Attentive Conversation Modeling for Emotion Detection and Classification - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2019

Attentive Conversation Modeling for Emotion Detection and Classification

Waleed Ragheb
Jérôme Azé
Sandra Bringay

Résumé

This paper addresses the problem of modeling textual conversations and detecting emotions. Our proposed model makes use of 1) deep transfer learning rather than the classical shallow methods of word embedding; 2) self-attention mechanisms to focus on the most important parts of the texts and 3) turn-based conversational modeling for classifying the emotions. Our model was evaluated on the data provided by the SemEval-2019 shared task on contextual emotion detection in text. The model shows very competitive results.
Fichier principal
Vignette du fichier
semeval2019-proceedings.pdf (497.87 Ko) Télécharger le fichier
Loading...

Dates et versions

lirmm-02145395 , version 1 (02-06-2019)

Identifiants

  • HAL Id : lirmm-02145395 , version 1

Citer

Waleed Ragheb, Jérôme Azé, Sandra Bringay, Maximilien Servajean. Attentive Conversation Modeling for Emotion Detection and Classification. SemEval 2019 - 13th International Workshop on Semantic Evaluation in NAACL-HLT, Jun 2019, Minneapolis, MN, United States. pp.251-255. ⟨lirmm-02145395⟩
219 Consultations
313 Téléchargements

Partager

More