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Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes

In this paper we present a new algorithm for Polynomial Linear System Solving (via evaluation/interpolation) with errors. In this scenario, errors can occur in the black box evaluation step. We improve the bound on the number of errors that we can correct, using techniques inspired by the decoding procedure of Interleaved Reed-Solomon Codes.

I. INTRODUCTION

The problem of decoding a Reed-Solomon code (shortly RS), also known as the Polynomial Reconstruction Problem (PR) has been largely studied in Coding Theory [START_REF] Berlekamp | Error Correction of Algebraic Block Codes[END_REF]- [START_REF] Sudan | Decoding of Reed-Solomon codes beyond the errorcorrection bound[END_REF]. In [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF], Bleichenbacher et al. proposed a new scenario of the PR problem, called Simultaneous Polynomial Reconstruction (SPR). This problem was associated to the decoding of Interleaved Reed-Solomon codes. Instead of the separate reconstruction of each interleaved codeword, the main idea was to correct several codewords simultaneously in order to gain an error correction capability which depends also on the amount of messages received (interleaving parameter). They proposed an algorithm that, under some hypotheses on the error distribution, allows to correctly decode Interleaved RS codewords, beyond the unique decoding bound, with a certain probability. This probability depends on the number of errors and on the order of the field of the coefficients. Interleaved Reed Solomon codes (IRS) are widely studied in the last 20 years. In the original work [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF] the key equations for recovering the codewords are a generalization of Berlekamp-Welch decoding method for RS. A more general scenario is due to [START_REF] Schmidt | Collaborative Decoding of Interleaved Reed-Solomon Codes and Concatenated Code Designs[END_REF] (improved by [START_REF] Wachter-Zeh | Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability[END_REF]) where codewords are issue of differents RS codes ( namely Heterogeneous IRS ) and the decoding method is based on Berlekamp-Massey algorithm as for the classical BCH codes. Recently, in [START_REF] Puchinger | Decoding of interleaved Reed-Solomon codes using improved power decoding[END_REF] by applying Power Decoding method for generating independent key equations [START_REF] Schmidt | Syndrome Decoding of Reed-Solomon Codes Beyond Half the Minimum Distance Based on Shift-Register Synthesis[END_REF], the IRS decoding radius is significantly improved.

The purpose of the present work is to introduce a new algorithm, inspired by SPR problem, to solve a full rank consistent linear system A(x)y = b(x) where erroneous evaluations occur. In order to solve this system, a classical technique (see for example [START_REF] Michael | The Exact Solution of Systems of Linear Equations with Polynomial Coefficients[END_REF]) consists in evaluating in a certain number of points, solving the evaluated system and then interpolating these evaluated solutions. The solution is a vector of rational

functions f (x) g(x)
, where f is a vector of polynomials and g(x) is the least common denominator. In [START_REF] Brice | Numerical Linear System Solving With Parametric Entries By Error Correction[END_REF], [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], authors studied the problem in a scenario where some evaluations can be erroneous. They introduced an algorithm that recovers the solution by fixing a certain number L BK of evaluation points. This method is a generalization of the Berlekamp-Welch algorithm for PR. Thus, the error correction capability coincides with the unique decoding bound.

In this work, we generalize the SPR problem to the Simultaneous Rational Function Reconstruction (SRFR) in order to solve a polynomial linear system with errors. In the special case where the matrix A is the identity matrix, we observe that our problem reduces to the SPR, or equivalently, to the problem of decoding an Interleaved RS code. Still in this special case, we can apply the decoding technique of Interleaved RS codes and correct more errors than [START_REF] Brice | Numerical Linear System Solving With Parametric Entries By Error Correction[END_REF] under the probabilistic hypotheses of [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF]. In order to generalize this, we reexamine the scenario of [START_REF] Brice | Numerical Linear System Solving With Parametric Entries By Error Correction[END_REF], [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] with a probabilistic assumption. In this context, we introduce a new algorithm that can be seen as the generalization of the decoding algorithm of Interleaved RS codes. Our algorithm can correctly reconstruct the vector solution of our system with a smaller number of points L GLZ ≤ L BK . However it can fail for a small fraction of possible errors as in [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF]. In our case, the fraction is at most dg+e q

where dg is the degree of the common denominator of the rational function vector, e is the number of errors and q the order of the field.

II. POLYNOMIAL LINEAR SYSTEM SOLVING WITH ERRORS

In [START_REF] Brice | Numerical Linear System Solving With Parametric Entries By Error Correction[END_REF] and [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], authors studied the problem of solving a consistent linear system

A(x)y(x) = b(x) (1) 
where,

• A(x) is a full rank m × n matrix whose entries are polynomials in

K[x], K is a field and m ≥ n ≥ 1; • b(x) is an m-th vector of polynomials in K[x].
The system admits a solution whose coordinates are rational functions and, since the matrix is full rank, there is a unique solution

y(x) = f (x) g(x) = f 1 (x) g(x) , . . . , f n (x) g(x)
where g is the monic least common denominator, and

GCD(f , g) = GCD(GCD i (f i ), g) = 1. (2) 
In general, this solution can be found by evaluating the system at a certain number, say L, of distinct points α l ∈ K with l ∈ {1, . . . , L}, solving the evaluated system and then interpolating the parametric solution from the evaluated solution [START_REF] Michael | The Exact Solution of Systems of Linear Equations with Polynomial Coefficients[END_REF]. The authors in [START_REF] Brice | Numerical Linear System Solving With Parametric Entries By Error Correction[END_REF] proved that it is possible to reconstruct the solution even if some evaluations are erroneous. They focused on a model where there is a black box that, for any evaluation point α l , provides A l ∈ K m×n and b l ∈ K m which may not be equal to A(α l ) and b(α l ). More specifically, the resulting evaluations A l and b l are considered erroneous if

A l f (α l ) = g(α l )b l .
In this scenario they proved that with

L ≥ L BK := df + dg + 2e + t + 1 (3) 
number of points, it is possible to uniquely reconstruct the solution of the linear system (1), where

• df ≥ deg (f ) := max 1≤i≤n deg (f i ), • dg ≥ deg (g),
• e ≥ |E| is a bound on the erroneous evaluations where

E := {l | A l f (α l ) = g(α l )b l }
• t ≥ |R| is a bound on the rank drops where

R := {l | A l f (α l ) = g(α l )b l and rank(A l ) < n}
Their method consists in solving the homogeneous linear system

     A l      ϕ 1 (α l ) ϕ 2 (α l ) . . . ϕ n (α l )      -ψ(α l )b l = 0      l∈{1,...,L} (4) 
where

• ϕ = (ϕ 1 , . . . , ϕ n ) ∈ (K[x]) n and for any 1 ≤ i ≤ n, deg(ϕ i ) ≤ df + e, • ψ ∈ K[x], deg(ψ) ≤ dg + e.
The unknowns of the linear system (4) are the coefficients of ϕ i and ψ. In particular, they proved the following:

Theorem 1 ( [5]
). Under previous assumptions, let (ϕ min , ψ min ) be the solution of (4) of minimal degree and ψ min monic. Then

ϕ min = Λf , ψ min = Λg where Λ(x) = l∈E (x -α l )
is the error locator polynomial.

From now on we omit the rank drops study and we assume t = 0. This method is a generalization of the Berlekamp-Welch decoding algorithm for Reed-Solomon codes [START_REF] Berlekamp | Error Correction of Algebraic Block Codes[END_REF]. In fact, if

K = F q , m = n = 1, A l = I 1 and g is the constant polynomial 1, then b l = f (α l ) l / ∈ E, b l = f (α l ) l ∈ E.
Hence, in this case, the problem of recovering the solution of the linear system (1) with errors, coincides with the problem of decoding of RS code and the linear system (4) is exactly the key equation of the classical Berlekamp-Welch method.

We now define the Interleaving RS encoding procedure. Let C be an [n, k] q RS code.

• we consider r codewords c i ∈ C. For any i ∈ {1, . . . , r}, ;

c i = (f i (α 1 ), . . . , f i (α n )) where f i ∈ F q [x] has degree deg(f i ) ≤ k -1
• by interpreting this matrix as a row vector (f (α j )) 1≤j≤n ∈ (F q r ) n , we obtain a codeword of an Interleaved RS code of length n, dimension k over F q r . The number of codewords r is the amount of interleaving.

Definition 1 (Simultaneous polynomial reconstruction [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF]).

Let n, k, e ∈ N and α 1 , . . . , α n distinct points in F q . An instance of the SPR is (y ij ) 1≤i≤r 1≤j≤n

, that verifies the following.

There exists

• E ⊂ {1, . . . , n} with |E| ≤ e, • polynomials (f 1 , . . . , f r ), with deg(f i ) ≤ k -1 such that y ij = f i (α j ), j / ∈ E
The solution of the SPR is the tuple (f 1 , . . . , f r ).

The SPR problem is exactly the problem of decoding an Interleaved RS code with length n, dimension k and amount of interleaving r.

We can now observe that, Remark 1. If K = F q , m = n, A l = I n and g is the constant polynomial 1, then the linear system (1) becomes

b l = f (α l ) l / ∈ E, b l = f (α l ) l ∈ E.
Hence, the problem of solving the linear system (1) with errors coincides with the problem of decoding an Interleaved RS code (SPR [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF]) with length L, dimension df + 1 and amount of interleaving n.

In [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF], the authors proposed an algorithm that, under some hypotheses on the error distribution, allows to decode an Interleaved RS code with a certain probability. In particular, they introduced key equations,

     [m 1 (α j ) = y 1j E(α j )] 1≤j≤n . . . [m r (α j ) = y rj E(α j )] 1≤j≤n (5) 
The unknowns of this linear system are the coefficients of m i and E, polynomials of degrees at most respectively k + e and e. This linear system [START_REF] Brice | Numerical Linear System Solving With Parametric Entries By Error Correction[END_REF] and for each i ∈ {1, . . . , r},

(i) if j ∈ E, y ij are uniformly distributed over F q (ii) if j / ∈ E, y ij = f i (α j )
and f 1 , . . . , f r are uniformly distributed over the vector space of polynomials of F q [x] of degree at most k -1; then the linear system (5) admits at most one solution with probability at least 1 -e/q.

Since if r ≥ 1, r(n -k) r + 1 ≥ n -k 2 ,
then they proved that, under the probabilistic assumptions (i) and (ii), it is possible to correctly decode the received word beyond the unique decoding bound. The failing probability, i.e. the probability that the algorithm fails, is then upper bounded by e/q. In a following paper [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF], the probabilistic assumptions are reduced and it was proved that the failing probability is O(1/q) which is independent of the number of errors. In detail, and for each i ∈ {1, . . . , r},

(i) if j ∈ E, y ij are uniformly distributed over F q (ii) if j / ∈ E, y ij = f i (α j ),
then the linear system (5) admits at most one solution with probability at least 1 -exp(1/(q r-2 ))

q-1 .

In this paper, starting from Remark 1 we reexamine the problem of solving the linear system (1) with errors as a generalization of the decoding of an Interleaved RS code under some hypotheses on the error distribution. In particular, following the [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF] approach, we prove that the failing probability is at most dg+e q (where dg is the degree of the common denominator of the vector of rational functions). We stress out that, in our scenario, we relax the hypotheses on the error distribution as in [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF]. However we are not able to prove a bound on the failing probability as tight as [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF] (see Section IV for more comments).

III. GENERALIZATION OF DECODING OF INTERLEAVED RS

CODES

We study the problem of solving a consistent, full rank, linear system (1), A(x)y(x) = b(x) with polynomial entries over a finite field F q . In a first instance, we focus on the square case, i.e. n = m. Let y = f (x) g(x) be the reduced unique solution as in (2). We fix L evaluation points with

L ≥ L GLZ := n(df + e + 1 + dg) + e n (6) 
where

• df ≥ deg (f ) := max 1≤i≤n deg (f i ), • dg = deg (g), • g(α l ) = 0 for 1 ≤ l ≤ L,
• e = |E| is the number of erroneous evaluations where

E = {l | A l f (α l ) = g(α l )b l and rank(A l ) = n}.
Remark 2. In this way, since n ≥ 1, we reduce the number of evaluation points,

L GLZ ≤ L BK .
We slightly modify the black box scenario described in the previous section, by introducing a probabilistic assumption. More specifically, we assume that for any erroneous evaluation, l ∈ E, the entries of A l and b l are uniformly random elements of F q . Moreover, since we skip the rank drops study, we also suppose that all the A l are always full rank.

We study, for any l ∈ {1, . . . , L}, the homogeneous linear systems

A l γ l -σ l b l = 0. ( 7 
)
Remark 3. Let C l be the coefficients matrix of any of these linear systems,

C l = [A l | -b l ].
Since any system have n equations and n + 1 unknowns and A l is full rank, the rank of C l is n and in particular, the kernel of any C l is one dimensional.

Proposition 1. Let (γ l , σ l ) = (γ l1 , . . . , γ ln , σ l ) be the vector that generates the right kernel of C l , with l ∈ {1, . . . , L}. Then,

γ l σ l = f (α l ) g(α l ) ∀l / ∈ E.
Proof. By our assumptions, g(α l ) = 0 for any l / ∈ E. Now, since the right kernel is one dimensional, its generator (γ l , σ l ) = (γ l1 , . . . , γ ln , σ l ) is a nonzero vector, and also σ l = 0. Let l / ∈ E, be a correct evaluation. Since

A l γ l -σ l b l = 0 and A l f (α l ) = g(α l )b l , then A l (f (α l )σ l -g(α l )γ l ) = 0. The matrix A l is full rank, hence f (α l )σ l -g(α l )γ l = 0. Then we can conclude that γl σ l = f (α l ) g(α l )
. Following the previous notations, if we denote by y l := γ l σ l = 1 σ l (γ l1 , . . . , γ ln ) ∈ (F q ) n , for any l ∈ {1, . . . , L} we have that

y l = f (α l ) g(α l ) , l / ∈ E (8) 
Remark 4. By our probabilistic assumption, (y li ) l∈E are uniformly random elements of F q .

In this way, we reduce the problem of solving the linear system (1) to the reconstruction of a vector of rational functions with errors. In particular, we observe that if g is the constant polynomial 1, our problem coincides exactly with the decoding of an Interleaved RS code, with length L, dimension df + 1 and amount of interleaving n. This is why we can consider our problem as a generalization of the decoding of Interleaved RS codes. Now, we study the key equations

     ϕ(α 1 ) = y 1 ψ(α 1 ) . . . ϕ(α L ) = y L ψ(α L )
or, in other terms, if we denote y l = (y l1 , . . . , y ln ) for l ∈ {1, . . . , L},

     [ϕ 1 (α l ) = y l1 ψ(α l )] 1≤l≤L . . . [ϕ n (α l ) = y ln ψ(α l )] 1≤l≤L (9) 
where

• ϕ = (ϕ 1 , . . . , ϕ n ) ∈ (F q [x]) n and deg(ϕ i ) ≤ df + e, • ψ ∈ F q [x
] has degree at most dg + e . The linear system (9) has nL equations and n(df + e + 1) + dg + e + 1 unknowns, which are the coefficients of ϕ and ψ. The coefficient matrix of the system (9) is

M y :=    V df +e+1 -D 1 V dg+e+1 . . . . . . V df +e+1 -D n V dg+e+1   
where,

• V t = (α i-1 l ) 1≤l≤L 1≤i≤t
is the L × t Vandermonde matrix,

• for i ∈ {1, . . . , n}, D i is the diagonal matrix with y 1i , . . . , y Li on the diagonal. Recall that the error locator polynomial Λ(x) = l∈E (x-α l ) is monic and has degree e. We observe that (Λf , Λg) = (Λf 1 , . . . , Λf n , Λg) is a solution of the system. Therefore, if the kernel of M y has dimension 1, the non-zero solutions are collinear to (Λf , Λg), meaning that we can correctly reconstruct the fraction f /g = Λf /Λg.

We do not have a priori any other information about this kernel. In our following main result, we adapt the approaches of [START_REF] Bleichenbacher | Decoding Interleaved Reed-Solomon codes over Noisy Data[END_REF], [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF] to prove that this favorable situation happens with high probability. The cornerstone of the proof is the following lemma. Lemma 1. There exists a random draw of (y l ) l∈E such that the dimension of the right kernel of M y is one.

Proof. We can partition E = 1≤i≤n I i with sets

I i ⊂ E such that |I i | ≤ L -(df + dg + e + 1) for 1 ≤ i ≤ n since n(L -(df + dg + e + 1)
) ≥ e. We start by fixing a part of the random variables (y l ) l∈E : for all 1 ≤ i ≤ n and l ∈ E \ I i , we set y li = fi(α l ) g(α l ) while y li for l ∈ I i remain free variables for now, for a total of e free variables. Now, we study the equations [START_REF] Puchinger | Decoding of interleaved Reed-Solomon codes using improved power decoding[END_REF]. Fixed 1 ≤ i ≤ n, for l / ∈ I i , ϕ i (α l )g(α i ) = f i (α l )ψ(α l ). Therefore, since the polynomial ϕ i g -f i ψ has degree at most df + dg + e and at least df + dg + e + 1 roots, it is the zero polynomial. Hence, the two fractions are equals,

f g = ϕ ψ
Moreover, since the fraction f g is reduced, there exists a polynomial R such that f 1 R = ϕ 1 , gR = ψ and deg(R) ≤ e.

Hence for 1 ≤ i ≤ n, f i R = ϕ i and gR = ψ and so by replacing in [START_REF] Puchinger | Decoding of interleaved Reed-Solomon codes using improved power decoding[END_REF] we have

R(α l )[f i (α l ) -y li g(α l )] = 0
We observe that for any l ∈ E, there exists 1 ≤ i ≤ n such that l ∈ I i , so y li is still a free variable and we can give it a value so that f i (α l ) = y li g(α l ) since g(α l ) = 0. Therefore R(α l ) = 0 for l ∈ E and deg(R) ≤ e and so R is a scalar multiple of Λ. We have proved that for some values of y l the kernel is spanned by (Λf , Λg) and has dimension 1.

Proof of Theorem 4. We recall that (Λf 1 , . . . , Λf n , Λg) is a solution of the linear system (9) so it has kernel dimension at least 1. Since Λg is a monic polynomial of degree dg + e, the last column of M y is linearly dependent on the previous ones. As a consequence, the kernel of M y has dimension 1 iff the rank of M y is ρ := n(df + e + 1) + dg + e iff there exists a non-zero minor of M y of size ρ that avoids the last column. Considering the minors as polynomials in the variables (y l ) l∈E , we have shown in Lemma 1 that one of these ρ-minors is not the zero polynomial because it does not vanish on some value of (y l ) l∈E . Finally, since this ρ-minor has degree at most dg + e, by Schwartz-Zippel Lemma, it cannot be zero in more than a dg+e q -fraction of its domain. Therefore, we can conclude that the kernel has dimension 1 with probability at least 1 -dg+e q . Summing up, working under our probabilistic assumptions, we are able to recover the correct solution with a failing probability upper bounded by dg+e q . Up to this point, we have assumed that the linear system (1) is square, i.e. n = m. With our method it is possible to recover the solution with the same probability also in the general case by considering random y li , for any l such that rank(C l ) = n + 1 (see Remark 3).

IV. EXPERIMENTS AND CONCLUSIONS

In this work we prove that, in our probabilistic scenario, by using the evaluation interpolation technique [START_REF] Michael | The Exact Solution of Systems of Linear Equations with Polynomial Coefficients[END_REF] with L ≥ L GLZ evaluation points, we can reconstruct the vector solution

  has rn equations and r(k + e) + e + 1 unknowns. Moreover, Theorem 2 ( [7]). Let (y ij ) 1≤i≤r 1≤j≤n the received word of an Interleaved RS code, or equivalently an instance of the SPR problem, where e := |E| ≤ r(n -k) r + 1

Theorem 3 (

 3 [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF]). Given (y ij ) 1≤i≤r 1≤j≤n the received word of an Interleaved RS code, wheree := |E| = r(n -k) r + 1

Theorem 4 .

 4 Under the previous assumptions, the dimension of the (right) kernel of M y is one with probability at least 1 -(dg+e) q .

  and {α 1 , . . . , α n } is the set of distinct evaluation points;• we arrange these codewords row-wise and we obtain the r × n matrix (c i ) 1≤i≤r = (f i (α j )) 1≤i≤r 1≤j≤n
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Data: (A l , b l ) 1≤l≤L and df, dg, e Result: (f , g) or fail L := n(df +e+1+dg)+e n ; for l = 1, . . . , L do find a basis {(γ l , σ l )} of the right kernel of C l ; y l := γ l σ l ; construct the matrix M y of the key equation ( 9); if rank(M y ) = n(df + e + 1) + dg + e then compute a solution (ϕ, ψ) with ψ monic; Λ := GCD(ϕ, ψ); return ( ϕ Λ , ψ Λ ); else return fail; of the linear system [START_REF] Berlekamp | Error Correction of Algebraic Block Codes[END_REF]. Recall that L BK is the number of points that guarantees to uniquely reconstruct the solution for every error. In our case since L GLZ < L BK , we cannot reconstruct the solution for every error, but for almost all of them. We implement our algorithm in SageMath (http://www.sagemath.org). In particular, we solve 20 different linear systems with polynomial coefficients, of size 3. For every system we apply our algorithm 1000 times, with e = 5 errors and dg = 2. We compute the percentage p of the number of times the algorithm fails. We compare our experimental results with p GLZ , i.e. the failing probability of Theorem 4, and with p BM S , i.e. the failing probability of [START_REF] Brown | Probabilistic Decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF]. We recall that the last one is linked to a related problem, the decoding of Interleaved RS, but not to our problem. We obtain the following results: q p p GLZ p BM S p * (see below) 2 4 0.3% 43.7% 7.1% 0.4% 2 5 0.1% 21.9% 3.3% 0.2% 2 6 0 10.9% 1.6% 0.1%

First of all, these experiments suggest that the failing probability is very small and that it decreases when the cardinality of the field grows. Moreover, since experiments are significantly under our theoretical bound, our bound could be strongly improved, which we leave to future work. This may also suggest that our bound L GLZ is not optimal. Therefore, we have done some experiments using an inferior number of evaluation points

and we note p * the corresponding probability. This new L is chosen in such a way that the coefficient matrix M y has now nL equations and nL -1 unknowns so that its kernel might have dimension 1. We can observe that also in this case, we have a very high probability to reconstruct the correct vector rational solution in practice. Therefore future work could try to extend our results to this new number of evaluation points.

Finally we can remark that, since we use an evaluation interpolation technique, there exist finitely many evaluation points α l such that the evaluated matrix A(α l ) is not full rank anymore. In this work, we have chosen the evaluation points such that the evaluated matrix is full rank, thus omitting the rank drop analysis, which we leave again to future work.