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I. INTRODUCTION

E XASCALE computing [1] is a key enabler for addressing some of the grand challenges of mankind in areas such as medicine, sustainability and climatology. Exascale is set as the next milestone in every supercomputing roadmap, albeit often postponed because of several scalability challenges among which target power consumption.

Exascale computers should be capable to perform 10 18 floating point operations per second (flops), within a reasonable power budget, typically below 20 MW. The general design challenges related to these computers concern various aspects including processor, memory and interconnect technologies, A. Gamatié, A. Nocua, G. Sassatelli, L. Torres, D. Novo, and M. Robert are with CNRS and University of Montpellier -LIRMM laboratory, France (e-mail: first.last@lirmm.fr).
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as well as programming models. The present study focuses on compute node designs, i.e. building blocks for exascale parallel computers, based on ARM processors [START_REF] Weloli | Efficiency modeling and exploration of 64-bit arm compute nodes for exascale[END_REF] combined with emerging non volatile memory (NVM) technologies [START_REF] Boukhobza | Emerging nvm: A survey on architectural integration and research challenges[END_REF]. These processors are usually energy-efficient, while emerging NVMs have inherently a negligible leakage that contributes to drastically reduce the overall power consumption in compute nodes.

A. A glance at ARM SoCs for compute nodes

ARM-based Systems-on-Chip (SoCs) are known to provide a good power and performance compromise. Thanks to the generalization of 64-bit ARMv8 ISA alonside significant progress on micro-architecture and software stack, they have become attractive for high-performance computing (HPC) applications [START_REF] Weloli | Efficiency modeling and exploration of 64-bit arm compute nodes for exascale[END_REF].

ThunderX2 processor. Among the latest solutions, we can mention the Marvell's ThunderX2 processor, which supports ARMv8.1 architecture [START_REF] Russell | Cavium Announces GA for ThunderX2; Touts OEM Support[END_REF]. This chip has 8 memory channels, delivering theoretically up to 33% more memory bandwidth than its equivalent the Intel's Skylake processor as the latter features only 6 DDR4 memory channels [START_REF] Tam | Skylake-sp: A 14nm 28-core xeon R processor[END_REF]. This translates into 33% better performance on HPCG [START_REF] Dongarra | High-performance conjugate-gradient benchmark[END_REF] and memory-bound applications. The ThunderX2 processor has been recently compared with others x86 processors including Skylake [START_REF] Mcintosh-Smith | Comparative benchmarking of the first generation of hpc-optimised arm processors on isambard[END_REF]. Overall, it provides similar performance level compared to Skylake. It is slower when executing compute-bound highperformance applications due to its inherent lower floatingpoint throughput. In fact, it does not feature vector units contrarily to Intel Advanced Vector Extensions (AVX-512) [START_REF] Tam | Skylake-sp: A 14nm 28-core xeon R processor[END_REF].

SPARC64 XIfx processor. The A64FX CPU is the Fujitsu's SPARC64 XIfx (sparc architecture) ARM-based high performance CPU successor [START_REF] Yoshida | Sparc64 xifx: Fujitsu's next-generation processor for high-performance computing[END_REF]. Manufactured in 7nm process TSMC technology, it is compliant with the ARMv8.2-A specification. It is the first CPU that implements the 512-bit ARM Scalable Vector Extension (SVE), designed specifically for high performance computing [START_REF] Feldman | Fujitsu Reveals Details of Processor That Will Power Post-K Supercomputer[END_REF]. It includes 48 worker cores in addition to 4 helper cores (2 I/O and 2 system) It can perform up to 2.7 teraflops for 64-bit (FP64) operations and more than 80% of the 1TB/s theoretical memory peak bandwidth delivered by four High Bandwidth Memory (HBM) blocks [START_REF] Feldman | Fujitsu Reveals Details of Processor That Will Power Post-K Supercomputer[END_REF]. Floating point performance is about 35% higher than the top-of-the-line Xeon Skylake CPUs.

Kunpeng 920 processor. Recently, the Huawei's Kunpeng 920 has been announced as the "highest-performance ARMbased CPU" [START_REF]Huawei Unveils Industry's Highest-Performance ARMbased CPU[END_REF], exceeding A64FX. Manufactured also in Fig. 1: A realistic ARM-based chip design 7nm, this chip integrates 64 cores at a frequency of 2.6 GHz and 8 DDR4-2933 channels. The Kunpeng 920 processor has on-board couterments including two NIC 100G RoCE for networking and a support for PCIe Gen4 and CCIX interfaces. Details about the ARM core architecture are not public yet, except the fact that the gains come from an optimization of branch prediction algorithms, a higher number of operation units, alongside an improved memory subsystem architecture.

While the intrinsic compute energy-efficiency of the above ARM SoCs in terms of flops/W is very promising, the global efficiency at compute node level must also consider other crucial components such as memory. In particular, main memory plays a central role regarding the efficient data access. It has a direct impact on the overall system performance and energy-efficiency. This is true in both embedded and highperformance computing domains. EXAMPLE 1 (A REALISTIC COMPUTE NODE DESIGN): The European Montblanc projects 1 have been exploring the design of ARM-based supercomputers for exascale computing. A realistic compute node design in this context is shown in Figure 1. It includes ARMv8 core clusters with a three-level cache memory hierarchy, i.e. L3, L2 and L1 levels.

The corresponding SoC has 4 HBM stacks that provide up to 48GB of on-package memory. It consists of 2 dies (or chiplets) on a passive interposer, connected through high speed CCIX links and four stacks of on-chip DRAM. Additional DRAM memory controllers compatible with emerging NVM technologies are envisioned in order to improve the memory capacity. This floorplan indicates the potential of adding further IPs such as multi-channel NVM controllers, power management cores or accelerators, to exploit the silicon area of the chiplet (improving their utilization rate). However, one need to balance the trade-off of adding the new IPs, with respect to the SoC power budget.

1 https://www.montblanc-project.eu Generally, memory and I/O related macros are typically placed at the edge due to mainstream package integration technology requirements. Memory PHYs are wide structures taking significant area at the edge of the SoC. Both available edge space due to target SoC dimensions and available package pin count determine the number of memory interfaces that can be included.

B. The main memory bottleneck

A number of notable trends have been identified in the literature about main memory [START_REF] Mutlu | Opportunities and challenges of emerging memory technologies[END_REF]. Modern systems keep on integrating several processing units, which can be heterogeneous (e.g., CPUs, GPUs or FPGA) in order to fulfill the requirements of performance-demanding applications. Following this trend, a drop by 30% of the memory capacity per core is envisioned every two years [START_REF] Lim | Disaggregated memory for expansion and sharing in blade servers[END_REF] 2 . Therefore, per-core memory bandwidth will decrease.

DRAM technology will further hardly scale beyond a certain technology node, because of higher cell manufacturing complexity, reduced reliability, and rising cell leakage [START_REF] Mutlu | Research problems and opportunities in memory systems[END_REF]. In addition, increased DRAM capacity inevitably requires higher refresh rates. The energy consumed by off-chip memory hierarchy, including DRAM, memory controller and their connecting interfaces, can reach up to 41% of the total energy consumption of a compute system [START_REF] Lefurgy | Energy management for commercial servers[END_REF]. In addition, the refresh mechanism of DRAM induces power consumption even when no activity occurs in the memory. For instance, authors in [START_REF] Bhati | Dram refresh mechanisms, penalties, and trade-offs[END_REF] evaluated the increase in performance and power overheads due to refresh in high-density 32Gb memory devices.

The background power consumption related to the peripheral circuitry, e.g., word-line drivers, sense-amplifiers and write drivers, represents another concern as it contributes significantly to the memory leakage. They observed that refresh can account for more than 20% of the DRAM energy consumption while running SPEC CPU2006 benchmarks with a full-system simulator. The background energy consumption is the largest part of the overall energy reported for each memory size.

DEFINITION 1 (ADDRESSED PROBLEM):

We focus on the power consumption issue of DRAM-based main memory, related to their refresh and peripheral circuitry requirements. We seek cost-effective solutions that can adequately overcome this issue, without incurring neither performance penalty nor important integration efforts in compute systems.

Typically, considering the reference design shown in Figure 1, one would like to combine low-latency and high-bandwidth on-chip HBM memory with off-chip memories to extend the per core main memory capacity at least up to 2GB (required for HPC applications). In this specific case, we have to feed all cores with 128GB of main memory in total. However, we can only provide 96GB with the on-chip HBM blocs. Then, 32GB of off-chip memory are required. We have two possible choices: i) either integrate the latest DDR5 technology (DDR5-4400), or ii) integrate a custom low power and multi-channel NVM module.

C. Non volatile memory technologies

1) Making the case for NVM: To support our motivation to select NVMs as candidate solutions for the aforementioned problem, Table I introduces some numbers regarding their main characteristics [START_REF] Boukhobza | Emerging nvm: A survey on architectural integration and research challenges[END_REF]. We selected two very promising NVM technologies3 : Resistive RAM (RRAM) and Phase Change Memory (PCM). The table provides a relative comparison basis that will serve to assess the specific memory models used in the rest of this paper. One must keep in mind that generally at system level, the interconnect used for memory access has a notable (if not the highest) impact on those metrics. Among the most relevant features of NVMs for energyefficiency, we note their low leakage power. Since they are non volatile, they do not require any data refresh mechanism to maintain written values in the memory, contrarily to DRAM. NVMs enable to store multiple bits per cell, which leads to higher density. However, writing operation on those NVMs is more expensive compared to DRAM. Unlike chargebased memories, NVMs store data in the material structure or properties (resistive switching memories). Accordingly, a write operation involves changing cell's physical state and thus consumes more time and energy than a read operation. Furthermore, NVM cells often withstand a much smaller number of write operations before wearing out. As write endurance of NVMs is critical for most technologies, there have been significant efforts over the last years to mitigate this issue, e.g., by minimizing / avoiding memory writes via silent stores elimination [START_REF] Bouziane | Compile-time silent-store elimination for energy efficiency: an analytic evaluation for non-volatile cache memory[END_REF], [START_REF] Pereira | Static prediction of silent stores[END_REF], by adopting advanced cache replacement policies [START_REF] Péneau | Improving the performance of STT-MRAM LLC through enhanced cache replacement policy[END_REF], by applying memory mappings that account for NVM retention time [START_REF] Bouziane | Energy-efficient memory mappings based on partial wcet analysis and multi-retention time stt-ram[END_REF], and by improving the technology itself [START_REF] García | Composing lifetime enhancing for non-volatile main memories[END_REF]. Even though wear-leveling is a prominent concern for emerging NVMs, the current study will mainly focus on performance and energy concerns.

The main memory market, though extremely competitive, is a promising application area for Non-Volatile Memories (NVMs) from different perspectives:

• Technology independence: main memory comes in form of discrete memory modules made of chips with a JEDEC DDR standardized interface, thereby lifting the difficulty of integrating different technologies on the same substrate.

• Voiding refresh needs: DRAM consumes a significant amount of energy into the necessary refresh cycles. The overall resulting complexity of DRAM required for coping with the hierarchical organization in pages, ranks and banks incurs significant performance penalties compared to NVMs. Indeed, thanks to their inherent non-volatility, most NVMs do not require any refresh mechanism to preserve their stored data. This also confers to NVM negligible leakage. • Scaling and density NVM memory technologies can scale better than DRAM. For instance, the Phase-Change Memory is expected to scale to 9nm around 2022, while a 20nm prototype was already proposed in 2008 by IBM [START_REF] Mutlu | Opportunities and challenges of emerging memory technologies[END_REF]. This enables denser memories that could meet the memory capacity requirements of multi/manycore compute systems.

2) A brief overview of PCM and RRAM technologies: The PCM memory technology was first proposed in 1970 [START_REF] Neale | Nonvolatile and reprogrammable, the read-mostly memory is here[END_REF] by Gordon Moore, co-founder of Intel. However, material quality and power consumption issues prevented commercialization of the technology until very recently. A number of industrial actors already announced PCM-based device prototypes (e.g., Samsung, Toshiba, IBM and SK Hynix [START_REF] Stanisavljevic | Demonstration of reliable triple-levelcell (TLC) phase-change memory[END_REF]). More recently, Intel and Micron announced the 3D XPoint NVM technology [START_REF]Intel and Micron Produce Breakthrough Memory Technology[END_REF], which shares many similarities with the PCM technology. However, details of the materials and physics of operation have not been fully disclosed. A 375GB SSD PCIe card from Intel, aimed at enterprise markets, is going to be released as the first product with this technology in 2019. Both PCM and 3D XPoint technologies are regarded as potential solutions for a compromise between main memory and storage-class memory. Their higher access latencies and dynamic power consumption compared to DRAM (see Table I) may however become penalizing at main memory level.

The RRAM memory technology [START_REF] Akinaga | Resistive random access memory (reram) based on metal oxides[END_REF] dates back to 2003, when Unity Semiconductor started developing its Conductive Metal-Oxide (CMOx) technology. This technology works by varying the resistance across a dielectric solid-state material.

The RRAM technology has proved a promising candidate for main memory thanks to its lower power consumption and access latency compared to PCM (see Table I). It has demonstrated a good stability at 10nm node [START_REF] Akinaga | Resistive random access memory (reram) based on metal oxides[END_REF]. Among outstanding industrial players investing in the RRAM technology, one can mention Panasonic Semiconductor [START_REF] Herald | UMC is a foundry partner for Panasonic in making Resistive RAM[END_REF].

D. Our contribution

In this paper, we explore the impact of integrating emerging NVMs in ARM Compute Nodes to enable energy-efficient high-performance computing. An initial version of this work can be found in a report [START_REF] Gamatie | D3.7 -Final Report on Memory Hierarchy Investigations[END_REF]. The proposed design analysis is achieved by adopting two simulation tools: the gem5 [START_REF]The gem5 simulator[END_REF] cycle-approximate architecture simulator coupled with the NVMain main memory simulator [START_REF] Poremba | Nvmain 2.0: A user-friendly memory simulator to model (non-)volatile memory systems[END_REF].

We calibrate a DRAM model based on a Micron DDR4 datasheet [START_REF] Micron | DDR4 SDRAM RDIMM -MTA18ASF2G72PDZ -16GB[END_REF]. We also build new PCM and RRAM memory technology models, starting from NVMain models that are further refined based on an analysis of the existing literature on NVMs. Our evaluation targets state-of-the-art heterogeneous ARMv8 multicore systems, envisioned for better processing efficiency of compute nodes in upcoming HPC systems. The explored system designs are validated on typical application workloads.

Our results show that RRAM is a very good candidate for energy issue mitigation at main memory level, while PCM would be a more promising candidate for storage level. We show that RRAM can provide system-level performance comparable to DDR4, while memory energy consumption can be reduced by up to 50%. This is not the case of PCM.

E. Outline of paper.

The remainder of this paper is organized as follows: Section II presents some related work on NVM integration at main memory level; then, Section III describes our design exploration framework; Section IV evaluates the performance and energy consumption of a compute node system model integrating different memory technologies at main memory. The aim is to confirm the relevance of NVM for energy improvement; Section V focuses on a few main memory system design choices aiming at demonstrating how the energy gains expected from NVM integration could be further improved; Section VI discusses some gained insights and briefly deals with the open question about the programmability of compute nodes integrating NVMs in main memory; finally, some closing remarks are given in Section VII.

II. RELATED WORK

We describe some existing studies promoting emerging NVM technology at main memory level. These studies considered different main memory architectures like NVM-uniform or hybrid DRAM-NVM.

A. NVM-uniform main memory architectures Lee et al. [START_REF] Lee | Phase-change technology and the future of main memory[END_REF] examine the use of PCM to completely replace DRAM as main memory. They architect a PCMbased main memory system that helps mitigating the negative impact of high write energy and latency. For this purpose, they used more and smaller row buffers to improve locality and write coalescing. To address the write endurance issue, they proposed tracking and writing only modified data to the PCM device. These initial results show that performance, energy and endurance of PCM chips can be greatly improved with the proposed techniques.

In addition, one can achieve more efficient designs of NVM chips by taking advantage of the non-destructive nature of reads, which enables simpler and narrower row buffer organizations [START_REF] Meza | A case for small row buffers in nonvolatile main memories[END_REF]. Unlike in DRAM, an entire NVM memory row does not need to be buffered by a device because reading a memory row does not destroy the data stored in the row. Meza et al. [START_REF] Meza | A case for small row buffers in nonvolatile main memories[END_REF] showed that having narrow row buffers in emerging non-volatile devices can greatly reduce main memory dynamic energy compared to a DRAM baseline with large row sizes. This happens without greatly affecting memory endurance. And, for some NVM technologies, it can lead to improved performance.

Existing work often promote PCM and RRAM for main memory due to their smaller cell size. Nevertheless, a few studies also explored the opportunities offered by other emerging NVMs such as the Spin Transfer Torque RAM (STT-RAM) [START_REF] Bhatti | Spintronics based random access memory: a review[END_REF]. For instance, Kultursay et al. [START_REF] Kültürsay | Evaluating stt-ram as an energy-efficient main memory alternative[END_REF] draw similar conclusion as Lee et al. [START_REF] Lee | Phase-change technology and the future of main memory[END_REF] upon evaluation of the complete replacement of DRAM with STT-RAM. To tackle the long write latency and high write energy problems of STT-RAM, they proposed an architecture that selectively writes back the contents of the row buffer when it is modified. The architecture only writes back a data that is modified to reduce write operation energy and latency. In addition, to improve the locality of accesses to STT-RAM, they propose bypassing the modification of the row buffer for write operations. With the suggested modifications, the STT-RAM based main memory shows to be more energy-efficient than a DRAM-based main memory.

B. Hybrid DRAM-NVM architectures

Yoon et al. [START_REF] Yoon | Row buffer locality aware caching policies for hybrid memories[END_REF] make the key observation that row buffers are present in both DRAM and PCM. And, these row buffers have (or can be designed to have) the same latency and bandwidth in both DRAM and PCM. Yet, row buffer misses are much more costly in terms of latency, bandwidth, and energy in PCM than in DRAM. To exploit this, they devise a policy that avoids accessing in PCM data that frequently causes row buffer misses. Hardware or software can dynamically keep track of such data and allocate/cache it in DRAM while keeping data that frequently hits in row buffers in PCM. PCM also has much higher writing cost than reading cost. To take this into account, the allocation/caching policy is biased such that pages that are more likely written stay in DRAM.

Ware et al. [START_REF] Ware | Architecting a hardware-managed hybrid dimm optimized for cost/performance[END_REF] recently propose a hybrid DIMM architecture combining DRAM and a modified Flash with reduced read latencies. They claimed their proposal was commercially realizable. They evaluated the performance and endurance for data-center workloads. The obtained results showed that the combination can enabled 88% of the performance of a DRAMonly system of the same capacity at 23% of the cost.

Other work has examined how to reduce latency, energy, and cost of managing the metadata required to locate data in a large DRAM cache in hybrid main memories [START_REF] Loh | Efficiently enabling conventional block sizes for very large die-stacked dram caches[END_REF], [START_REF] Meza | Enabling efficient and scalable hybrid memories using fine-granularity dram cache management[END_REF]. Such metadata is typically stored in SRAM in traditional CPU cache architectures. In this work, Meza et al. made the observation that only a limited amount of data is accessed with high locality in a large DRAM cache and only a small amount of metadata needs to be kept to locate data in the cache. By distributing metadata within the DRAM cache itself (see [START_REF] Loh | Efficiently enabling conventional block sizes for very large die-stacked dram caches[END_REF]) and by employing their technique, the authors show similar performance to storing full cache metadata can be achieved with smaller storage size.

C. Merging main memory and storage

Emerging NVM memory technologies offer the possibility of designing systems and applications that can manipulate persistent data directly in memory, instead of going through a slow storage interface. In fact, if we keep the traditional two-level memory/storage model in the presence of these fast NVM devices as part of storage, the operating system and file system code for locating, moving, and translating persistent data from the non-volatile NVM devices to volatile DRAM becomes a great bottleneck.

Meza et al. [START_REF] Meza | A case for efficient hardware/software cooperative management of storage and memory[END_REF] show that operating system and file system code causes most of the memory energy consumption and degrade performance by an order of magnitude in some dataintensive workloads. To avoid such overhead, they propose a persistent memory manager. It consists of a hardware acceleration unit that coordinates and unifies memory/storage management in a single address space that spans potentially multiple different memory technologies (DRAM, NVM, flash) via hardware/software cooperation.

Another related challenge includes the design of system resources that can concurrently handle applications/accesspatterns that manipulate persistent data as well as those that manipulate non-persistent data. For example, Zhao et al. [START_REF] Zhao | Firm: Fair and high-performance memory control for persistent memory systems[END_REF] address the problem of designing effective memory scheduling policies in the presence of these two different types of applications/access-patterns.

III. DESIGN EXPLORATION FRAMEWORK

We describe the setup of our modeling and evaluation framework. As mentioned in the introductory section, we com-bine the gem5 and NVMain tools to carry out our design evaluations. The gem5 simulator provides an accurate evaluation of system performance thanks to its high configurability for a fine-grained ARM architecture modeling [START_REF] Butko | Design exploration for next generation high-performance manycore on-chip systems: Application to big.little architectures[END_REF] [START_REF] Butko | Full-system simulation of big.little multicore architecture for performance and energy exploration[END_REF]. Its fullsystem simulation mode runs unmodified operating systems. It includes several predefined architecture component models, e.g., CPU, memory and interconnect. This simulator produces detailed execution statistics at the micro-architecture level. NVMain [START_REF] Poremba | Nvmain 2.0: A user-friendly memory simulator to model (non-)volatile memory systems[END_REF] is an architectural-level simulator that enables to evaluate main memory designs, as illustrated in Figure 2. It is flexible enough to allow the implementation of various memory controllers, interconnects and organizations. It is wellintegrated together with the gem5 simulator, which makes it possible to simulate a variety of main memory technologies in a system. Among existing micro-architecture simulators that model NVM-based memory systems in detail, NVMain is the most advanced one to best of our knowledge. State-ofthe-art simulators like DRAMSim2 [START_REF] Rosenfeld | Dramsim2: A cycle accurate memory system simulator[END_REF], DRAMSys [START_REF] Jung | Dramsys: A flexible dram subsystem design space exploration framework[END_REF] and Ramulator [START_REF] Kim | Ramulator: A fast and extensible dram simulator[END_REF] rather focus on DRAM technology modeling.

It is worth-mentioning that the results presented in this paper are obtained with a full-system cycle-level simulation of the considered benchmarks and applications. This is considerably demanding in terms of simulation effort and results for most experiments in weeks of simulation on a manycore server. We believe it is necessary to gather relevant insights that fully take into account the micro-architectural features of the designed systems. Existing approaches [START_REF] Ware | Architecting a hardware-managed hybrid dimm optimized for cost/performance[END_REF] adopts reasonable simplifications by either simulating workload traces (in place of the full code) or selecting some representative portions of an application.

In the sequel, starting from the selected memory technologies, we briefly describe the considered evaluated multicore heterogeneous architecture.

A. Evaluated system design

The memory models used in our study are indicated in Table II. They are designed based on a DDR4 model from Micron [START_REF] Micron | DDR4 SDRAM RDIMM -MTA18ASF2G72PDZ -16GB[END_REF], a PCM model defined by Samsung [START_REF] Choi | A 20 nm 1.8 V 8 Gb PRAM with 40 MB/s program bandwidth[END_REF] and a RRAM model defined by Panasonic [START_REF] Kawahara | An 8 Mb multilayered cross-point ReRAM macro with 443 MB/s write throughput[END_REF] (see Sections III-A1 and III-A2). While the DDR4 model has been completely derived from the corresponding data-sheet provided by Micron, the two NVM models have been enhanced according to an indepth review of the literature. These models are considered as inputs by NVMain to estimate delays and energy consumption of the main memory while executing various workloads.

Table II indicates for each considered memory model the number of channels, banks, ranks and interface frequencies used in our evaluations. [START_REF] Micron | DDR4 SDRAM RDIMM -MTA18ASF2G72PDZ -16GB[END_REF] (2,4,2) 1333 PCM Samsung [START_REF] Choi | A 20 nm 1.8 V 8 Gb PRAM with 40 MB/s program bandwidth[END_REF] (2,1,2) {400, 1333} RRAM Panasonic [START_REF] Kawahara | An 8 Mb multilayered cross-point ReRAM macro with 443 MB/s write throughput[END_REF] (2,4,2) {400, 1333}

1) DDR4 Technology Modeling: As a reference for our study, we consider the DRAM technology used in the Cavium ThunderX2 compute nodes of the Dibona supercomputer built by Atos/Bull, within the MontBlanc 3 H2020 European project (see https://www.montblanc-project.eu/prototypes). This technology consists of a DDR4 from Micron defined from the corresponding data-sheet [START_REF] Micron | DDR4 SDRAM RDIMM -MTA18ASF2G72PDZ -16GB[END_REF]. The bandwidth of the reference memory module considered for our investigation is around 21.3GB/s according to the data-sheet.

2) NVM Technology Modeling: First of all, we note that building realistic models of PCM and RRAM technologies is not a trivial task since only a few prototype designs are currently available. The design parameters of these prototypes are hardly available. A few NVM performance and energy evaluation tools [START_REF] Dong | Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory[END_REF] [50] could be considered as an alternative solution. Unfortunately, they fail to provide the fine-grain parameter description necessary to main memory modeling. For all these reasons, we decided to rely our study on the PCM and RRAM models provided by NVMain. They respectively result from Samsung [START_REF] Choi | A 20 nm 1.8 V 8 Gb PRAM with 40 MB/s program bandwidth[END_REF] and Panasonic [START_REF] Kawahara | An 8 Mb multilayered cross-point ReRAM macro with 443 MB/s write throughput[END_REF] specifications, presented in the International Solid-State Circuits Conference (ISSCC'2012 4 ), the top venue for presenting the most advanced memory prototypes. While the latency parameters are consistent with the designs from Samsung and Panasonic, it is not the case of the energy parameters.

We, therefore, modified the values of energy parameters in order to get as close as possible to the featured NVMs. The detailed parameter values will be found in the appendix of our initial report [START_REF] Gamatie | D3.7 -Final Report on Memory Hierarchy Investigations[END_REF]. We extrapolated the NVM energy parameter values according to existing literature on NVM [START_REF] Lee | Architecting phase change memory as a scalable dram alternative[END_REF] [52] [START_REF] Boukhobza | Emerging nvm: A survey on architectural integration and research challenges[END_REF]. In particular, we considered the following energy ratios, w.r.t. the above DDR4 model as the DRAM reference:

• 2.1x and 43.1x more energy-consuming for read and write on PCM respectively; • 1.2x and 23.7x more energy-consuming for read and write on RRAM respectively.

On the one hand, the above ratios considered for PCM result from [START_REF] Lee | Architecting phase change memory as a scalable dram alternative[END_REF] in which authors carried out an exhaustive analysis of a number of PCM prototypes proposed in literature from 2003 to 2008. We assume these ratios remain relevant enough for the Samsung PCM model proposed in 2012 and integrated within NVMain. Note that these ratios may have been reduced today with recent advances in PCM.

On the other hand, the ratios concerning the RRAM have been chosen empirically from the trends found in NVM-related literature [START_REF] Kryder | After hard driveswhat comes next?[END_REF] [START_REF] Boukhobza | Emerging nvm: A survey on architectural integration and research challenges[END_REF], which suggests that RRAM has bit-level dynamic energy that is comparable to DRAM. However, in terms of latency, writes are several times slower than reads. So, we assume that the write energy on RRAM is notably higher compared to DRAM, while it remains lower than for PCM. In fact, the recent trends about RRAM suggest that this technology has at least the same energy cost in read compared to DRAM, while the gap in write energy is getting reduced between the two technologies. Therefore, the value ratios chosen above can be seen as an upper-bound approximation that allows us to conduct a conservative analysis in the rest of this document. In other words, there exists a probable margin for improving the quantified gains reported in this work.

The maximum write bandwidths originally specified by the authors of the previous NVM models are 40MB/s for a 8Gb PCM [START_REF] Choi | A 20 nm 1.8 V 8 Gb PRAM with 40 MB/s program bandwidth[END_REF] and 443MB/s for a 8Mb RRAM [START_REF] Kawahara | An 8 Mb multilayered cross-point ReRAM macro with 443 MB/s write throughput[END_REF]. In the present work, an identical number of devices is used for both NVM and DDR4 models: 8 devices. Moreover, 256-bits and 512-bits row buffers are respectively considered for PCM and RRAM models. More details about the other parameters of considered memory architectures will be found in the appendix of [START_REF] Gamatie | D3.7 -Final Report on Memory Hierarchy Investigations[END_REF]. Given this setup, we observed that the write bandwidths of the PCM and RRAM models can reach up to 400MB/s and 1500MB/s respectively, when running an application like the High Performance Conjugate Gradient (HPCCG) [START_REF] Dongarra | High-performance conjugate-gradient benchmark[END_REF].

3) Heterogeneous multicore architecture: We consider the Exynos 7420 ARMv8 chip embedded in the Exsom board [START_REF] Howchip | Exsom board[END_REF] for modeling our simulated architecture in gem5. This chip relies on the big.LITTLE technology proposed by ARM. Table III summarizes the main parameters of the architecture.

For the sake of convenience, in the remainder of this paper, we rely on the aforementioned 8-cores ARMv8 multicore architecture as a simple instance of larger scale ARMv8 highperformance compute nodes. This enables a reasonable gem5-NVMain co-simulation cost in the conducted experiments while still enabling to stress the memory subsystem. To give an idea of the overall complexity related to the experiments carried out in our current study, gem5-NVMain co-simulations have been run on a private 64 cores local server for about two months.

B. Setup validation

As a preliminary evaluation, we focus on intrinsic properties of the modeled main memories: access latency and idle power consumption. We aim at assessing the soundness of the base memory models decided in Section III.

Given the accepted relative modeling of the NVMs energy parameters (i.e. ratios w.r.t. DRAM energy) described in Section III-A2, we decided to present all our design evaluation results in the form of normalized metrics, with DDR4 as the reference for comparison. We believe absolute metric values are less relevant here. In fact, the adoption of normalized performance metrics is a standard practice in NVM-based literature for unbiased analysis [START_REF] Ware | Architecting a hardware-managed hybrid dimm optimized for cost/performance[END_REF] 1) Memory Latency: We consider the lmbench benchmark suite [START_REF] Mcvoy | lmbench: Portable Tools for Performance Analysis[END_REF] to assess the read latency of each memory technology. In particular, we use the lat mem rd benchmark to measure the memory hierarchy latency when using a DDR4, PCM and RRAM in main memory. Note that the L1 and L2 caches are both in SRAM. Basically, the memory hierarchy latency is computed by repeatedly accessing contiguous data structures of increasing sizes, given a particular value of memory stride length. In our experiments, we consider a stride length of 4kB. The result of these repetitive computations are variations in memory access latency, according to its hierarchy levels: L1 cache, L2 cache, and main memory. The result provided by lat mem rd is reported in Figure 3 (here, the plotted latency values follow a logarithmic scale). The X-axis, denoted as "Array Size", represents the memory object sizes (in kB) for which the read latencies (in ns) are determined by the benchmark. The benchmark has been executed while using a single LITTLE core with 32kB L1 cache, 256kB L2 cache, and 4GB main memory. The memory interface frequency (i.e., the I/O bus clock) of the DDR4 memory model is 1333MHz, while the memory interface frequencies of PCM and RRAM are set to 400MHz according to the initial configuration inherited from NVMain original Comparing these results w.r.t. the tendencies usually found in the literature (see Table I), we observe that the devicelevel slowdown of PCM in read latency compared to RRAM and DRAM is confirmed. However, this is not the case for RRAM compared to DRAM: while the read latencies of the two memory technologies are similar at device level, it is not the case at memory system level. Indeed, read accesses with DDR4 are faster than with RRAM.

2) Idle Memory Power Consumption: An substantial advantage of NVMs is that they do not require any data refresh mechanism thanks to their non-volatile nature. It is not the case of DRAM, which can consume a non-negligible amount of energy due to refresh process and background power. The refresh process periodically reads data from a memory area and immediately rewrites the data to the same area, while the background power is due to the peripheral logic.

Given the anticipated significance of the refresh and background energy consumption for DRAM, we assess its impact compared to the considered RRAM and PCM memory models. For this purpose, we evaluate several scenarios with little-to-no access in main memory, i.e., no read, no write. In Figure 4, we report the energy of a quasi-idle 4GB main memory for modified durations, varying from 1 second to 30 seconds. This is achieved in gem5 by executing the "sleep" system call with different input delay values in seconds. The reported values enable us to analyze the impact of the overhead related to the background power and the refresh mechanism on the DDR4 memory energy consumption.

The total energy consumption computed by NVMain consists of the sum of four components: background energy, refresh energy, activate energy and burst energy. These parameters are automatically produced among the output statistics of NVMain after each simulation. This enables a fine-grain analysis of the energy breakdown. In all experiments shown in Figure 4, we observe that with the DDR4 the energy consumption of the main memory grows significantly with bigger input delays, due to the background and refresh energy components (negligible in NVMs). On the contrary, only a marginal energy increase is observed with RRAM and PCM. This shows the potential energy saving opportunity offered by NVMs for execution scenarios where the main memory is under-used. NVMain essentially provides two device-level energy models: current-mode and energy-mode [START_REF] Poremba | Nvmain 2.0: A user-friendly memory simulator to model (non-)volatile memory systems[END_REF]. Each mode relies on a specific power estimation strategy. The current-mode uses IDD values for power calculation (as in standard DRAM simulators) and applies to DRAM systems. The energy-mode exploits energy estimations resulting from circuit-level simulators like NVSim [START_REF] Dong | Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory[END_REF] or CACTI [START_REF] Muralimanohar | Cacti 6.0: A tool to model large caches[END_REF]. Each memory operation increments the system energy usage, while standby and powerdown energies are computed from simulated leakage values. In our experiments, the current-mode is used for DDR4. The energy-mode is selected for the two NVM models.

Fig. 5: Idle main memory energy: 4GB versus 32GB

When increasing the size of the main memory, NVMs further mitigate energy consumption. This is illustrated in Figure 5, where the size of the main memory is increased from 4GB to 32GB while keeping unchanged the other memory parameters. The reported results concern an execution of the "sleep" system call for 15 seconds.

The above preliminary evaluation of the NVM models regarding their latency and energy consumption is in line with the existing observation from literature: refresh and background energy consumption has an important impact on the global energy consumption of advanced DRAM-based memories [START_REF] Bhati | Dram refresh mechanisms, penalties, and trade-offs[END_REF]. This suggests the considered PCM and RRAM models are relevant enough to be used for further investigations.

In particular, provided these results, we can quantify the latency gap between the considered NVM technologies w.r.t. a typical DDR4 model when integrated into main memory. Note that the read latencies have been determined by using a benchmark designed for this specific purpose within the stream benchmark set. It will be interesting to evaluate the impact of NVMs application-wise.

IV. ASSESSMENT ON TYPICAL APPLICATIONS

We consider the Parsec benchmark set for evaluating the impact of the PCM and RRAM models, compared to the Micron DDR4 model, within a 4GB main memory model. The applications provided within Parsec provide evaluation scenarios that are more representative of applications.

A. Evaluation Parsec benchmarks 1) Selected benchmarks: For the sake of simplicity, we consider three categories of applications, each featured by one representative workload from Parsec: blackscholes, dedup and swaptions. The dedup workload is mainly memory-bound benchmark, particularly with a high number of read transactions in the memory. It is dedicated to the definition of high data stream compression ratios. The blackscholes workload is mainly compute-intensive, with marginal memory accesses compared to the two others. It expresses an analytical price calculation based on the Black-Scholes partial differential equation. Finally, the swaptions workload shows intermediate memory access properties compared to the previous two. It applies Monte Carlo simulation to compute prices.

These workloads are selected based on a previous characterization described in [START_REF] Bienia | The parsec benchmark suite: Characterization and architectural implications[END_REF]. Their corresponding properties in terms of memory access and computation load are summarized in Table IV. The reported values denote in billion the number of floating-point operations (FLOPs), read and write instructions.

In the rest of the document, we, therefore, consider blackscholes, dedup, and swaptions as the respective representatives of low memory access, high memory access, and moderate memory access applications. To confirm the memory access properties of the above three workloads with medium input sets 5 , we run them by considering the same system setup as described in Section III-B1. The resulting profiles in terms of read and write bandwidths for each of the workloads are illustrated in Figure 6. They are compliant with the read/write volumes characterized in [START_REF] Bienia | The parsec benchmark suite: Characterization and architectural implications[END_REF]. Indeed the read/write bandwidth thresholds obtained with dedup and swaptions globally dominate that of blackscholes since they perform more memory accesses than blackscholes. This is distinctly visible for dedup, which has the highest memory activity in terms of both read and write transactions, among the three benchmarks.

We notice that only a small fraction of the memory bandwidth is used by the three benchmarks (i.e., far from memory bandwidth saturation, which is around 21.3GB/s according to the reference data-sheet [START_REF] Micron | DDR4 SDRAM RDIMM -MTA18ASF2G72PDZ -16GB[END_REF]).

2) Evaluation results: Now, let us consider the execution of the three workloads by varying the memory technology in main memory as in the previous section, i.e., DDR4, RRAM, and PCM. Medium input sets are used for the experiments. Figure 7 reports the different results. More precisely, the execution time and the main memory energy consumption are illustrated.

On the one hand, in Figure 7a, we observe that the maximum execution slowdown between DDR4 and PCM is about 7.2x. Between DDR4 and RRAM it is only about 1.7x. These slowdown factors of NVMs over DDR4 are obtained with the dedup memory-intensive workload. The high writeinduced cost of NVMs, especially with PCM, exacerbates the slowdown compared to DDR4 as observed with dedup which contains more writes. Nonetheless, we can interestingly observe the above slowdown factors of NVMs are respectively smaller than the previous 11.7x and 5.5x memory latency gap obtained with the lat-mem rd benchmark (see Figure 3). This suggests that the detrimental impact of the intrinsic higher memory latencies of NVMs compared to DRAM, is limited application-wise on corresponding execution times, even for a memory-intensive workload. For application workloads with low and moderate memory accesses, the slowdown ratios between DDR4 and NVM based scenarios are further reduced. It is the case of blackscholes and swaptions in Figure 7a.

The important overhead in execution time observed for dedup and swaptions, while using PCM in main memory, is mostly due to the write transactions. Since write latency with PCM is higher than with RRAM (see Table I), this exacerbates the gap between the execution times resulting in the two NVM technologies. The overhead in execution time observed for the swaptions workload compared to the blackscholes workload mainly comes from the higher number of read transactions in the former. For yet undetermined reason we observe that for the blackscholes workload, the PCM model unexpectedly yields a faster execution time compared to RRAM. A possible explanation lies in the cache replacement policy that for this particular benchmark may be counter-productive, performing (unadequate) replacements faster with DDR4 and RRAM that in turn result in higher cache miss rate.

On the other hand, the energy consumption of the main memory with NVMs is always smaller than with DDR4, no matter the workload type (see Figure 7b). Of course, the energy gap observed application-wise is more important than with the "Idle Memory" scenario described formerly in Figure 4, due to the dynamic activity of the memory. To appreciate the global benefit of NVM integration in main memory, let us consider the Energy-Delay-Product (EDP) from the main memory perspective only. The EDP is calculated as the product of the workload execution time and the energy consumed by the main memory during the execution time. The aim is to assess the global benefit of each design alternative. Figure 7c shows the normalized EDP of all memory configurations, according to the three representative workloads. One can see that NVMs always provide better EDP than DDR4, except for one scenario: when dedup is executed while the main memory is in PCM. In other words, for memory-intensive applications, the energy reduction enabled by the PCM technology cannot be compensated by its higher device-level read/write latencies. We further evaluate NVM integration in main memory by considering the so-called MontBlanc benchmarks [START_REF] Rajovic | Experiences with mobile processors for energy efficient hpc[END_REF], which are representative of HPC workloads. We select four memory-bound benchmarks that feature various memory accesses and computational requirements. The 3D Stencil (3dstc) benchmark, which takes as input a 3D volume and produces an output 3D volume of the identical size. It is a memory-bound benchmark that features stridden memory accesses. The N-Body (nbody) benchmark requires a number of input parameters including a number of bodies including their position, mass, and initial velocity. Next, it updates these parameters based on gravitational interference between bodies. It features irregular memory accesses. The Sparse Vector-Matrix Multiplication (spvm) computes a vector resulting from the product of its input vector and sparse matrix. It features computational behaviors with potential load imbalance. Finally, Vector Operation (vecop) computes a vector resulting from an element-wise addition of two input vectors. It captures intensive regular computational behaviors. Note that vector-matrix multiplication and vector addition are memory-bound algorithms [START_REF] Schmidt | Chapter 6 -openmp[END_REF]. The execution time and memory energy consumption obtained when executing the above HPC benchmarks are shown in Figure 8. Here, an interesting insight concerns the main memory energy consumption. Unlike with dedup which has many memory accesses, NVMs lead to worse global memory energy consumption with the 3dstc and vecop benchmarks. However, for the n-body and spvm benchmarks, NVMs and especially RRAM, significantly improve memory energy consumption, so that the corresponding EDP remains better than that obtained with DDR4.

The above results motivate the need of design solutions such as hybrid DRAM-NVM main memory designs (see Section II). Such designs are capable of adjusting the choice of the suitable memory target according to the energy outcome of given memory-bound workloads. This will enable to mitigate the energy penalty.

2) Representative mini-applications: Now, we evaluate the impact of designed system models on two HPC miniapplications that can be simulated in a reasonable time.

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (Lulesh) mini-application [START_REF] Hornung | Hydrodynamics challenge problem[END_REF] encodes a discrete approximation of the hydrodynamics equations. It partitions the spatial problem domain into a collection of volumetric elements defined by a mesh. It presents high instructionlevel and memory-level parallelism with bursts of independent memory accesses. We consider its implementation in OpenMP.

The High-Performance Conjugate Gradient (HPCG) miniapplication [START_REF] Dongarra | High-performance conjugate-gradient benchmark[END_REF] for a 3D chimney domain on an arbitrary number of processors. It has been devised with the aim of providing a metric for assessing HPC systems. It enables to exercise computational and data access patterns, which feature a range of applications. HPCG shares a similar goal as the popular High-Performance LINPACK (HPL) benchmark [START_REF] Dongarra | The linpack benchmark: Past, present, and future. concurrency and computation: Practice and experience[END_REF]. The HPCCG 1.0 OpenMP implementation is considered in the evaluation presented below. It includes three main computation kernels called waxpby (sum of two scaled vectors), ddot (dot product of two vectors) and sparsemv (sparse matrix vector product). Its three input parameters nx, ny and nz denote the number of nodes in the 3D dimensional domain. Here, it will be executed on 8-cores big.LITTLE architecture.

Analysis of execution outputs. The output corresponding to 8-threads execution of Lulesh with the previous three main memory configurations (DDR4, RRAM, and PCM) is summarized in Table V. The main performance measurements reported by the Lulesh application are summarized. Elapsed time denotes how much time it takes to perform the simulation. Grind time denotes the time it takes to update a single zone for one iteration of the time-step loop. Lower values of this measure mean better performance. The Lulesh Figure-Of-Merit (FOM) provides the number of updated zones per second. These results are obtained by considering as inputs: a problem size of 15 3 per domain until completion, while the total number of elements is 3375. The performance numbers obtained upon executing HPCCG with three main memory configurations are summarized in Table VI. As expected, the configuration with DDR4 provides the best performance in terms of mega floating point operations per second (MFLOPS). The performance degradation induced by RRAM is very limited compared to PCM. This is due to their respective high memory access latencies. These results, obtained after 149 iterations, correspond to a parallel execution of 8 OpenMP threads, where the input parameters (nx, ny, nz) equal (104, 104, 104). From these results, the DDR4 and RRAM configurations lead to almost similar performance results with respectively 531.08 and 536.82 z/s FOM values (RRAM even slightly outperforms DDR4). They are far better than with the PCM configuration, which has penalizing memory access latency.

Analysis of memory activity. We focus on the main memory activity for the previous two mini-applications in order to analyze the implication of the different memory technologies w.r.t. the performance results described above. Figure 9 presents the main memory read/write bandwidths for the various technologies.

Overall, the Lulesh mini-application exhibits lower bandwidth thresholds (both for read and write) than HPCCG. Therefore, the performance penalty is expected to be more visible with the latter. This explains why the gap in execution times between DDR4 configuration and NVM configurations is more important for HPCCG, e.g., more than four times when comparing DDR4 and PCM (see Figure 10b). This gap remains below 2.5x for these technologies when considering Lulesh (see Figure 10a). Note that for both mini-applications, the RRAM technology provides comparable execution time than DDR4.

The main memory energy consumption shown in Figure 10 for both mini-applications shows that NVMs always provide improvements compared DDR4, despite their possible performance penalty. Nevertheless, when considering the Energy-Delay-Product (EDP) figure-of-merit, PCM never appears as efficient as DDR4 because of the high performance degradation it induces. This is not the case of RRAM, which provides a better EDP than the DDR4 configuration, whatever the miniapplication.

V. ANALYSIS OF A FEW MEMORY DESIGN CHOICES

The results presented in Section IV show that NVMs can improve the energy-efficiency for typical high-performance workloads. Now, we explore a few design parameters that might have an influence on the efficient integration of NVMs in the SoC reference design introduced in Figure 1. In Section III-B, our previous experiments, we evaluated the read latency of main memory by configuring the memory interface frequency of DDR4 to 1333MHz, while the memory interface frequencies of both PCM and RRAM is set to 400MHz (see Section III-B1). An interesting direction is to explore the possibility of upscaling the memory interface frequency of NVMs so as to reduce their latency gap as observed previously. Another direction concerns the number of memory channels (see Figure 2). 

A. Memory Interface Frequency

We consider a new design setup, which assumes the same memory interface frequency level for all three memory types. In other words, the interface frequency of the main memory in NVM is set to 1333MHz, similarly to DDR4. All other main memory parameters are kept unchanged, e.g., size, banks, ranks, etc. The lat mem rd benchmark is executed using a single LITTLE core according to the associated memory hierarchy (see Table III), i.e. 32kB L1 cache, 256kB L2 cache and 4GB main memory. In the case of the RRAM technology, we notice that the saturation array size of the L1 cache is slightly delayed compared to the other technologies. This is unexpected since the L1 and L2 caches have similar characteristics in all three cases, i.e., in SRAM and with same sizes. This is a side-effect of the prefetching mechanism and/or cache replacement policy.

Assuming that upcoming NVM technologies could support higher memory interface frequency ranges, we believe this frequency upscaling is a potential optimization parameter for mitigating the impact of NVM latency overhead on application execution time.

B. Number of Channels

Now, we evaluate the impact of the channel count in the main memory architecture. In the previous memory design scenarios, we only considered two channel memory technologies. More generally, memory architectures with multiple channels aim at increasing the data transfer rate between the memory and its associated controller by multiplying the number of communication channels between them. Since memory channels are expensive resources, the number of memory channels is a design-decision that is heavily influenced by the targeted market. The subsequent evaluation is conducted within the framework of the MontBlanc3 European project which aims at developing an ARMv8-based pre-exascale supercomputer. Because of that the actual cost is less of an issue compared to a mobile market: the current prototype, named Dibona and based on Marvell ThunderX2 CPUs, has been devised by the Atos Company and includes 8 DDR4 channels per socket.

Figure 12 summarizes the memory latency evaluation for different multi-channel memory architectures. The number of channels is varied from 2 to 8 for NVMs, while the reference DDR4 memory architecture is kept unchanged with 2 channels. Figure 12a shows the potential improvement achieved for the RRAM technology with architectures including either 4 or 8 channels. The latency gap of RRAM technology is decreased up to x1.1 compared to the baseline DDR4 technology, i.e., almost equivalent latencies. When considering the PCM technology, the latency gap w.r.t. DDR4 is reduced up to x2.6, which is also quite relevant. To minimize the cost of the memory system, selecting 4 channels instead of 8 represents a satisfactory compromise for NVM integration.

Multi-channel memory architectures, therefore, provide an interesting opportunity for mitigating the latency overhead of NVMs. While the latency improvement enabled here is higher than that obtained through memory interface frequency upscaling, both opportunities could be combined for further gains.

C. NVM-specific Memory Controllers?

Another design question regarding the successful integration of NVMs in computer systems concerns adequate control mechanisms at the hardware level. Indeed, memory controllers play a central role in data allocation and movement within the main memory for meeting the low latency, high throughput, and optimized energy requirements.

In the present study, all experiments have been achieved by considering the controller configuration given by default in NVMaim models: FRFCFS controller for both DDR4 and RRAM, and FRFCFS-WQF controller for PCM. This leaves room for further design optimizations since the memory accesses have variable costs depending on the selected controller. Typically, the average main memory latency of PCM can be reduced by 16% by selecting the FRFCFS controller instead of FRFCFS-WQF. Furthermore, the row buffer design inside the controller could take into account the different latencies of hits and misses depending on the memory technology: DRAM and PCM are known to have similar row buffer hit latency, while the row buffer miss latency is larger for PCM due to their related higher array access latency [START_REF] Mutlu | Opportunities and challenges of emerging memory technologies[END_REF].

The aforementioned controller design should exploit the heterogeneous/homogeneous nature of the main memory. Some existing work already addressed the case of hybrid DRAM-NVM main memory design, where row buffer locality-aware data placement policies are proposed [START_REF] Yoon | Row buffer locality aware caching policies for hybrid memories[END_REF]. For instance, the authors observed that streaming data accesses are PCM-friendly, while other data accesses (with reuse) are rather DRAMfriendly for data placement. In the case of main memory integrating only NVM, as evaluated in the present work, the design of the memory controller is an open question that remains to be addressed. We believe that revisiting the design principle of such a mechanism can improve the benefits of NVM integration by taking their specificity into account.

VI. GAINED INSIGHTS FOR SOC INTEGRATION

From all the previous experimental results, we draw more concretely the envisioned most favorable NVM integration in the memory hierarchy beyond cache levels. We briefly address the programmability issue of compute nodes in presence of NVMs in main memory.

A. General observations

Our experiments show that NVM can relevantly improve the main memory energy consumption, at the expense of limited penalty on performance. The announced cost-effectiveness6 of these emerging memory technologies compared to concurrent technologies, such as DRAM and NAND Flash, makes this perspective credible. Given a relative cost per bit of 1 for DRAM, it is around 0.25 for PCM and RRAM [START_REF] Ware | Architecting a hardware-managed hybrid dimm optimized for cost/performance[END_REF].

The perspective of their integration in future SoCs is particularly promising with the RRAM technology, while PCM may incur non-negligible performance degradation. The PCM technology rather appears as an in-between good candidate w.r.t. faster main memories and slower storage-class memories (this observation additionally holds for the recent 3D XPoint technology from Intel and Micron [START_REF]Intel and Micron Produce Breakthrough Memory Technology[END_REF]. It is worth-mentioning that NVMain only enables to model and evaluate main memory level technology integration. Dealing with storage level integration would require new simulation tools. Figure 13 summarizes this idea. Note that our study does not consider alternative NVM integration approaches, such as hybrid memory design as addressed widely in existing literature [START_REF] Mutlu | Opportunities and challenges of emerging memory technologies[END_REF]. These approaches are a complementary solution that may have an impact on the way NVM integration is seen through the memory hierarchy depicted in Figure 13.

Actually, the joint emergence of HBM and NVM technologies will likely lead to revisit the junction between memory hierarchy and storage as we know it in today's systems. Indeed, why would designers keep on considering the DRAM technology for main memory, while NVM could provide all the necessary memory capacity? On the other hand, why would industry keep on deploying chips with hard drive supports while NVM controllers could help to fill this demand? Removing all unnecessary design features has been always the point for the design of optimized ARM-based HPC SoCs to save power and increase the system energy-efficiency. Therefore, for high-end server capability such as in HPC domain, a new memory design trade-off is definitely to be found between DRAM, NVMs and SATA connection in the near future.

B. Impact on programming models

Beyond the above architectural design considerations, the integration of NVMs in multicore SoCs calls for reconsidering the entire system design stack. This concerns in particular the impact on programming models and system software. In order to anticipate this issue, we evaluate two parallel programming models through different versions of the same application while having NVMs in main memory. These programming models are supposed to involve different memory activities according to their associated runtime management systems.

We consider the OpenMP version 2.3 and OmpSs programming models. OpenMP7 is a popular shared-memory parallel programming interface. The OpenMP version 2.3 (in which our benchmarks and mini-applications are implemented) features a thread-based fork-join task allocation model as illustrated in Figure 14a. It consists of a set of compiler directives, library routines and environment variables for the development of parallel applications. OmpSs [START_REF] Duran | Ompss: a proposal for programming heterogeneous multi-core architectures[END_REF] is a task-based programming model (see Figure 14b) that improves OpenMP with support for irregular and asynchronous parallelism, and for heterogeneous architectures. It incorporates dataflow concepts enabling its compiler/runtime to automatically move data whenever necessary and to apply various useful optimizations. The Nanos++ runtime used with OmpSs enables an asymmetry-conscious task scheduling [START_REF] Chronaki | Criticality-aware dynamic task scheduling for heterogeneous architectures[END_REF]. It incorporates Criticality-Aware Task Scheduler (CATS) scheduling policy CATS, which exploits the criticality of generated tasks to schedule them during execution. The most critical tasks, i.e., those appearing on the critical execution path, are executed by the high-frequency cores. Typically, such tasks are represented in red color in Figure 14b. Less critical tasks are executed on low-power cores. These tasks are denoted by green color in Figure 14b.

To compare both programming models, we consider two corresponding versions of the HPCCG mini-application. We observe that the OmpSs version of HPCCG provides better performance than the OpenMP version. This is mainly due to the CATS scheduler of the former. On the other hand, the read/write bandwidth obtained with OmpSs version, shown The impact of this improvement is illustrated in Figure 16. The execution time and main memory energy consumption are compared separately for each memory technology, according to the two programming models for HPCCG. The OmpSs runtime enables to reduce by more than 50% the execution time of the OpenMP version for all three memory technologies. This is in-line with our previous observations when comparing both programming models [START_REF] Butko | Efficient Programming for Multicore Processor Heterogeneity: OpenMP versus OmpSs[END_REF]. It additionally allows a reduction of energy consumption, by 60% for DDR4 and by 20% for PCM. However, it marginally increases the energy consumption for RRAM (around 2%). This is due to the notable increase in write bandwidth enabled by OmpSs scheduler, specifically for RRAM. Writes on NVMs are very expensive operations both in latency and energy consumption.

VII. CONCLUDING REMARKS

In this paper, we evaluated two relevant emerging NVM technologies at the main memory level, to analyze their impact on both system performance and main memory energy. Key motivation is to quantify as much as possible the impact of NVMs in explored design scenarios. Starting from the PCM and RRAM model templates provided by the NVMain simulation framework, we enhanced them through some extrapolation relying on existing literature. The NVM integration has been evaluated with the gem5 cycle-approximate simulator while considering a heterogeneous ARMv8 multicore system model (such systems are envisioned as good candidates for compute node design in HPC domain [START_REF] Weloli | Efficiency modeling and exploration of 64-bit arm compute nodes for exascale[END_REF]). A subset of representative Parsec benchmarks and two typical mini-applications from HPC domain have been used as evaluation workloads.

Our experiments showed RRAM represents a very good candidate for energy issue mitigation at the main memory level, while PCM would be a better candidate for storage level. RRAM is competitive enough compared to DDR4 from the viewpoint of system-level performance. Most importantly, it enables a reduction of main memory energy consumption by up to 50%. While PCM does not offer such benefits at the main memory level, it could be a more suitable candidate for storage level. Currently, at storage level solutions for the server market are mostly implementing SSD drives: through CPU SATA features or through PCIe devices for NVMe disks. PCM appears a viable alternative for high-performance storage as well as for high-performance computing. Nonetheless, to sustain this gain expected from emerging NVMs, complementary mechanisms (e.g., targeting wear-leveling) or technology improvements regarding write endurance will be helpful. Some candidate solutions already exist [START_REF] García | Composing lifetime enhancing for non-volatile main memories[END_REF].

It is worth-mentioning that the experiments conducted in this study rely on NVM models published in 2012 by Samsung and Panasonic. This decision was motivated by the high-level of confidence on these published results. These rather old models can be seen as conservative approximations of these technologies and their potential: the state-of-the-art on NVM technologies has notably improved over the last years and the gains observed in this study might get better as NVM technologies progress.
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 11 reports the obtained read latency values (according to a logarithmic scale). The average latencies for RRAM and PCM are respectively 116 nsec and 265 nsec, while that of the DDR4 model is unchanged, i.e. 69 nsec. This represents a latency gap reduction from x5.5 to x1.7 for RRAM compared to DDR4 and from x11.7 to x3.8 for PCM compared to DDR4.
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TABLE I :

 I Approximate device-level characteristics of NVMs

		DRAM	Non Volatile Memory RRAM PCM
	Cell size (F 2 )	6	4 -10	4 -12
	Read latency (nsec)	∼10	∼10	20 -60
	Write latency (nsec)	∼10	∼50	20 -150
	Read energy	medium	low	medium
	Write energy	medium	high	high
	Leakage power	medium	low	low
	Write endurance	> 10 15	10 8 -10 11	10 8 -10 9
	Maturity	mature	test chips	test chips

TABLE II :

 II Compared 4GB main memory configurations

	Name	(Channel, Bank, Rank) Interf. freq. [MHz]
	DDR4 Micron	

TABLE III :

 III Exynos 7 Octa (7420) SoCs characteristics and corresponding gem5 models

			Exynos 7 Octa (7420)	ex7 gem5 model
	Parameters	Cortex-A53 ARMv8 ISA (in-order)	Cortex-A57 ARMv8 ISA (out-of-order)	ex7 LITTLE (in-order)	ex7 big (out-of-order)
	Max. core count	4	4	4	4
	Frequency	1.4GHz	2.1GHz	1.5GHz	2.1GHz
		Size	32kB	48kB	32kB	48kB
	L1I	Assoc.	2	3	2	3
		Latency	3	3	3	3
		Size	32kB	32kB	32kB	32kB
	L1D	Assoc.	4	2	4	2
		Latency	3	3	3	3
		Size	256kB	2MB	256kB	2MB
	L2	Assoc.	16	16	16	16
		Latency	12	16	12	16
	Interconnect		CCI-400	XBAR -256 bus width @533MHz
		Memory	4GB DDR4@1333MHz, 2 channels	see Table II
	Memory bus width		64	64	
	Technology	14nm FinFET	-	

TABLE IV :

 IV Breakdown of benchmark in billion instructions[START_REF] Bienia | The parsec benchmark suite: Characterization and architectural implications[END_REF] Benchmarks 10 9 FLOPs 10 9 Reads 10 9

				Writes
	blackscholes	1.14	0.68	0.19
	dedup	0	11.71	3.13
	swaptions	2.62	5.08	1.16

TABLE V :

 V Lulesh execution statistics w.r.t. selected memory technologies

		DDR4 RRAM	PCM
	Elapsed time (s)	2.54	2.51	6.04
	Grind time (µs / z / c)	1.88	1.86	A.47
	FOM (z / s)	531.08 536.82 223.45

TABLE VI :

 VI HPCCG execution statistics w.r.t. selected mem-

	ory technologies			
			DDR4	RRAM PCM
		DDOT	3.67	4.72 14.08
	Time (s)	WAXPBY SPARSEMV 41.27 14.94	11.48 70.34 59.78 218.28
		Total	59.95	76.04 302.82
		DDOT	182.37	141.79 47.60
	Performance	WAXPBY	67.31	87.56 14.29
	(MFLOPS)	SPARSEMV 219.27	151.39 41.46
		Total	178.91	141.05 35.42

To the best of our knowledge, no updated projection is provided in the literature regarding this trend since[START_REF] Lim | Disaggregated memory for expansion and sharing in blade servers[END_REF].

Spin Transfer Torque RAM (STT-RAM)[START_REF] Bhatti | Spintronics based random access memory: a review[END_REF] is another candidate technology, which is unconsidered in this work. In the framework of the MontBlanc3 project, it has been rather considered for the cache level hierarchy as addressed in[START_REF] Senni | Exploring mram technologies for energy efficient systems-on-chip[END_REF],[START_REF] Senni | Embedded systems to high performance computing using stt-mram[END_REF], and in particular at the last-level cache.

To the best of our knowledge, these are the most complete models publically available for NVM evaluation at main memory level. In addition, the recent trends about NVMs observed in the literature suggest that the relative comparison between these technologies has not changed.It is worth-mentioning that since 2012, state-of-the-art on NVM technologies has noticeably evolved. Therefore, the ISSCC'2012 models considered in the current study should be considered as a pessimistic approximation basis, meaning that nowadays NVM designs might enable further gains.

The breakdown shown in Table IV considers large input sets run on a real computer. At this point, it is utilized as an initial criterion for benchmarks selection w.r.t. their characteristics. In our experiments, we use rather medium input sets because it is more tractable with gem5 in term of simulation time.

https://www.computerworld.com/article/3194147/data-storage/faq-3dxpoint-memory-nand-flash-killer-or-dram-replacement.html

https://www.openmp.org in Figure15, is significantly higher than that of OpenMP version (see Figure9). For instance, the read bandwidth is improved by about 4x, 3x and 1.8x for DDR4, RRAM, and PCM respectively. However, the write bandwidth is improved merely marginally.
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