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Emerging NVM Technologies in Main Memory for
Energy-Efficient HPC: an Empirical Study

Abdoulaye Gamatié, Alejandro Nocua, Joel Wanza Weloli, Gilles Sassatelli,
Lionel Torres, David Novo, and Michel Robert

Abstract—The spectrum of scientific disciplines where
computer-based simulation and prediction play a central role
is broad: biology, medicine, high energy physics, climatology,
astronomy, etc. In the near future, expected exascale supercom-
puters will make it possible to address scientific problems that
are more complex than ever. However, a major challenge on
the path to such supercomputers is the required high energy-
efficiency, i.e., maximizing the amount of computational work
per watt.

To answer this challenge, the position of this paper relies on
compute nodes built from inherently low-power technologies. It
considers 64-bit ARM processors combined with emerging non-
volatile memory (NVM) technologies for main memory, known
to be a bottleneck regarding performance and energy. DRAM
technology is until now the mainstream option for main memory.
However, it will hardly scale beyond a certain level because
increased DRAM capacity requires higher refresh rates, which
is harmful to power consumption. In such a context, emerging
NVMs have become promising alternatives to DRAM thanks to
their memory cell density and negligible leakage. This paper eval-
uates the impact of various main memory technologies, namely
DDR4 SDRAM, Phase-Change Memory (PCM), Resistive RAM
(RRAM), on computing system performance and memory-related
energy consumption. The obtained results show that RRAM is
a very promising candidate to mitigate main memory energy
consumption, while PCM tends to represent a better candidate for
storage level. Compared to DDR4 SDRAM, we observe RRAM
can provide comparable system-level performance, while the
main memory energy consumption can be reduced by up to 50%.

Index Terms—Memory architecture, nonvolatile memory,
phase change memory, resistive RAM, DRAM, multicore process-
ing, high-performance computing, low-power electronics, system
simulation, performance evaluation

I. INTRODUCTION

XASCALE computing [1] is a key enabler for addressing

some of the grand challenges of mankind in areas such as
medicine, sustainability and climatology. Exascale is set as the
next milestone in every supercomputing roadmap, albeit often
postponed because of several scalability challenges among
which target power consumption.

Exascale computers should be capable to perform 108 float-
ing point operations per second (flops), within a reasonable
power budget, typically below 20 MW. The general design
challenges related to these computers concern various aspects
including processor, memory and interconnect technologies,
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as well as programming models. The present study focuses
on compute node designs, i.e. building blocks for exascale
parallel computers, based on ARM processors [2] combined
with emerging non volatile memory (NVM) technologies [3].
These processors are usually energy-efficient, while emerging
NVMs have inherently a negligible leakage that contributes to
drastically reduce the overall power consumption in compute
nodes.

A. A glance at ARM SoCs for compute nodes

ARM-based Systems-on-Chip (SoCs) are known to pro-
vide a good power and performance compromise. Thanks to
the generalization of 64-bit ARMv8 ISA alonside significant
progress on micro-architecture and software stack, they have
become attractive for high-performance computing (HPC)
applications [2].

ThunderX2 processor. Among the latest solutions, we can
mention the Marvell’s ThunderX2 processor, which supports
ARMVS.1 architecture [4]. This chip has 8 memory channels,
delivering theoretically up to 33% more memory bandwidth
than its equivalent the Intel’s Skylake processor as the latter
features only 6 DDR4 memory channels [5]. This translates
into 33% better performance on HPCG [6] and memory-bound
applications. The ThunderX2 processor has been recently
compared with others x86 processors including Skylake [7].
Overall, it provides similar performance level compared to
Skylake. It is slower when executing compute-bound high-
performance applications due to its inherent lower floating-
point throughput. In fact, it does not feature vector units
contrarily to Intel Advanced Vector Extensions (AVX-512) [5].

SPARC64 XIfx processor. The A64FX CPU is the Fu-
jitsu’s SPARC64 XIfx (sparc architecture) ARM-based high
performance CPU successor [8]. Manufactured in 7nm pro-
cess TSMC technology, it is compliant with the ARMvS8.2-A
specification. It is the first CPU that implements the 512-bit
ARM Scalable Vector Extension (SVE), designed specifically
for high performance computing [9]. It includes 48 worker
cores in addition to 4 helper cores (2 I/O and 2 system) It
can perform up to 2.7 teraflops for 64-bit (FP64) operations
and more than 80% of the 1TB/s theoretical memory peak
bandwidth delivered by four High Bandwidth Memory (HBM)
blocks [9]. Floating point performance is about 35% higher
than the top-of-the-line Xeon Skylake CPUs.

Kunpeng 920 processor. Recently, the Huawei’s Kunpeng
920 has been announced as the “highest-performance ARM-
based CPU” [10], exceeding A64FX. Manufactured also in
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Fig. 1: A realistic ARM-based chip design

7nm, this chip integrates 64 cores at a frequency of 2.6 GHz
and 8 DDR4-2933 channels. The Kunpeng 920 processor has
on-board couterments including two NIC 100G RoCE for
networking and a support for PCle Gen4 and CCIX interfaces.
Details about the ARM core architecture are not public yet,
except the fact that the gains come from an optimization of
branch prediction algorithms, a higher number of operation
units, alongside an improved memory subsystem architecture.

While the intrinsic compute energy-efficiency of the above
ARM SoCs in terms of flops/W is very promising, the global
efficiency at compute node level must also consider other
crucial components such as memory. In particular, main mem-
ory plays a central role regarding the efficient data access. It
has a direct impact on the overall system performance and
energy-efficiency. This is true in both embedded and high-
performance computing domains.

EXAMPLE 1 (A REALISTIC COMPUTE NODE DESIGN): The
European Montblanc projects' have been exploring the design
of ARM-based supercomputers for exascale computing. A
realistic compute node design in this context is shown in
Figure 1. It includes ARMVS core clusters with a three-level
cache memory hierarchy, i.e. L3, L2 and LI levels.

The corresponding SoC has 4 HBM stacks that provide
up to 48GB of on-package memory. It consists of 2 dies (or
chiplets) on a passive interposer, connected through high speed
CCIX links and four stacks of on-chip DRAM. Additional
DRAM memory controllers compatible with emerging NVM
technologies are envisioned in order to improve the memory
capacity. This floorplan indicates the potential of adding
further IPs such as multi-channel NVM controllers, power
management cores or accelerators, to exploit the silicon area
of the chiplet (improving their utilization rate). However, one
need to balance the trade-off of adding the new IPs, with
respect to the SoC power budget.

Thttps://www.montblanc-project.eu

Generally, memory and I/O related macros are typically
placed at the edge due to mainstream package integration
technology requirements. Memory PHYs are wide structures
taking significant area at the edge of the SoC. Both available
edge space due to target SoC dimensions and available
package pin count determine the number of memory interfaces
that can be included.

B. The main memory bottleneck

A number of notable trends have been identified in the
literature about main memory [11]. Modern systems keep on
integrating several processing units, which can be heteroge-
neous (e.g., CPUs, GPUs or FPGA) in order to fulfill the re-
quirements of performance-demanding applications. Following
this trend, a drop by 30% of the memory capacity per core is
envisioned every two years [12]%. Therefore, per-core memory
bandwidth will decrease.

DRAM technology will further hardly scale beyond a cer-
tain technology node, because of higher cell manufacturing
complexity, reduced reliability, and rising cell leakage [13].
In addition, increased DRAM capacity inevitably requires
higher refresh rates. The energy consumed by off-chip memory
hierarchy, including DRAM, memory controller and their
connecting interfaces, can reach up to 41% of the total energy
consumption of a compute system [14]. In addition, the refresh
mechanism of DRAM induces power consumption even when
no activity occurs in the memory. For instance, authors in [15]
evaluated the increase in performance and power overheads
due to refresh in high-density 32Gb memory devices.

The background power consumption related to the periph-
eral circuitry, e.g., word-line drivers, sense-amplifiers and
write drivers, represents another concern as it contributes
significantly to the memory leakage. They observed that

2To the best of our knowledge, no updated projection is provided in the
literature regarding this trend since [12].
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refresh can account for more than 20% of the DRAM energy
consumption while running SPEC CPU2006 benchmarks with
a full-system simulator. The background energy consumption
is the largest part of the overall energy reported for each
memory size.

DEFINITION 1 (ADDRESSED PROBLEM): We focus on the
power consumption issue of DRAM-based main memory, re-
lated to their refresh and peripheral circuitry requirements.
We seek cost-effective solutions that can adequately overcome
this issue, without incurring neither performance penalty nor
important integration efforts in compute systems.

Typically, considering the reference design shown in Figure
1, one would like to combine low-latency and high-bandwidth
on-chip HBM memory with off-chip memories to extend the
per core main memory capacity at least up to 2GB (required
for HPC applications). In this specific case, we have to feed
all cores with 128GB of main memory in total. However, we
can only provide 96GB with the on-chip HBM blocs. Then,
32GB of off-chip memory are required. We have two possible
choices: i) either integrate the latest DDR5 technology (DDRS-
4400), or ii) integrate a custom low power and multi-channel
NVM module.

C. Non volatile memory technologies

1) Making the case for NVM: To support our motivation to
select NVMs as candidate solutions for the aforementioned
problem, Table I introduces some numbers regarding their
main characteristics [3]. We selected two very promising NVM
technologies’: Resistive RAM (RRAM) and Phase Change
Memory (PCM). The table provides a relative comparison
basis that will serve to assess the specific memory models used
in the rest of this paper. One must keep in mind that generally
at system level, the interconnect used for memory access has
a notable (if not the highest) impact on those metrics.

TABLE I: Approximate device-level characteristics of NVMs

Non Volatile Memory
DRAM RRAM PCM
Cell size (F?) 6 4-10 4-12
Read latency (nsec) ~10 ~10 20 - 60
Write latency (nsec) ~10 ~50 20 - 150
Read energy medium low medium
Write energy medium high high
Leakage power medium low low
Write endurance > 10" | 108 - 10™T | 10% - 107
Maturity mature test chips test chips

Among the most relevant features of NVMs for energy-
efficiency, we note their low leakage power. Since they are
non volatile, they do not require any data refresh mecha-
nism to maintain written values in the memory, contrarily to
DRAM. NVMs enable to store multiple bits per cell, which
leads to higher density. However, writing operation on those
NVMs is more expensive compared to DRAM. Unlike charge-
based memories, NVMs store data in the material structure

3Spin Transfer Torque RAM (STT-RAM) [16] is another candidate technol-
ogy, which is unconsidered in this work. In the framework of the MontBlanc3
project, it has been rather considered for the cache level hierarchy as addressed
in [17], [18], and in particular at the last-level cache.

or properties (resistive switching memories). Accordingly, a
write operation involves changing cell’s physical state and
thus consumes more time and energy than a read operation.
Furthermore, NVM cells often withstand a much smaller
number of write operations before wearing out. As write
endurance of NVMs is critical for most technologies, there
have been significant efforts over the last years to mitigate this
issue, e.g., by minimizing / avoiding memory writes via silent
stores elimination [19], [20], by adopting advanced cache
replacement policies [21], by applying memory mappings that
account for NVM retention time [22], and by improving
the technology itself [23]. Even though wear-leveling is a
prominent concern for emerging NVMs, the current study will
mainly focus on performance and energy concerns.

The main memory market, though extremely competitive,
is a promising application area for Non-Volatile Memories
(NVMs) from different perspectives:

« Technology independence: main memory comes in form
of discrete memory modules made of chips with a JEDEC
DDR standardized interface, thereby lifting the difficulty
of integrating different technologies on the same sub-
strate.

o Voiding refresh needs: DRAM consumes a significant
amount of energy into the necessary refresh cycles. The
overall resulting complexity of DRAM required for cop-
ing with the hierarchical organization in pages, ranks and
banks incurs significant performance penalties compared
to NVMs. Indeed, thanks to their inherent non-volatility,
most NVMs do not require any refresh mechanism to
preserve their stored data. This also confers to NVM
negligible leakage.

e Scaling and density NVM memory technologies can
scale better than DRAM. For instance, the Phase-Change
Memory is expected to scale to 9nm around 2022, while
a 20nm prototype was already proposed in 2008 by
IBM [11]. This enables denser memories that could meet
the memory capacity requirements of multi/manycore
compute systems.

2) A brief overview of PCM and RRAM technologies: The
PCM memory technology was first proposed in 1970 [24] by
Gordon Moore, co-founder of Intel. However, material quality
and power consumption issues prevented commercialization
of the technology until very recently. A number of indus-
trial actors already announced PCM-based device prototypes
(e.g., Samsung, Toshiba, IBM and SK Hynix [25]). More
recently, Intel and Micron announced the 3D XPoint NVM
technology [26], which shares many similarities with the PCM
technology. However, details of the materials and physics
of operation have not been fully disclosed. A 375GB SSD
PCle card from Intel, aimed at enterprise markets, is going
to be released as the first product with this technology in
2019. Both PCM and 3D XPoint technologies are regarded as
potential solutions for a compromise between main memory
and storage-class memory. Their higher access latencies and
dynamic power consumption compared to DRAM (see Table
I) may however become penalizing at main memory level.

The RRAM memory technology [27] dates back to 2003,
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when Unity Semiconductor started developing its Conductive
Metal-Oxide (CMOx) technology. This technology works by
varying the resistance across a dielectric solid-state material.
The RRAM technology has proved a promising candidate for
main memory thanks to its lower power consumption and
access latency compared to PCM (see Table I). It has demon-
strated a good stability at 10nm node [27]. Among outstanding
industrial players investing in the RRAM technology, one can
mention Panasonic Semiconductor [28].

D. Our contribution

In this paper, we explore the impact of integrating emerging
NVMs in ARM Compute Nodes to enable energy-efficient
high-performance computing. An initial version of this work
can be found in a report [29]. The proposed design analysis
is achieved by adopting two simulation tools: the gem5 [30]
cycle-approximate architecture simulator coupled with the
NVMain main memory simulator [31].

We calibrate a DRAM model based on a Micron DDR4
datasheet [32]. We also build new PCM and RRAM memory
technology models, starting from NVMain models that are
further refined based on an analysis of the existing literature on
NVMs. Our evaluation targets state-of-the-art heterogeneous
ARMvS8 multicore systems, envisioned for better processing
efficiency of compute nodes in upcoming HPC systems. The
explored system designs are validated on typical application
workloads.

Our results show that RRAM is a very good candidate
for energy issue mitigation at main memory level, while
PCM would be a more promising candidate for storage level.
We show that RRAM can provide system-level performance
comparable to DDR4, while memory energy consumption can
be reduced by up to 50%. This is not the case of PCM.

E. Outline of paper.

The remainder of this paper is organized as follows: Sec-
tion II presents some related work on NVM integration at
main memory level; then, Section III describes our design
exploration framework; Section IV evaluates the performance
and energy consumption of a compute node system model
integrating different memory technologies at main memory.
The aim is to confirm the relevance of NVM for energy
improvement; Section V focuses on a few main memory
system design choices aiming at demonstrating how the energy
gains expected from NVM integration could be further im-
proved; Section VI discusses some gained insights and briefly
deals with the open question about the programmability of
compute nodes integrating NVMSs in main memory; finally,
some closing remarks are given in Section VIIL.

II. RELATED WORK

We describe some existing studies promoting emerging
NVM technology at main memory level. These studies consid-
ered different main memory architectures like NVM-uniform
or hybrid DRAM-NVM.

A. NVM-uniform main memory architectures

Lee et al. [33] examine the use of PCM to completely
replace DRAM as main memory. They architect a PCM-
based main memory system that helps mitigating the negative
impact of high write energy and latency. For this purpose, they
used more and smaller row buffers to improve locality and
write coalescing. To address the write endurance issue, they
proposed tracking and writing only modified data to the PCM
device. These initial results show that performance, energy
and endurance of PCM chips can be greatly improved with
the proposed techniques.

In addition, one can achieve more efficient designs of
NVM chips by taking advantage of the non-destructive nature
of reads, which enables simpler and narrower row buffer
organizations [34]. Unlike in DRAM, an entire NVM memory
row does not need to be buffered by a device because reading a
memory row does not destroy the data stored in the row. Meza
et al. [34] showed that having narrow row buffers in emerging
non-volatile devices can greatly reduce main memory dynamic
energy compared to a DRAM baseline with large row sizes.
This happens without greatly affecting memory endurance.
And, for some NVM technologies, it can lead to improved
performance.

Existing work often promote PCM and RRAM for main
memory due to their smaller cell size. Nevertheless, a few
studies also explored the opportunities offered by other emerg-
ing NVMs such as the Spin Transfer Torque RAM (STT-
RAM) [16]. For instance, Kultursay et al. [35] draw similar
conclusion as Lee et al. [33] upon evaluation of the complete
replacement of DRAM with STT-RAM. To tackle the long
write latency and high write energy problems of STT-RAM,
they proposed an architecture that selectively writes back the
contents of the row buffer when it is modified. The architecture
only writes back a data that is modified to reduce write
operation energy and latency. In addition, to improve the
locality of accesses to STT-RAM, they propose bypassing the
modification of the row buffer for write operations. With the
suggested modifications, the STT-RAM based main memory
shows to be more energy-efficient than a DRAM-based main
memory.

B. Hybrid DRAM-NVM architectures

Yoon et al. [36] make the key observation that row buffers
are present in both DRAM and PCM. And, these row buffers
have (or can be designed to have) the same latency and band-
width in both DRAM and PCM. Yet, row buffer misses are
much more costly in terms of latency, bandwidth, and energy
in PCM than in DRAM. To exploit this, they devise a policy
that avoids accessing in PCM data that frequently causes row
buffer misses. Hardware or software can dynamically keep
track of such data and allocate/cache it in DRAM while
keeping data that frequently hits in row buffers in PCM. PCM
also has much higher writing cost than reading cost. To take
this into account, the allocation/caching policy is biased such
that pages that are more likely written stay in DRAM.

Ware et al. [37] recently propose a hybrid DIMM archi-
tecture combining DRAM and a modified Flash with reduced
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read latencies. They claimed their proposal was commercially
realizable. They evaluated the performance and endurance for
data-center workloads. The obtained results showed that the
combination can enabled 88% of the performance of a DRAM-
only system of the same capacity at 23% of the cost.

Other work has examined how to reduce latency, energy,
and cost of managing the metadata required to locate data in
a large DRAM cache in hybrid main memories [38], [39]. Such
metadata is typically stored in SRAM in traditional CPU cache
architectures. In this work, Meza et al. made the observation
that only a limited amount of data is accessed with high
locality in a large DRAM cache and only a small amount
of metadata needs to be kept to locate data in the cache. By
distributing metadata within the DRAM cache itself (see [38])
and by employing their technique, the authors show similar
performance to storing full cache metadata can be achieved
with smaller storage size.

C. Merging main memory and storage

Emerging NVM memory technologies offer the possibility
of designing systems and applications that can manipulate
persistent data directly in memory, instead of going through
a slow storage interface. In fact, if we keep the traditional
two-level memory/storage model in the presence of these fast
NVM devices as part of storage, the operating system and file
system code for locating, moving, and translating persistent
data from the non-volatile NVM devices to volatile DRAM
becomes a great bottleneck.

Meza et al. [40] show that operating system and file system
code causes most of the memory energy consumption and
degrade performance by an order of magnitude in some data-
intensive workloads. To avoid such overhead, they propose
a persistent memory manager. It consists of a hardware ac-
celeration unit that coordinates and unifies memory/storage
management in a single address space that spans potentially
multiple different memory technologies (DRAM, NVM, flash)
via hardware/software cooperation.

Another related challenge includes the design of system
resources that can concurrently handle applications/access-
patterns that manipulate persistent data as well as those that
manipulate non-persistent data. For example, Zhao et al. [41]
address the problem of designing effective memory schedul-
ing policies in the presence of these two different types of
applications/access-patterns.

IIT1. DESIGN EXPLORATION FRAMEWORK

We describe the setup of our modeling and evaluation
framework. As mentioned in the introductory section, we com-

bine the gem5 and NVMain tools to carry out our design eval-
uations. The gem5 simulator provides an accurate evaluation
of system performance thanks to its high configurability for
a fine-grained ARM architecture modeling [42] [43]. Its full-
system simulation mode runs unmodified operating systems.
It includes several predefined architecture component models,
e.g., CPU, memory and interconnect. This simulator produces
detailed execution statistics at the micro-architecture level.
NVMain [31] is an architectural-level simulator that enables
to evaluate main memory designs, as illustrated in Figure 2.
It is flexible enough to allow the implementation of various
memory controllers, interconnects and organizations. It is well-
integrated together with the gem5 simulator, which makes it
possible to simulate a variety of main memory technologies in
a system. Among existing micro-architecture simulators that
model NVM-based memory systems in detail, NVMain is
the most advanced one to best of our knowledge. State-of-
the-art simulators like DRAMSim2 [44], DRAMSys [45] and
Ramulator [46] rather focus on DRAM technology modeling.

It is worth-mentioning that the results presented in this paper
are obtained with a full-system cycle-level simulation of the
considered benchmarks and applications. This is considerably
demanding in terms of simulation effort and results for most
experiments in weeks of simulation on a manycore server.
We believe it is necessary to gather relevant insights that
fully take into account the micro-architectural features of the
designed systems. Existing approaches [37] adopts reasonable
simplifications by either simulating workload traces (in place
of the full code) or selecting some representative portions of
an application.

In the sequel, starting from the selected memory technolo-
gies, we briefly describe the considered evaluated multicore
heterogeneous architecture.

A. Evaluated system design

The memory models used in our study are indicated in
Table II. They are designed based on a DDR4 model from
Micron [32], a PCM model defined by Samsung [47] and a
RRAM model defined by Panasonic [48] (see Sections III-A1
and III-A2). While the DDR4 model has been completely de-
rived from the corresponding data-sheet provided by Micron,
the two NVM models have been enhanced according to an in-
depth review of the literature. These models are considered as
inputs by NVMain to estimate delays and energy consumption
of the main memory while executing various workloads.

Table II indicates for each considered memory model the
number of channels, banks, ranks and interface frequencies
used in our evaluations.
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TABLE II: Compared 4GB main memory configurations

Name (Channel, Bank, Rank) Interf. freq. [MHz]
DDR4_Micron [32] 2,4,2) 1333
PCM_Samsung [47] (2,1,2) {400, 1333}

RRAM_Panasonic [48] (2,4,2) {400, 1333}

1) DDR4 Technology Modeling: As a reference for our
study, we consider the DRAM technology used in the Cavium
ThunderX2 compute nodes of the Dibona supercomputer built
by Atos/Bull, within the MontBlanc 3 H2020 European project
(see https://www.montblanc-project.eu/prototypes). This tech-
nology consists of a DDR4 from Micron defined from the
corresponding data-sheet [32]. The bandwidth of the reference
memory module considered for our investigation is around
21.3GB/s according to the data-sheet.

2) NVM Technology Modeling: First of all, we note that
building realistic models of PCM and RRAM technologies
is not a trivial task since only a few prototype designs are
currently available. The design parameters of these prototypes
are hardly available. A few NVM performance and energy
evaluation tools [49] [50] could be considered as an alternative
solution. Unfortunately, they fail to provide the fine-grain
parameter description necessary to main memory modeling.
For all these reasons, we decided to rely our study on the PCM
and RRAM models provided by NVMain. They respectively
result from Samsung [47] and Panasonic [48] specifications,
presented in the International Solid-State Circuits Conference
(ISSCC’2012%), the top venue for presenting the most ad-
vanced memory prototypes. While the latency parameters are
consistent with the designs from Samsung and Panasonic, it
is not the case of the energy parameters.

We, therefore, modified the values of energy parameters in
order to get as close as possible to the featured NVMs. The
detailed parameter values will be found in the appendix of our
initial report [29]. We extrapolated the NVM energy parameter
values according to existing literature on NVM [51] [52] [3].
In particular, we considered the following energy ratios, w.r.t.
the above DDR4 model as the DRAM reference:

e 2.1x and 43.1x more energy-consuming for read and write
on PCM respectively;

e 1.2x and 23.7x more energy-consuming for read and write
on RRAM respectively.

On the one hand, the above ratios considered for PCM result
from [51] in which authors carried out an exhaustive analysis
of a number of PCM prototypes proposed in literature from
2003 to 2008. We assume these ratios remain relevant enough
for the Samsung PCM model proposed in 2012 and integrated
within NVMain. Note that these ratios may have been reduced
today with recent advances in PCM.

4To the best of our knowledge, these are the most complete models
publically available for NVM evaluation at main memory level. In addition,
the recent trends about NVMs observed in the literature suggest that the
relative comparison between these technologies has not changed.

It is worth-mentioning that since 2012, state-of-the-art on NVM
technologies has noticeably evolved. Therefore, the ISSCC’2012 models
considered in the current study should be considered as a pessimistic
approximation basis, meaning that nowadays NVM designs might enable
further gains.

On the other hand, the ratios concerning the RRAM have
been chosen empirically from the trends found in NVM-related
literature [52] [3], which suggests that RRAM has bit-level
dynamic energy that is comparable to DRAM. However, in
terms of latency, writes are several times slower than reads.
So, we assume that the write energy on RRAM is notably
higher compared to DRAM, while it remains lower than for
PCM. In fact, the recent trends about RRAM suggest that this
technology has at least the same energy cost in read compared
to DRAM, while the gap in write energy is getting reduced
between the two technologies. Therefore, the value ratios
chosen above can be seen as an upper-bound approximation
that allows us to conduct a conservative analysis in the rest of
this document. In other words, there exists a probable margin
for improving the quantified gains reported in this work.

The maximum write bandwidths originally specified by the
authors of the previous NVM models are 40MB/s for a 8Gb
PCM [47] and 443MB/s for a 8Mb RRAM [48]. In the present
work, an identical number of devices is used for both NVM
and DDR4 models: 8 devices. Moreover, 256-bits and 512-bits
row buffers are respectively considered for PCM and RRAM
models. More details about the other parameters of considered
memory architectures will be found in the appendix of [29].
Given this setup, we observed that the write bandwidths of
the PCM and RRAM models can reach up to 400MB/s and
1500MB/s respectively, when running an application like the
High Performance Conjugate Gradient (HPCCG) [6].

3) Heterogeneous multicore architecture: We consider the
Exynos 7420 ARMvS chip embedded in the Exsom board [53]
for modeling our simulated architecture in gemS5. This chip
relies on the big. LITTLE technology proposed by ARM. Table
III summarizes the main parameters of the architecture.

For the sake of convenience, in the remainder of this paper,
we rely on the aforementioned 8-cores ARMvS multicore
architecture as a simple instance of larger scale ARMv8 high-
performance compute nodes. This enables a reasonable gem5-
NVMain co-simulation cost in the conducted experiments
while still enabling to stress the memory subsystem. To give
an idea of the overall complexity related to the experiments
carried out in our current study, gem5-NVMain co-simulations
have been run on a private 64 cores local server for about two
months.

B. Setup validation

As a preliminary evaluation, we focus on intrinsic properties
of the modeled main memories: access latency and idle power
consumption. We aim at assessing the soundness of the base
memory models decided in Section III.

Given the accepted relative modeling of the NVMs energy
parameters (i.e. ratios w.r.t. DRAM energy) described in
Section III-A2, we decided to present all our design evaluation
results in the form of normalized metrics, with DDR4 as the
reference for comparison. We believe absolute metric values
are less relevant here. In fact, the adoption of normalized
performance metrics is a standard practice in NVM-based
literature for unbiased analysis [37] [33] [34] [35] [36] [40]
because of the frequent relative modeling of their parameters.
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TABLE III: Exynos 7 Octa (7420) SoCs characteristics and corresponding gem5 models

Exynos 7 Octa (7420) ex7 gem5 model
Cortex-AS53 Cortex-A57 .
Parameters | ARMyS ISA | ARMy§ ISA | X/-LITTLE ex7 b
(in-order) (out-of-order) (in-order) (out-of-order)
Max. core count 4 4 4 4
Frequency 1.4GHz 2.1GHz 1.5GHz 2.1GHz
Size 32kB 48kB 32kB 48kB
LII Assoc. 2 3 2 3
Latency 3 3 3 3
Size 32kB 32kB 32kB 32kB
LID Assoc. 4 2 4 2
Latency 3 3 3 3
Size 256kB 2MB 256kB 2MB
L2 Assoc. 16 16 16 16
Latency 12 16 12 16
Interconnect CCI-400 XBAR - 256 bus width @533MHz
Memory 4GB DDR4@1333MHz, 2 channels see Table II
Memory bus width 64 64
Technology 14nm FinFET -

1) Memory Latency: We consider the Imbench benchmark
suite [54] to assess the read latency of each memory tech-
nology. In particular, we use the lat_mem_rd benchmark to
measure the memory hierarchy latency when using a DDR4,
PCM and RRAM in main memory. Note that the L1 and L2
caches are both in SRAM. Basically, the memory hierarchy
latency is computed by repeatedly accessing contiguous data
structures of increasing sizes, given a particular value of
memory stride length. In our experiments, we consider a stride
length of 4kB. The result of these repetitive computations are
variations in memory access latency, according to its hierarchy
levels: L1 cache, L2 cache, and main memory.
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Fig. 4: Idle memory energy consumption.

As expected, Micron’s DDR4 model offers a better memory
latency compared to both RRAM and PCM. Their respective
main memory latencies are nearby 69 nsec, 383 nsec, and 813
nsec. In other words, read accesses in the considered DDR4
model are respectively 5.5 and 11.7 times faster in comparison
with RRAM and PCM respectively.

Comparing these results w.r.t. the tendencies usually found

setup.
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Fig. 3: Memory latency with various technologies.

The result provided by lat_mem_rd is reported in Figure 3
(here, the plotted latency values follow a logarithmic scale).
The X-axis, denoted as ”Array Size”, represents the memory
object sizes (in kB) for which the read latencies (in ns)
are determined by the benchmark. The benchmark has been
executed while using a single LITTLE core with 32kB L1
cache, 256kB L2 cache, and 4GB main memory. The memory
interface frequency (i.e., the I/O bus clock) of the DDR4
memory model is 1333MHz, while the memory interface
frequencies of PCM and RRAM are set to 400MHz according
to the initial configuration inherited from NVMain original

in the literature (see Table I), we observe that the device-
level slowdown of PCM in read latency compared to RRAM
and DRAM is confirmed. However, this is not the case for
RRAM compared to DRAM: while the read latencies of the
two memory technologies are similar at device level, it is not
the case at memory system level. Indeed, read accesses with
DDR4 are faster than with RRAM.

2) Idle Memory Power Consumption: An substantial ad-
vantage of NVMs is that they do not require any data refresh
mechanism thanks to their non-volatile nature. It is not the
case of DRAM, which can consume a non-negligible amount
of energy due to refresh process and background power. The
refresh process periodically reads data from a memory area
and immediately rewrites the data to the same area, while the
background power is due to the peripheral logic.

Given the anticipated significance of the refresh and back-
ground energy consumption for DRAM, we assess its impact
compared to the considered RRAM and PCM memory models.
For this purpose, we evaluate several scenarios with little-to-
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no access in main memory, i.e., no read, no write. In Figure
4, we report the energy of a quasi-idle 4GB main memory for
modified durations, varying from 1 second to 30 seconds. This
is achieved in gem5 by executing the “sleep” system call with
different input delay values in seconds. The reported values
enable us to analyze the impact of the overhead related to the
background power and the refresh mechanism on the DDR4
memory energy consumption.

The total energy consumption computed by NVMain con-
sists of the sum of four components: background energy,
refresh energy, activate energy and burst energy. These param-
eters are automatically produced among the output statistics
of NVMain after each simulation. This enables a fine-grain
analysis of the energy breakdown. In all experiments shown
in Figure 4, we observe that with the DDR4 the energy
consumption of the main memory grows significantly with
bigger input delays, due to the background and refresh energy
components (negligible in NVMs). On the contrary, only a
marginal energy increase is observed with RRAM and PCM.
This shows the potential energy saving opportunity offered
by NVMs for execution scenarios where the main memory
is under-used. NVMain essentially provides two device-level
energy models: current-mode and energy-mode [31]. Each
mode relies on a specific power estimation strategy. The
current-mode uses IDD values for power calculation (as in
standard DRAM simulators) and applies to DRAM systems.
The energy-mode exploits energy estimations resulting from
circuit-level simulators like NVSim [49] or CACTI [55]. Each
memory operation increments the system energy usage, while
standby and powerdown energies are computed from simulated
leakage values. In our experiments, the current-mode is used
for DDR4. The energy-mode is selected for the two NVM
models.
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Fig. 5: Idle main memory energy: 4GB versus 32GB

When increasing the size of the main memory, NVMs
further mitigate energy consumption. This is illustrated in
Figure 5, where the size of the main memory is increased from
4GB to 32GB while keeping unchanged the other memory
parameters. The reported results concern an execution of the
”sleep” system call for 15 seconds.

The above preliminary evaluation of the NVM models
regarding their latency and energy consumption is in line
with the existing observation from literature: refresh and
background energy consumption has an important impact on
the global energy consumption of advanced DRAM-based
memories [15]. This suggests the considered PCM and RRAM

models are relevant enough to be used for further investiga-
tions.

In particular, provided these results, we can quantify the
latency gap between the considered NVM technologies w.r.t.
a typical DDR4 model when integrated into main memory.
Note that the read latencies have been determined by using a
benchmark designed for this specific purpose within the stream
benchmark set. It will be interesting to evaluate the impact of
NVMs application-wise.

IV. ASSESSMENT ON TYPICAL APPLICATIONS

We consider the Parsec benchmark set for evaluating the
impact of the PCM and RRAM models, compared to the
Micron DDR4 model, within a 4GB main memory model.
The applications provided within Parsec provide evaluation
scenarios that are more representative of applications.

A. Evaluation Parsec benchmarks

1) Selected benchmarks: For the sake of simplicity, we
consider three categories of applications, each featured by
one representative workload from Parsec: blackscholes, dedup
and swaptions. The dedup workload is mainly memory-bound
benchmark, particularly with a high number of read transac-
tions in the memory. It is dedicated to the definition of high
data stream compression ratios. The blackscholes workload
is mainly compute-intensive, with marginal memory accesses
compared to the two others. It expresses an analytical price
calculation based on the Black-Scholes partial differential
equation. Finally, the swaptions workload shows intermediate
memory access properties compared to the previous two. It
applies Monte Carlo simulation to compute prices.

These workloads are selected based on a previous charac-
terization described in [56]. Their corresponding properties in
terms of memory access and computation load are summa-
rized in Table IV. The reported values denote in billion the
number of floating-point operations (FLOPs), read and write
instructions.

In the rest of the document, we, therefore, consider blacksc-
holes, dedup, and swaptions as the respective representatives
of low memory access, high memory access, and moderate
memory access applications.

TABLE IV: Breakdown of benchmark in billion instructions
[56]

Benchmarks | 10° FLOPs | 10° Reads | 10° Writes
blackscholes 1.14 0.68 0.19
dedup 0 11.71 3.13
swaptions 2.62 5.08 1.16

To confirm the memory access properties of the above three
workloads with medium input sets’, we run them by consid-
ering the same system setup as described in Section III-BI.
The resulting profiles in terms of read and write bandwidths

5The breakdown shown in Table IV considers large input sets run on a real
computer. At this point, it is utilized as an initial criterion for benchmarks
selection w.r.t. their characteristics. In our experiments, we use rather medium
input sets because it is more tractable with gem5 in term of simulation time.
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Fig. 6: DDR4 Read/Write bandwidth for 3 benchmarks

for each of the workloads are illustrated in Figure 6. They
are compliant with the read/write volumes characterized in
[56]. Indeed the read/write bandwidth thresholds obtained with
dedup and swaptions globally dominate that of blackscholes
since they perform more memory accesses than blackscholes.
This is distinctly visible for dedup, which has the highest
memory activity in terms of both read and write transactions,
among the three benchmarks.

We notice that only a small fraction of the memory band-
width is used by the three benchmarks (i.e., far from memory
bandwidth saturation, which is around 21.3GB/s according to
the reference data-sheet [32]).

2) Evaluation results: Now, let us consider the execution
of the three workloads by varying the memory technology in

main memory as in the previous section, i.e., DDR4, RRAM,
and PCM. Medium input sets are used for the experiments.
Figure 7 reports the different results. More precisely, the
execution time and the main memory energy consumption are
illustrated.

On the one hand, in Figure 7a, we observe that the
maximum execution slowdown between DDR4 and PCM is
about 7.2x. Between DDR4 and RRAM it is only about 1.7x.
These slowdown factors of NVMs over DDR4 are obtained
with the dedup memory-intensive workload. The high write-
induced cost of NVMs, especially with PCM, exacerbates
the slowdown compared to DDR4 as observed with dedup
which contains more writes. Nonetheless, we can interestingly
observe the above slowdown factors of NVMs are respectively
smaller than the previous 11.7x and 5.5x memory latency gap
obtained with the lar-mem_rd benchmark (see Figure 3). This
suggests that the detrimental impact of the intrinsic higher
memory latencies of NVMs compared to DRAM, is limited
application-wise on corresponding execution times, even for a
memory-intensive workload. For application workloads with
low and moderate memory accesses, the slowdown ratios
between DDR4 and NVM based scenarios are further reduced.
It is the case of blackscholes and swaptions in Figure 7a.

The important overhead in execution time observed for
dedup and swaptions, while using PCM in main memory, is
mostly due to the write transactions. Since write latency with
PCM is higher than with RRAM (see Table I), this exacerbates
the gap between the execution times resulting in the two NVM
technologies. The overhead in execution time observed for the
swaptions workload compared to the blackscholes workload
mainly comes from the higher number of read transactions
in the former. For yet undetermined reason we observe that
for the blackscholes workload, the PCM model unexpectedly
yields a faster execution time compared to RRAM. A possible
explanation lies in the cache replacement policy that for this
particular benchmark may be counter-productive, performing
(unadequate) replacements faster with DDR4 and RRAM that
in turn result in higher cache miss rate.

On the other hand, the energy consumption of the main
memory with NVMs is always smaller than with DDR4, no
matter the workload type (see Figure 7b). Of course, the
energy gap observed application-wise is more important than
with the ’Idle Memory” scenario described formerly in Figure
4, due to the dynamic activity of the memory. To appreciate
the global benefit of NVM integration in main memory, let
us consider the Energy-Delay-Product (EDP) from the main
memory perspective only. The EDP is calculated as the product
of the workload execution time and the energy consumed by
the main memory during the execution time. The aim is to
assess the global benefit of each design alternative. Figure
7c shows the normalized EDP of all memory configurations,
according to the three representative workloads. One can see
that NVMs always provide better EDP than DDR4, except for
one scenario: when dedup is executed while the main memory
is in PCM. In other words, for memory-intensive applications,
the energy reduction enabled by the PCM technology cannot
be compensated by its higher device-level read/write latencies.
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B. Evaluation on Typical HPC workloads

1) Memory-bound benchmarks: We further evaluate NVM
integration in main memory by considering the so-called
MontBlanc benchmarks [57], which are representative of HPC
workloads. We select four memory-bound benchmarks that
feature various memory accesses and computational require-
ments. The 3D Stencil (3dstc) benchmark, which takes as
input a 3D volume and produces an output 3D volume of the
identical size. It is a memory-bound benchmark that features
stridden memory accesses. The N-Body (nbody) benchmark
requires a number of input parameters including a number of
bodies including their position, mass, and initial velocity. Next,
it updates these parameters based on gravitational interference
between bodies. It features irregular memory accesses. The
Sparse Vector-Matrix Multiplication (spvm) computes a vector
resulting from the product of its input vector and sparse
matrix. It features computational behaviors with potential
load imbalance. Finally, Vector Operation (vecop) computes
a vector resulting from an element-wise addition of two input
vectors. It captures intensive regular computational behaviors.
Note that vector-matrix multiplication and vector addition are
memory-bound algorithms [58].
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Fig. 8: Normalized exec. time and main memory energy of
selected Montblanc benchmarks [57]

The execution time and memory energy consumption ob-
tained when executing the above HPC benchmarks are shown
in Figure 8. Here, an interesting insight concerns the main
memory energy consumption. Unlike with dedup which has
many memory accesses, NVMs lead to worse global memory
energy consumption with the 3dstc and vecop benchmarks.
However, for the n-body and spvm benchmarks, NVMs and
especially RRAM, significantly improve memory energy con-
sumption, so that the corresponding EDP remains better than
that obtained with DDR4.

The above results motivate the need of design solutions such
as hybrid DRAM-NVM main memory designs (see Section
I). Such designs are capable of adjusting the choice of the
suitable memory target according to the energy outcome of
given memory-bound workloads. This will enable to mitigate
the energy penalty.

2) Representative mini-applications: Now, we evaluate
the impact of designed system models on two HPC mini-
applications that can be simulated in a reasonable time.

The Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics (Lulesh) mini-application [59] encodes a discrete
approximation of the hydrodynamics equations. It partitions
the spatial problem domain into a collection of volumetric
elements defined by a mesh. It presents high instruction-
level and memory-level parallelism with bursts of independent
memory accesses. We consider its implementation in OpenMP.

The High-Performance Conjugate Gradient (HPCG) mini-
application [6] for a 3D chimney domain on an arbitrary
number of processors. It has been devised with the aim of
providing a metric for assessing HPC systems. It enables to
exercise computational and data access patterns, which feature
a range of applications. HPCG shares a similar goal as the
popular High-Performance LINPACK (HPL) benchmark [60].
The HPCCG 1.0 OpenMP implementation is considered in the
evaluation presented below. It includes three main computation
kernels called waxpby (sum of two scaled vectors), ddot (dot
product of two vectors) and sparsemv (sparse matrix vector
product). Its three input parameters nx, ny and nz denote the
number of nodes in the 3D dimensional domain. Here, it will
be executed on 8-cores big.LITTLE architecture.

Analysis of execution outputs. The output corresponding
to 8-threads execution of Lulesh with the previous three
main memory configurations (DDR4, RRAM, and PCM) is
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summarized in Table V. The main performance measurements
reported by the Lulesh application are summarized. Elapsed
time denotes how much time it takes to perform the simulation.
Grind time denotes the time it takes to update a single zone
for one iteration of the time-step loop. Lower values of
this measure mean better performance. The Lulesh Figure-
Of-Merit (FOM) provides the number of updated zones per
second. These results are obtained by considering as inputs:
a problem size of 153 per domain until completion, while the
total number of elements is 3375.

TABLE V: Lulesh execution statistics w.r.t. selected memory
technologies

DDR4 | RRAM PCM

Elapsed time (s) 2.54 2.51 6.04
Grind time (us / z / ¢) 1.88 1.86 A47
FOM (z / s) 531.08 | 536.82 | 223.45

The performance numbers obtained upon executing HPCCG
with three main memory configurations are summarized in Ta-
ble VI. As expected, the configuration with DDR4 provides the
best performance in terms of mega floating point operations
per second (MFLOPS). The performance degradation induced
by RRAM is very limited compared to PCM. This is due to
their respective high memory access latencies. These results,
obtained after 149 iterations, correspond to a parallel execution
of 8 OpenMP threads, where the input parameters (nz, ny, nz)
equal (104, 104, 104).

TABLE VI: HPCCG execution statistics w.r.t. selected mem-
ory technologies

DDR4 | RRAM | PCM
DDOT 3.67 472 | 14.08
Time (s) WAXPBY 14.94 11.48 | 70.34
SPARSEMV | 41.27 59.78 | 218.28
Total 59.95 76.04 | 302.82
DDOT 182.37 | 141.79 | 47.60
Performance | WAXPBY 67.31 87.56 | 14.29
(MFLOPS) SPARSEMYV | 219.27 | 151.39 | 41.46
Total 17891 | 141.05 | 3542

From these results, the DDR4 and RRAM configurations
lead to almost similar performance results with respectively
531.08 and 536.82 z/s FOM values (RRAM even slightly
outperforms DDR4). They are far better than with the PCM
configuration, which has penalizing memory access latency.

Analysis of memory activity, We focus on the main
memory activity for the previous two mini-applications in
order to analyze the implication of the different memory
technologies w.r.t. the performance results described above.
Figure 9 presents the main memory read/write bandwidths for
the various technologies.

Overall, the Lulesh mini-application exhibits lower band-
width thresholds (both for read and write) than HPCCG.
Therefore, the performance penalty is expected to be more
visible with the latter. This explains why the gap in execution
times between DDR4 configuration and NVM configurations
is more important for HPCCG, e.g., more than four times
when comparing DDR4 and PCM (see Figure 10b). This gap
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Fig. 9: Main memory Read/Write bandwidth for DDR4

remains below 2.5x for these technologies when considering
Lulesh (see Figure 10a). Note that for both mini-applications,
the RRAM technology provides comparable execution time
than DDR4.

The main memory energy consumption shown in Figure 10
for both mini-applications shows that NVMs always provide
improvements compared DDR4, despite their possible perfor-
mance penalty. Nevertheless, when considering the Energy-
Delay-Product (EDP) figure-of-merit, PCM never appears as
efficient as DDR4 because of the high performance degrada-
tion it induces. This is not the case of RRAM, which provides
a better EDP than the DDR4 configuration, whatever the mini-
application.

V. ANALYSIS OF A FEW MEMORY DESIGN CHOICES

The results presented in Section IV show that NVMs can
improve the energy-efficiency for typical high-performance
workloads. Now, we explore a few design parameters that
might have an influence on the efficient integration of NVMs
in the SoC reference design introduced in Figure 1. In Sec-
tion III-B, our previous experiments, we evaluated the read
latency of main memory by configuring the memory interface
frequency of DDR4 to 1333MHz, while the memory interface
frequencies of both PCM and RRAM is set to 400MHz (see
Section III-B1). An interesting direction is to explore the
possibility of upscaling the memory interface frequency of
NVMs so as to reduce their latency gap as observed previously.
Another direction concerns the number of memory channels
(see Figure 2).
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A. Memory Interface Frequency

We consider a new design setup, which assumes the same
memory interface frequency level for all three memory types.
In other words, the interface frequency of the main memory
in NVM is set to 1333MHz, similarly to DDR4. All other
main memory parameters are kept unchanged, e.g., size, banks,
ranks, etc. The lat_mem_rd benchmark is executed using
a single LITTLE core according to the associated memory
hierarchy (see Table III), i.e. 32kB L1 cache, 256kB L2 cache
and 4GB main memory.

Figure 11 reports the obtained read latency values (accord-
ing to a logarithmic scale). The average latencies for RRAM
and PCM are respectively 116 nsec and 265 nsec, while that of
the DDR4 model is unchanged, i.e. 69 nsec. This represents a
latency gap reduction from x5.5 to x1.7 for RRAM compared
to DDR4 and from x11.7 to x3.8 for PCM compared to DDR4.
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Fig. 11: Memory latency with different technologies

In the case of the RRAM technology, we notice that the
saturation array size of the L1 cache is slightly delayed

compared to the other technologies. This is unexpected since
the L1 and L2 caches have similar characteristics in all three
cases, i.e., in SRAM and with same sizes. This is a side-effect
of the prefetching mechanism and/or cache replacement policy.

Assuming that upcoming NVM technologies could support
higher memory interface frequency ranges, we believe this
frequency upscaling is a potential optimization parameter for
mitigating the impact of NVM latency overhead on application
execution time.

B. Number of Channels

Now, we evaluate the impact of the channel count in the
main memory architecture. In the previous memory design sce-
narios, we only considered two channel memory technologies.
More generally, memory architectures with multiple channels
aim at increasing the data transfer rate between the memory
and its associated controller by multiplying the number of
communication channels between them. Since memory chan-
nels are expensive resources, the number of memory channels
is a design-decision that is heavily influenced by the targeted
market. The subsequent evaluation is conducted within the
framework of the MontBlanc3 European project which aims
at developing an ARMv8-based pre-exascale supercomputer.
Because of that the actual cost is less of an issue compared
to a mobile market: the current prototype, named Dibona and
based on Marvell ThunderX2 CPUs, has been devised by the
Atos Company and includes 8 DDR4 channels per socket.

Figure 12 summarizes the memory latency evaluation for
different multi-channel memory architectures. The number of
channels is varied from 2 to 8 for NVMs, while the reference
DDR4 memory architecture is kept unchanged with 2 chan-
nels. Figure 12a shows the potential improvement achieved
for the RRAM technology with architectures including either
4 or 8 channels. The latency gap of RRAM technology
is decreased up to x1.1 compared to the baseline DDR4
technology, i.e., almost equivalent latencies. When considering
the PCM technology, the latency gap w.r.t. DDR4 is reduced
up to x2.6, which is also quite relevant. To minimize the
cost of the memory system, selecting 4 channels instead of
8 represents a satisfactory compromise for NVM integration.

Multi-channel memory architectures, therefore, provide an
interesting opportunity for mitigating the latency overhead
of NVMs. While the latency improvement enabled here is
higher than that obtained through memory interface frequency
upscaling, both opportunities could be combined for further
gains.

C. NVM-specific Memory Controllers?

Another design question regarding the successful integration
of NVMs in computer systems concerns adequate control
mechanisms at the hardware level. Indeed, memory controllers
play a central role in data allocation and movement within the
main memory for meeting the low latency, high throughput,
and optimized energy requirements.

In the present study, all experiments have been achieved
by considering the controller configuration given by default
in NVMaim models: FRFCFS controller for both DDR4 and
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Fig. 12: Comparison of NVM memory system latencies with
2, 4 and 8 channels versus the reference DDR4 configuration
(zoom from L2 cache to main memory)

RRAM, and FRFCFS-WQF controller for PCM. This leaves
room for further design optimizations since the memory ac-
cesses have variable costs depending on the selected controller.
Typically, the average main memory latency of PCM can be
reduced by 16% by selecting the FRFCFS controller instead of
FRFCFS-WQF. Furthermore, the row buffer design inside the
controller could take into account the different latencies of hits
and misses depending on the memory technology: DRAM and
PCM are known to have similar row buffer hit latency, while
the row buffer miss latency is larger for PCM due to their
related higher array access latency [11].

The aforementioned controller design should exploit the het-
erogeneous/homogeneous nature of the main memory. Some
existing work already addressed the case of hybrid DRAM-
NVM main memory design, where row buffer locality-aware
data placement policies are proposed [61]. For instance, the au-
thors observed that streaming data accesses are PCM-friendly,
while other data accesses (with reuse) are rather DRAM-
friendly for data placement. In the case of main memory
integrating only NVM, as evaluated in the present work, the
design of the memory controller is an open question that
remains to be addressed. We believe that revisiting the design
principle of such a mechanism can improve the benefits of
NVM integration by taking their specificity into account.

VI. GAINED INSIGHTS FOR SOC INTEGRATION

From all the previous experimental results, we draw more
concretely the envisioned most favorable NVM integration in
the memory hierarchy beyond cache levels. We briefly address
the programmability issue of compute nodes in presence of
NVMs in main memory.

A. General observations

Our experiments show that NVM can relevantly improve the
main memory energy consumption, at the expense of limited
penalty on performance. The announced cost-effectiveness® of
these emerging memory technologies compared to concurrent
technologies, such as DRAM and NAND Flash, makes this
perspective credible. Given a relative cost per bit of 1 for
DRAM, it is around 0.25 for PCM and RRAM [37].

The perspective of their integration in future SoCs is par-
ticularly promising with the RRAM technology, while PCM
may incur non-negligible performance degradation. The PCM
technology rather appears as an in-between good candidate
w.r.t. faster main memories and slower storage-class memories
(this observation additionally holds for the recent 3D XPoint
technology from Intel and Micron [26]. It is worth-mentioning
that NVMain only enables to model and evaluate main mem-
ory level technology integration. Dealing with storage level
integration would require new simulation tools. Figure 13
summarizes this idea.
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Disk

(registers)

Storage
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Fig. 13: Memory technologies within memory hierarchy.

Note that our study does not consider alternative NVM
integration approaches, such as hybrid memory design as
addressed widely in existing literature [11]. These approaches
are a complementary solution that may have an impact on the
way NVM integration is seen through the memory hierarchy
depicted in Figure 13.

Actually, the joint emergence of HBM and NVM technolo-
gies will likely lead to revisit the junction between memory
hierarchy and storage as we know it in today’s systems.
Indeed, why would designers keep on considering the DRAM
technology for main memory, while NVM could provide all
the necessary memory capacity? On the other hand, why would
industry keep on deploying chips with hard drive supports
while NVM controllers could help to fill this demand? Remov-
ing all unnecessary design features has been always the point
for the design of optimized ARM-based HPC SoCs to save
power and increase the system energy-efficiency. Therefore,
for high-end server capability such as in HPC domain, a new

Shttps://www.computerworld.com/article/3194147/data-storage/faq-3d-
xpoint-memory-nand-flash-killer-or-dram-replacement.html
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memory design trade-off is definitely to be found between
DRAM, NVMs and SATA connection in the near future.

B. Impact on programming models

Beyond the above architectural design considerations, the
integration of NVMs in multicore SoCs calls for reconsidering
the entire system design stack. This concerns in particular the
impact on programming models and system software. In order
to anticipate this issue, we evaluate two parallel programming
models through different versions of the same application
while having NVMs in main memory. These programming
models are supposed to involve different memory activities
according to their associated runtime management systems.

We consider the OpenMP version 2.3 and OmpSs program-
ming models. OpenMP’ is a popular shared-memory parallel
programming interface. The OpenMP version 2.3 (in which
our benchmarks and mini-applications are implemented) fea-
tures a thread-based fork-join task allocation model as illus-
trated in Figure 14a. It consists of a set of compiler directives,
library routines and environment variables for the development
of parallel applications. OmpSs [62] is a task-based program-
ming model (see Figure 14b) that improves OpenMP with
support for irregular and asynchronous parallelism, and for
heterogeneous architectures. It incorporates dataflow concepts
enabling its compiler/runtime to automatically move data
whenever necessary and to apply various useful optimizations.

(a) OpenMP (b) OmpSs

Fig. 14: OpenMP fork-join region vs OmpSs task graph

The Nanos++ runtime used with OmpSs enables an
asymmetry-conscious task scheduling [63]. It incorporates
Criticality-Aware Task Scheduler (CATS) scheduling policy
CATS, which exploits the criticality of generated tasks to
schedule them during execution. The most critical tasks, i.e.,
those appearing on the critical execution path, are executed by
the high-frequency cores. Typically, such tasks are represented
in red color in Figure 14b. Less critical tasks are executed on
low-power cores. These tasks are denoted by green color in
Figure 14b.

To compare both programming models, we consider two
corresponding versions of the HPCCG mini-application. We
observe that the OmpSs version of HPCCG provides better
performance than the OpenMP version. This is mainly due
to the CATS scheduler of the former. On the other hand, the
read/write bandwidth obtained with OmpSs version, shown

7https://www.openmp.org

in Figure 15, is significantly higher than that of OpenMP
version (see Figure 9). For instance, the read bandwidth is
improved by about 4x, 3x and 1.8x for DDR4, RRAM, and
PCM respectively. However, the write bandwidth is improved
merely marginally.
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Fig. 15: Main memory bandwidth for OmpSs version of

HPCCG with DDR4.

The impact of this improvement is illustrated in Figure 16.
The execution time and main memory energy consumption are
compared separately for each memory technology, according
to the two programming models for HPCCG. The OmpSs run-
time enables to reduce by more than 50% the execution time of
the OpenMP version for all three memory technologies. This
is in-line with our previous observations when comparing both
programming models [64]. It additionally allows a reduction of
energy consumption, by 60% for DDR4 and by 20% for PCM.
However, it marginally increases the energy consumption for
RRAM (around 2%). This is due to the notable increase in
write bandwidth enabled by OmpSs scheduler, specifically for
RRAM. Writes on NVMs are very expensive operations both
in latency and energy consumption.

VII. CONCLUDING REMARKS

In this paper, we evaluated two relevant emerging NVM
technologies at the main memory level, to analyze their impact
on both system performance and main memory energy. Key
motivation is to quantify as much as possible the impact of
NVMs in explored design scenarios. Starting from the PCM
and RRAM model templates provided by the NVMain simula-
tion framework, we enhanced them through some extrapolation
relying on existing literature. The NVM integration has been
evaluated with the gem5 cycle-approximate simulator while
considering a heterogeneous ARMv8 multicore system model
(such systems are envisioned as good candidates for compute
node design in HPC domain [2]). A subset of representative
Parsec benchmarks and two typical mini-applications from
HPC domain have been used as evaluation workloads.

Our experiments showed RRAM represents a very good
candidate for energy issue mitigation at the main memory
level, while PCM would be a better candidate for storage
level. RRAM is competitive enough compared to DDR4 from
the viewpoint of system-level performance. Most importantly,
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Fig. 16: Separate comparison per memory technology for
HPCCG mini-application: OpenMP vs OmpSs

it enables a reduction of main memory energy consumption
by up to 50%. While PCM does not offer such benefits at
the main memory level, it could be a more suitable candidate
for storage level. Currently, at storage level solutions for the
server market are mostly implementing SSD drives: through
CPU SATA features or through PClIe devices for NVMe disks.
PCM appears a viable alternative for high-performance storage
as well as for high-performance computing. Nonetheless, to
sustain this gain expected from emerging NVMs, complemen-
tary mechanisms (e.g., targeting wear-leveling) or technology
improvements regarding write endurance will be helpful. Some
candidate solutions already exist [23].

It is worth-mentioning that the experiments conducted in
this study rely on NVM models published in 2012 by Samsung
and Panasonic. This decision was motivated by the high-level
of confidence on these published results. These rather old
models can be seen as conservative approximations of these
technologies and their potential: the state-of-the-art on NVM
technologies has notably improved over the last years and
the gains observed in this study might get better as NVM
technologies progress.
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