1≤l≤L

(9)

where
• ϕ = (ϕ1, . . . , ϕn) ∈ (Fq[x])n and deg(ϕi) ≤ df + e,
• ψ ∈ Fq[x] has degree at most dg + e .

The linear system (9) has nL equations and n(df + e+ 1) +
dg + e+ 1 unknowns, that are the coefficients of ϕ and ψ.
The coefficient matrix of the system (9) is

My :=

 Vdf+e+1 −D1Vdg+e+1

. . .
...

Vdf+e+1 −DnVdg+e+1


where,
• Vt = (αi−1

l )1≤l≤L
1≤i≤t

is the L× t Vandermonde matrix,

• for i ∈ {1, . . . , n}, Di is the diagonal matrix with
y1i, . . . , yLi on the diagonal.

Recall that the error locator polynomial Λ(x) =
∏
l∈E(x−αl)

is monic and has degree e. We observe that (Λf ,Λg) =
(Λf1, . . . ,Λfn,Λg) is a solution of the system. Therefore, if
the kernel of My has dimension 1, the non-zero solutions
are collinear to (Λf ,Λg), meaning that we can correctly
reconstruct the fraction f/g = Λf/Λg.

We do not have a priori any other information about this
kernel. In our following main result, we adapt the approaches
of [7], [8] to prove that this favorable situation happens with
high probability.

Theorem 4. Under the previous assumptions, the dimension
of the (right) kernel of My is one with probability at least
1− (dg+e)

q .

The cornerstone of the proof is the following lemma.

Lemma 1. There exists a random draw of (yl)l∈E such that
the dimension of the right kernel of My is one.

Proof. We can partition E =
⋃

1≤i≤n Ii with sets Ii ⊂ E such
that |I1| ≤ L−(df+dg+e+1) and |Ii| ≤ L−(df+e+1) for
2 ≤ i ≤ n since L−(df+dg+e+1)+(n−1)(L−(df+e+1)) ≥
e. We start by fixing a part of the random variables (yl)l∈E :
for all 1 ≤ i ≤ n and l ∈ E \ Ii, we set yli = fi(αl)

g(αl)
while yli

for l ∈ Ii remain free variables for now, for a total of e free
variables.

Now, we study the equations (9),
• for l /∈ I1, ϕ1(αl)g(αl) = f1(αl)ψ(αl). Therefore, since

the polynomial ϕ1g−f1ψ has degree at most df+dg+e
and at least df+dg+e+1 roots, it is the zero polynomial.
By assuming that f1/g is reduced (we will lift this
hypothesis later) we get that there exists a polynomial
R such that f1R = ϕ1, gR = ψ and so deg(R) ≤ e.

• For 2 ≤ i ≤ n and l /∈ Ii

ϕi(αl)g(αl) = fi(αl)ψ(αl) = fi(αl)R(αl)g(αl).

Since g(αl) 6= 0, and the polynomial ϕi−fiR has degree
at most df + e and at least df + e+ 1 zeros, fiR = ϕi.

Hence for 1 ≤ i ≤ n, fiR = ϕi and gR = ψ and so by
replacing in (9) we have

R(αl)[fi(αl)− ylig(αl)] = 0

We observe that for any l ∈ E, there exists 1 ≤ i ≤ n such
that l ∈ Ii, so yli is still a free variable and we can give it
a value so that fi(αl) 6= ylig(αl) since g(αl) 6= 0. Therefore
R(αl) = 0 for l ∈ E and deg(R) ≤ e and so R is a scalar
multiple of Λ. We have proved that for some values of yl the
kernel is spanned by (Λf ,Λg) and has dimension 1.

Now we show that we can indeed assume that f1/g is
reduced without loss of generality. For this matter, we will
prove that there exists c = (c1, . . . , cn) ∈ Fnq such that
f̂c =

∑n
i=1 cifi ∈ Fq[x] is prime to g. Assuming c1 6= 0,

let y′ be equal to y except for y′l1 =
∑n
i=1 ciyli. Then y′

corresponds to the new fraction (f̂c, f2, . . . , fn)/g and the
matrix My′ is linearly equivalent to My . So they both have
kernel dimension 1 for the same number of values of y and
respectively y′.

We consider the prime factorization of g =
∏r
j=1 P

νj
j

over Fq[x]. Given 0 ≤ j ≤ r, the vector space Vj ={
c ∈ Fnq | f̂c = 0 mod Pj

}
is a proper subspace of Fnq be-

cause GCD(f1, . . . , fn, g) = 1. Now Fnq can not be the union
of r proper subspaces Vj since r ≤ deg g < q. So there exists
c ∈ Fnq such that f̂c 6= 0 mod Pj for all 0 ≤ ` ≤ r and f̂c is
prime to g as claimed.

Proof of Theorem 4. We recall that (Λf1, . . . ,Λfn,Λg) is a
solution of the linear system (9) so it has kernel dimension
at least 1. Since Λg is a monic polynomial of degree dg + e,
the last column of My is linearly dependent on the previous
ones. As a consequence, the kernel of My has dimension
1 iff the rank of My is ρ := n(df + e + 1) + dg + e iff
there exists a non-zero minor of My of size ρ that avoids
the last column. Considering the minors as polynomials in the
variables (yl)l∈E , we have shown in Lemma 1 that one of



these ρ-minors is not the zero polynomial because it does not
vanish on some value of (yl)l∈E . Finally, since this ρ-minor
has degree at most dg + e, by Schwartz-Zippel Lemma, it
cannot be zero in more than a dg+e

q -fraction of its domain.
Therefore, we can conclude that the kernel has dimension 1
with probability at least 1− dg+e

q .

Summing up, working under our probabilistic assumptions,
we are able to recover the correct solution with a failing
probability upper bounded by dg+e

q .

Data: (Al, bl)1≤l≤L and df, dg, e
Result: (f , g) or fail
L := dn(df+e+1)+dg+e

n e;
for l = 1, . . . , L do

find a basis {(γl, σl)} of the right kernel of Cl;
yl := γl

σl
;

construct the matrix My of the key equation (9);
if rank(My) = n(df + e+ 1) + dg + e then

compute a solution (ϕ, ψ) with ψ monic;
Λ := GCD(ϕ, ψ);
return (ϕΛ ,

ψ
Λ );

else
return fail;

Up to this point, we have assumed that the linear system
(1) is square, i.e. n = m. With our method it is possible
to recover the solution with the same probability also in the
general case by considering random yli, for any l such that
rank(Cl) = n+ 1 (see Remark 3).

IV. EXPERIMENTS AND CONCLUSIONS

In this work we prove that, in our probabilistic scenario,
by using the evaluation interpolation technique [4] with L ≥
LGLZ evaluation points, we can reconstruct the vector solution
of the linear system (1). Recall that LBK is the number of
points that guarantees to uniquely reconstruct the solution for
every error. In our case since LGLZ ≤ LBK , we cannot
reconstruct the solution for every error, but for almost all of
them.

We implement our algorithm in SageMath
(http://www.sagemath.org). In particular, we solve 3000
different polynomial linear systems of size 3. We suppose
that the number of errors is e = 4 and that the degree of
g is at most 6. We then compute the percentage p∗ of the
number of times in which the algorithm fails. We obtain the
following results:

q p∗ pGLZ pBMS

25 0.9% 31.2% 3.22%
26 0.33% 15.6% 1.59%
29 0.17% 1.9% 0.19%

We compare our experimental results with pGLZ , i.e. the
percentage on the failing probability of the Theorem 4 and
the percentage on the failing probability pBMS of [8]. We
recall that the last one is related to the decoding of Interleaved

RS and not to our problem. First of all, we can observe
the dependency of the failing probability on the order or the
field. Recall that pBMS = O( 1

q ), which it is independent on
the number of errors (and the degree of g). Therefore, the
experiments suggest that our bound can be strongly improved.
A future work could consider new techniques to restate that
bound.

Furthermore, since we use an evaluation interpolation tech-
nique, there exist finitely many evaluation points αl such
that the evaluated matrix A(αl) is not full rank anymore.
Nevertheless, in this work, we have supposed to chose some
evaluation points such that the evaluated matrix is full rank,
thus omitting the rank drop study. This work can be extended
for dealing with some rank drops using the main idea in [5].
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