D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate, International Conference on Learning Representations (ICLR), 2014.

H. Boubenna and D. Lee, Image-based emotion recognition using evolutionary algorithms, Biologically Inspired Cognitive Architectures, vol.24, pp.70-76, 2018.

F. Calefato, F. Lanubile, and N. Novielli, Emotxt: A toolkit for emotion recognition from text, 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp.79-80, 2017.

A. Chatterjee, U. Gupta, M. Kumar-chinnakotla, R. Srikanth, M. Galley et al., Understanding emotions in text using deep learning and big data, Computers in Human Behavior, vol.93, pp.309-317, 2019.

A. Chatterjee, K. Nath-narahari, M. Joshi, and P. Agrawal, Semeval-2019 task 3: Emocontext: Contextual emotion detection in text, Proceedings of The 13th International Workshop on Semantic Evaluation, 2019.

T. Dozat and C. D. Manning, Deep biaffine attention for neural dependency parsing, 2017.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

J. Howard and S. Ruder, Universal language model fine-tuning for text classification, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol.1, pp.328-339, 2018.

R. Jenke, A. Peer, and M. Buss, Feature extraction and selection for emotion recognition from eeg, IEEE Transactions on Affective Computing, vol.5, issue.3, pp.327-339, 2014.

M. Krakovsky, Artificial (emotional) intelligence, Commun. ACM, vol.61, issue.4, pp.18-19, 2018.

H. Larochelle and G. E. Hinton, Learning to combine foveal glimpses with a third-order boltzmann machine, Advances in Neural Information Processing Systems, vol.23, pp.1243-1251, 2010.

Y. Ma, H. Peng, and E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive lstm, Association for the Advancement of Artificial Intelligence, 2018.

N. Majumder, S. Poria, D. Hazarika, R. Mihalcea, A. F. Gelbukh et al., Dialoguernn: An attentive rnn for emotion detection in conversations. CoRR, Association for the Advancement of Artificial Intelligence, 2018.

S. Merity, N. Shirish-keskar, and R. Socher, Regularizing and optimizing LSTM language models, International Conference on Learning Representations (ICLR), 2018.

S. Merity, C. Xiong, J. Bradbury, and R. Socher, Pointer sentinel mixture models, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., Attention is all you need, Advances in Neural Information Processing Systems, vol.30, pp.5998-6008, 2017.

L. Wan, M. Zeiler, S. Zhang, Y. Le-cun, and R. Fergus, Regularization of neural networks using dropconnect, Proceedings of the 30th International Conference on Machine Learning, vol.28, pp.1058-1066, 2013.

T. Young, D. Hazarika, S. Poria, and E. Cambria, Recent trends in deep learning based natural language processing, 2018.

, IEEE Computational Intelligence Magazine, vol.13, pp.55-75

H. Zhou, M. Huang, T. Zhang, X. Zhu, and B. Liu, Emotional chatting machine: Emotional conversation generation with internal and external memory, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), pp.730-739, 2018.