
HAL Id: lirmm-02148499
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02148499v1

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network Aware Traffic Adaptation for Cloud Games
Richard Ewelle Ewelle, Yannick Francillette, Abdelkader Gouaich, Ghulam

Mahdi, Nadia Hocine, Julien Pons

To cite this version:
Richard Ewelle Ewelle, Yannick Francillette, Abdelkader Gouaich, Ghulam Mahdi, Nadia Hocine,
et al.. Network Aware Traffic Adaptation for Cloud Games. CloudCom-Asia 2013 - Interna-
tional Conference on Cloud Computing and Big Data, Dec 2013, Fuzhou, China. pp.147-154,
�10.1109/CLOUDCOM-ASIA.2013.79�. �lirmm-02148499�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02148499v1
https://hal.archives-ouvertes.fr


Network Aware Traffic Adaptation For Cloud Games

Richard Ewelle Ewelle
and Yannick Francillette

LIRMM, University of Montpellier

France, CNRS

Abdelkader Gouaı̈ch
and Ghulam Mahdi

LIRMM, University of Montpellier

France, CNRS

Nadia Hocine
and Julien Pons

LIRMM, University of Montpellier

France, CNRS

Abstract—Current cloud gaming systems have very strong
requirements in terms of network resources. For pervasive
gaming in various environments like at home, hotels, internet
cafes, or area with limited or unstable network access, it is
beneficial to avoid the necessity of having a costly steady fast
speed internet connection to be able to run these cloud games.

We present a network aware adaptation technique based on
the level of detail (LoD) approach in 3D graphics. It maintains
a bidirectional multi-level quality of service for game entities
at runtime, lessening the game’s communication cost when it
notices a decrease in network resources and maintains an optimal
communication frequency otherwise. It therefore reduces the
impact of poor and unstable network parameters (delay, packet
loss, jitter) on game interactivity while improving user’s quality
of experience (QoE). The evaluation of our approach through a
pilot experiment shows that the proposed technique provides a
significant QoE enhancement.

Keywords—Level of detail, quality of experience, cloud gaming,
network, communication, accessibility, ubiquity.

I. INTRODUCTION

Cloud computing describes a broad movement toward
the use of wide area networks, such as Internet to enable
interaction between IT service providers of many types and
consumers. According to [1], a cloud is a hardware and
software infrastructure which is able to provide services at
any traditional IT layer: software, platform, and infrastructure,
with minimal deployment time and reduced costs. With the
tremendous popularity of video games, moving games in the
cloud will immensely increase their accessibility and ubiquity,
by enabling them to reach geographically separated storage or
data resource with even cross-continental-networks.

Cloud gaming, also called gaming on demand, is the type
of online gaming that works on the same principle as does
video on demand which is another data-intensive application.
It allows direct and on-demand streaming of video games on
a computing device through the use of a thin client. Here, the
actual game is stored on the operator’s cloud platform and it
is directly streamed to the device. Due to these potential ad-
vantages many companies like Onlive [2], StreamMyGame[3],
Gaikai [4] offer cloud gaming services.

As promising as it is, cloud gaming is also facing many
challenges that, if not well resolved, may impede its fast
growth. These data-intensive cloud services have very strong
requirements in terms of network resources. In fact in order
to ensure the delivery of quality of service (QoS) for the
bulk data transfer generated by cloud games, a certain amount
of network resources should be available. These constraints

reduce the accessibility and ubiquity of such services, because
devices with little or unstable bandwidth capabilities and
people located in area with limited or unstable network access,
cannot take advantage of these cloud services. In addition, the
number of connected users increases every day, creating more
processing demand, and network congestion, thus limiting the
use of cloud services.

In the context of cloud gaming, to preserve game ac-
cessibility and ubiquity, we need not only to weaken these
network constraints, but also maintain the quality of the game.
The objective of the paper is then to make it possible for
devices with poor or unstable network capabilities, to run cloud
games with an acceptable QoE. The paper achieves this goal
with the proposition of an organization based network aware
traffic adaptation for cloud games achieving accessibility and
player QoE maintenance. We focus in our approach on the
organization of game entities as a means to express different
priorities among entities depending on their importance in
the game. Whenever the required network resources for game
state synchronisation is not meet by the available network
configuration, our framework ensures that the entities with the
high priority are given more network resources than the ones
with low priority, thus enables to meet the limited network
constraints.

Our approach focuses on the interaction between video
games and the cloud platform. The general question guiding
our study is:

How to build and run video games efficiently over the cloud
by optimizing the interaction between the client and the server
for an increased player experience and game accessibility?

User experience in games and more generally in interactive
entertainment systems has been a real focus in the research
community. In cloud gaming, the game response time influ-
ences the user quality of experience as explained in [5]. The
game response time, is the total delay from the user control
command occurring, to the corresponding graphic or video
frame displaying on the device screen. It is influenced by
network parameters like (bandwidth, delay, packet loss and
jitter). This paper focuses on optimizing the game system in
other to minimize the effect of poor network parameters for a
better game interactivity and an increased user experience.

The remaining of this paper is organized as follows. We
first give the definition of the cloud gaming and its two main
types in Section II. Then, we propose a new network aware
multi-level traffic adaptation scheme with efficient game state
synchronisation in Section III. In Section IV, we describe the
experimental setup and the game used to validate our approach;

2013 International Conference on Cloud Computing and Big Data2013 International Conference on Cloud Computing and Big Data



we then analyze the results of our pilot experiment with
player evaluation in terms of QoE. Section V gives the related
work on network resources optimisation in cloud gaming and
networked games in general and finally, we conclude this
paper in section VI by presenting conclusion and some future
directions for this work.

II. CLOUD GAMING

Cloud gaming can be defined as just executing games in a
server instead of users’ devices. In a client-server setup with
the cloud gaming paradigms, two main trends exist: Video
streaming and game state synchronisation.

A. Video Streaming

The most used solution in industrials cloud gaming sys-
tems are based on video streaming [2], [6], [3], [7]. In this
configuration, only the server maintains a representation of the
game model; the client simply gathers inputs from the user and
sends them to the server; and receives video from the server
and displays it to the user’s screen. When launched the client
contacts the server to establish the connection and start the
game. As explained in [8], usually there are two connections:
one connection to send the user’s controller input to the server
and one connection to receive the video from the server. The
figure 1 shows this game loop.

Fig. 1. Cloud game loop: Video streaming

The client game loop run two tasks: the video task and
the input task. With the input task, the client polls for input
events from the player. When an event is received it is written
into a packet and sent to the server. The video task enables
the client to receive packets from the server; these packets are
used to decode the video stream. When a complete frame has
been decoded, it is displayed in the application’s window.

A typical server game loop also runs two tasks. An input
task that receives inputs from the client application and passes
those inputs to the game model, and a video streaming task
that captures frames from the game, encodes them into a video,
and then sends the video output to the client.

B. Game State Synchronisation

The client and the server have a representation of the game
model. The client side periodically synchronizes his local game
model with the server side remote game model which is the
central one. This is done by receiving update messages about
state change in the game model. This game update loop is
presented in the figure 2. The game usually starts with an
initialization stage where all the objects and entities of the
game model are initialized. After this phase, the game loops
between the input phase and the update phase. The major
difference is that, with this configuration, the video rendering is
done on the client side, and the server just sends state updates
in smaller packets.

Fig. 2. Cloud game loop: Cloud Game loop: State synchronisation

In this paper, we will consider the game state synchro-
nisation approach as an alternative to video streaming in
cloud gaming because it does not have strong requirements
on network resources.

III. OUR TRAFFIC ADAPTATION APPROACH

A. Main Idea

In classical networked game architecture with the cloud
gaming paradigm, all the game entities of a scene are up-
dated in a synchronous basis. We aim at optimizing the state
synchronization between the client and the server. We make
the assumption that there are different synchronization needs
per game entity. Some need a small update frequency and for
others a larger update frequency will be enough. For exam-
ple, background entities need less synchronization than target
entities in a shooting game. We therefore need an efficient
message passing protocol that takes this synchronisation needs
in consideration for better performances. That is why; we apply
a LoD inspired mechanism to prioritize some updates over
others.

B. Level of Detail

The LoD technique has been widely used in 3D graphics
and simulations. The basic purpose of the technique is to mod-
ulate the complexity of a 3D object representation according to



the distance from which it is viewed (or any other criteria) [9].
As introduced by James Clark [10], this technique is meant to
manage processing load on graphics pipeline while delivering
an acceptable quality of images. The technique suggests to
structure the rendering details of a 3D object in order to
optimize its processing quality if the object’s visible details are
proportional to the distance from which the object is viewed.

Fig. 3. Basic concept of LoD: An object is simplified by different
representations through varying number of polygons [9]

The figure 3 presents the rational of Clark: by changing
the number of vertices, we see the change in the quality and
the visualization of a sphere.

Geometric datasets are usually too large in data size
and complex (in terms of time and computational resource
demands) so their rendering can become a tedious and time
consuming process. The LoD approach suggests different
representations of a 3D object model by varying in the details
and geometrical complexity. The geometrical complexity of an
object is determined by the number of polygons used for his
representation. The more complex an object is, the more time
consuming its rendering will be.

The figure 3 shows how the number of polygons affects
the rendering quality of an image’s graphical representational.
With these different representations of a model on hand (as
shown in the figure3), the LoD technique will suggest their
selection at a particular time point based on certain positive
selection bias. The latter can be their size, camera distance or
any other criteria.

The application of this technique for our work is the ability
to have different synchronization frequencies for each game
entity, and select one at a particular time based on certain
criteria. This way, only more important entities will get the
maximum amount of network resources while others get less.
These entities can see their communication resources changed
when the network situation changes or when their importance
in the game changes.

C. Overview of Our approach

The approach maintains a bidirectional multi-level quality
of service for game entities at runtime. Meaning that the adap-
tation needs to lessen the game’s communication requirements
when it notices a bottleneck in the network (materialized by an
increase in the response time, or packet loss in case of UDP
packets) and maintain an optimal communication frequency
otherwise. This is made possible using organizations.

Here each entity belongs to a synchronization group (with
a specific communication frequency) and has a specific role
within that group. The group assignment for an entity is
done according to its significance in the organization. The

significance of an entity can be defined in many different
ways depending of the game designer settings. For this paper,
we use the functional importance of an entity in the game as
significance.

D. Organization of Entities

Our organization model is inspired by the AGR model [11].
The AGR (Agent, Group, Role) model advocates organization
as a primary concept for building large scale and heterogeneous
systems. The AGR model does not focus on the internal archi-
tecture nor the behaviour of individual agents but it suggests
organization as a structural relationship between the collection
of agents. The AGR model defines three main concepts as
its basis for an organizational structure: agent, as an active
and communicating entity; a group is a set of agents which
is defined by tagging them under a collection; finally a role
defines an agent’s functional representation in a group. The
organizational model we use in our approach matches the AGR
model as follows:

• Agent: An agent represents a game entity involved
in the game scene. Each entity has a significance
regarding its communication requirements.

• Role: The role represents the reason why the entity
is in the game. Each entity in the scene has a role
and, a role can be shared by several entities. The role
can also be used to express entity’s communication
significance.

• Group: A group is a set of entities with the same
communication needs. These entities are synchronized
at the same frequency. An entity can move from one
group to another at any moment according to the
observed network settings and his significance in the
game.

E. Communication Groups

A communication group is characterized by a communi-
cation frequency and a score coefficient (see score coefficient
below) threshold, that the entities should satisfy to be assigned
to the group as shown in the figure 4. Each update transmission
uses some communication resources for its completion. We
describe a score coefficient as an abstract measurement unit for
the notion of importance regarding communication resources
for weighting entities communication requirements. An entity’s
score coefficient is calculated at runtime using a combination
of the actual network settings (here for UDP the packet loss
percentage) and the entity’s significance. This way the entity’s
importance is proportional to the network load at running
time. This score coefficient of an entity is computed using
the following formula:

ScoreCoefficient = Significance *
CurrentNetworkCongestion

This generic notion of ScoreCoefficient is a value that
defines whether the entity is important at the current time or
not. As the significance of an entity is depending to the game
rules and the function of the entity, this notion can be exploited
in many ways. For the game prototype developed in this paper,
the significance is a weight defined on each role by the game



designer through a configuration file. In case of congestion,
entities are reassigned to groups.

F. Group Assignment Policy

The server side of the game engine maintains a collection
of communication groups. When the game notices a drastic
change in network load, the score coefficient of each entity is
recalculated and entities are reassigned to new communication
groups if needed.

An entity of reference (E.R) is used to trigger the group
reassignment process for all the entities. The reassignment
process is ordered only if the newly computed expected group
for the E.R is different from its current group as explained in
the figure 4. As general rule for getting the expected group for
an entity, these conditions must be respected:

• C1: The entity’s score coefficient is lower than the
group’s score coefficient’s threshold.

• C2: The group is the one with the lowest score
coefficient threshold among the groups respecting the
condition C1.

This reassignment process is attempted every 5 seconds
during the game session.

Fig. 4. Group assignment policy

The algorithm 1 shows the group reassignment algorithm
for all entities in the game scene.

1) Traffic Congestion Computing: Our proposition is a
generic framework that uses as adaptation metric a score
coefficient calculated at runtime. The current congestion of the
network is the main parameter for the calculation of this score,
and represents the network overhead created by the traffic load
at running time. Because our message passing is done using
the UDP protocol, as a representative of network congestion,
we monitor the packet loss in the network since in case of
congestion some packets will be lost. Knowing that with UPD,
there is no guaranty on the reception of the packets.

To monitor the packet loss at runtime, the server periodi-
cally sends a number of monitoring packets (100 packets, one

Algorithm 1: Assignment algorithm for all entities

/* Loop for all entities in the game
scene */

for entity in entities do
/* Compute the expected group of

the entity */
scoreCoefficient =
significance(entity)*currentNetworkCongestion;
expectedGroup = getExpectedGroup(entity,
scoreCoefficient);
/* Add the entity in the

appropriate group */
if currentGroup != expectedGroup then

expectedGroup.add(entity);
currentGroup.remove(entity);

else
donothing();

end
end

every 50 ms) to the client and simply counts the number of
responses it receives back. Each missing response is marked as
packet loss. Thus in case of network congestion, the amount of
packet loss will increase, and therefore our adaptation scheme
will trigger the reassignment of communication groups for the
entities changing the communication profile of the game.

G. A Short Example

To illustrate our approach, here is a simplified version
of a shooting game, My Duck Hunt, developed to evaluate
our approach. You will find a more complete description
in the subsection IV-A. Suppose that we have 3 types of
entities: clouds, ducks and a reticle. The player controls the
reticle,let’s say the objective is to point the reticle on the ducks
and shoot. These entities have different functional importance
in the game, therefore different significances as defined in
the subsection III-E. Here the significance is a weight value
associated with each entity:

• Cloud: represents clouds that are moving in the back-
ground. Less important; weight: 1.5.

• Duck: represents ducks that are flying in the game
scene. Ducks are the targets. Medium importance;
weight: 1.

• Reticle: represents the player’s weapon’s pointer in the
screen. More important, weight: 0.5.

Suppose that we have 3 synchronization groups with dif-
ferent communication rates and score thresholds:

• Degraded: Less important entities; rate: every 100ms.

• Medium: Semi important entities; rate: every 50ms.

• Optimal: More important entities, rate: every 10ms.

When the game starts and when any drastic change is
noticed in the network load, entities are redistributed to the
groups.



• Without LoD: All the entities will always be attributed
to the optimal group. Their updates will be sent
every 10ms and then will evenly compete for network
resources, therefore will be impacted the same way by
any network congestion.

• With LoD: if there is no congestion on the network,
all the entities will be on the optimal group. In case of
congestion, the entities are redistributed to the groups
using duck as E.R and the formula in III-E to compute
entities’ current score coefficient. So if the groups
thresholds are well set, the clouds will belong to the
degraded group with updates sent every 100ms, the
ducks will belong to the medium group with updates
sent every 50ms, and the reticle will belong to the
optimal group with updates sent every 10ms, reducing
the overall traffic load.

IV. EVALUATION OF OUR ADAPTATION APPROACH

The objective of this experiment is to evaluate the impact
of LoD based adaptation in cloud gaming on the player’s
experience. In order to evaluate this impact, we observe and
compare the reaction of players during a game session with
and without the proposed approach.

A. My Duck Hunt

The video gameMy Duck Hunt has been developed to
conduct this experiment. It is a competitive shooting game
inspired from the traditional Duck Hunt video game [12]. The
rules of the game are the following: five kinds of entities evolve
in the game scene: the reticle, the ducks, the flamingos, the
gombas and the clouds. The player controls the reticle and
should point the reticle on the target and shut to kill. The
game is divided in 5 rounds or waves of ducks. The player
has to achieve the following goals:

• Kill as many ducks as he can. For each duck killed,
the player gains points.

• Do not kill flamingos.

• Protect flamingos from gombas by killing gombas.
Each flamingo killed result in point loss.

The clouds are background decoration elements. The figure
5 shows a screen shot of the game. Here, the ducks are the
entities with a black body and a green head. The flamingos
are pink and the gombas are the brown entities on the floor.

B. Participants

The test was conducted with 9 participants between 21 and
30 years old with an average age of 25.33. The distribution of
players, based on their playing frequencies; it is given in the
table I. Only one participant reported that he does not play
video games. The other participants play games at least one
time per week.

Never 1 per year 1 per month 1 per week everyday
1 1 2 5 0
TABLE I. PLAYING FREQUENCIES DISTRIBUTION

Fig. 5. ”My Duck Hunt” video game

C. Protocol

The study follows a repeated-measures design. The candi-
dates have to play two versions of My Duck hunt. One that
includes our LoD inspired proposition and the other without
our proposition. In the later game, all the entities are updated
at the same frequency. The experiment proceeds as follows:

• The candidates get a quick introduction of the game’s
rules through a demo version of the game.

• The candidates play one version then the other (this
order is random for all the players). The candidates
are not informed about the difference between the
two versions. During the game, the candidates have
to report when they perceive any type of bad quality
of experience or interactivity shortage. They do so by
holding the space key.

• At the end of each round, the candidates evaluate the
quality of experience for the round. They give a mark
between 1 and 5. 1 indicating a bad game experience
and 5 indicating a good game experience.

• At the end of the experiment, the candidates are
individually interviewed and asked to rate the global
game experience for each game version by giving a
mark between 1 and 5.

D. Network Configuration and Congestion Simulation

To be able to control the network environment, the pilot
experiment is performed on a Local Area Network. In this
LAN we have the game server machine, the client machine.
Since we didn’t deploy the server on a real cloud with WAN
(Wide Area Network) connections, we need to simulate poor
network settings of WAN. That is why we implemented a
proxy. The proxy is used for network congestion simulation
through delay, jitter and packet loss simulation. The proxy
forwards all the packets from the client to the server and vice-
versa. Since we are using UDP connections to send the state
updates, the proxy simulates a congested network by ignoring
all the packets received while a threshold of packets sent per
second is reached. This threshold represents the capacity of
the network or the available bandwidth: number of packets
to forward per second. So to drastically change the network
congestion for the game, we just need to change this threshold
value. The proxy is started at the same time as the game and



it is launched with a configuration file dictating the network
capacity variations during the game. This first 210 seconds of
this configuration is given in the table II. From 0 to 30 seconds,
the proxy forwards 6000 packets per second; from 30s to 60s,
it forwards 3000 packets per second, denoting a 50.

Time 0s 30s 60s 90s 120s 150s 180s 210s

Pkts/s 6000 3000 5000 2900 7000 2500 3500 3100
TABLE II. PROXY CONFIGURATION FOR NETWORK CAPACITY

The game server is a Dell Precision M6500 with the
following configuration: an Intel Core i7 Q 720 CPU and 4 Go
of RAM. This is an experimental setup with a mono player
game, meaning that the processing cost of the game can be
handled by a server machine with these specifications. The
only bottleneck we have is the one simulated by the proxy
on the network link. The server platform is configured with
the four following communication groups sorted by other of
importance:

• Optimal group: Entities with the highest communi-
cation requirements. The update frequency of entities
here is 5 ms and the threshold score to stay in this
group is 7.

• Enhanced group: Entities with relatively high com-
munication requirements but lesser than those in the
optimal group. Frequency = 35 ms, threshold = 15.

• Medium group: Entities with average needs in net-
work resources. Frequency = 40 ms, threshold = 70.

• Degraded group: Entities with the lowest communi-
cation needs. Frequency = 75ms.

E. Hypothesis

In order to evaluate the impact of the proposition we have
stated the following hypotheses:

• H.A.0 There is no difference in the game experience
between the two versions of the game during round.

• H.B.0 There is no difference concerning the global
game experience between the two versions of the
game.

• H.C.0 There is no difference in the ratio of time spent
holding the space key per the session duration between
the two versions of the game.

F. Experimental Results

We use the paired t-test to reject the three hypotheses.
The statistical analysis was performed using R http://www.r-
project.org version 2.15.0. The hypothesis H.A.0 is rejected for
the five rounds with p− value < 0.5. The difference between
the game experience during each round when using LoD and
without LoD is statically significant. The results of the t-test
are summarized in the table III.

The hypothesis H.B.0 is rejected by the t-test. The differ-
ence of the global game experience between the game with
LoD based adaptation and the game without LoD is statically
significant with a mean M = 1.777778, t(8)=8.6298, p-value =
2.521e 05. The hypothesis H.C.0 is also rejected by the t-test.

Wave number M t(8) p-value
Round 1 1.2222 4.4 0.002287

Round 2 1.555556 6.4236 0.0002039

Round 2 1.666667 3.7796 0.005391

Round 4 1.222222 3.0509 0.0158

Round 5 1.666667 3.0151 0.01668
TABLE III. RESULTS

The different in the ratio of the time spent holding the space
key per the playing duration between the two game versions
is statically significant with a mean M = -0.1197444, t(8) =-
2.4535 and p-value = 0.03972.

G. Discussion

According to the above analysis, we can see the effect
of our approach on the players’ interactivity with the game,
therefore their QoE. In fact all the three hypotheses were
rejected meaning that the players have perceived a significant
gain on the game experience with the adaptation technique
not only for each round but also for the overall game session.
The instability introduced by changing the congestion degree
at the proxy had less impact on the game quality for all
the participants. Finally, these results validate our approach
on improving the overall quality of interactivity of the game,
showing that adapting the game traffic to the available network
resources significantly increase the perceived quality of the
game.

This approach is not perfect, one limitation is that, the
whole adaptation can be very subjective, since the config-
uration of the platform (entity’s weight, score coefficient
threshold) is done manually by the game designer. A bad con-
figuration of this system can result to a very bad player’s QoE.
In our work, we suppose that the game designer knows what is
doing (the significance of each entity) and the parameters are
well set. It is also important to note that, while this approach
reduces the bandwidth needed for a good quality game, it does
not eliminate the requirement of a minimum bandwidth for an
enjoyable game. It for sure requires less bandwidth than the
classic cloud gaming services.

V. RELATED WORK

In the cloud gaming paradigm, to improve the interactivity
performance of a game architecture, two main causes for
delays have to be analysed: network latencies and video
processing costs. Several research works have already brought
contributions to the optimization of the video processing mech-
anism, in our study we are focusing on network optimization.

A. Packet Compression and Aggregation

Packet compression [13] tries to speed up transmissions
by reducing bandwidth requirements. Aggregation is another
technique attempting to reduce the overhead associated with
each transmission therefore limiting the bandwidth required by
the application. Specifically, before being transmitted, packets
are merged in larger ones thus reducing the overhead. Both
schemes, however, pay the latency benefits achieved with an
increment in computational costs. Information compressed and
aggregated, needs to be recovered with decompressing and
disaggregating algorithms at the receiving end, thus increasing
the time required to process each single event.



B. Interest Management

To reduce both the traffic load in the network and the
computational cost to process each game event, Interest Man-
agement techniques have been very rewarding [14]. In some
game scenario, events generated are relevant only for a small
fraction of the users. Therefore, implementing an area-of-
interest scheme for filtering events, as well as a multi-cast
protocol, could be put in good use to match every packet with
the nodes that really need to receive it and, consequently, to
reduce both the traffic and processing burden at each node [15].
Games having interest areas occupying a significant portion of
the global virtual environment could hence be further delayed
if Interest Management schemes would be implemented.

C. Optimistic Algorithms

In order to be less depending on the real responsiveness
of the network, optimistic algorithms for synchronizing game
state at servers can be implemented in order to avoid delay
perception at destination. In case of lousy interactivity between
client and server, in fact, an optimistic approach executes
events before really knowing if ordering would require to
process other on the way events first. Game instances are thus
processed without wasting any time in waiting for other even-
tually coming packets. On the other hand, this performance
gain is paid with some occurrence of temporary consistency
loss.

D. Dead reckoning

Dead reckoning is another method that can help to min-
imize the effects of latency, but it can also introduce some
temporary incoherence between the factual game state and the
assumed one at the server r [16]. In fact, attempting to limit
the bandwidth required by the application, this scheme utilizes
a reduced frequency in sending update packets while com-
pensating the lack of information with prediction techniques.
Obviously, predicted movements and actions are not always
trustful. These eventual restoring actions further impact on
interactivity and playability of the game.

E. Games@Large

In Games@Large [17], A. Jurgelionis et al., propose a
distributed gaming platform for cross-platform video game
delivery. The system executes games on a server PC, located
at a central site or at home, captures the graphic commands,
streams them to the end device, and renders the commands
on the end device allowing the full game experience. For
end devices that do not offer hardware accelerated graphics
rendering, the game output is locally rendered at the server and
streamed as video to the client. The advantage of this approach
is that the architecture is transparent to legacy code and allows
all type of games to be streamed. For devices with rendering
capabilities, it discharges the server from rendering and en-
coding the game output, enhancing the server performance, it
also reduce the amount of data to be transmitted since only
graphics commands are sent to the client, thus reduces the
game latency. For users with low end devices, the latency of
video encoding and video transmission remain the same as in
other cloud gaming architecture like Onlive.

These mechanisms propose enhancements that can improve
the performance of a real-time networked game by reducing
the traffic load between the client and the server. Nonetheless,
this traffic reduction introduces some computation expenses
contributing to the lag or other incoherence in the game.
Techniques such as interest management and dead reckoning
are widely used to reduce both the network load and the com-
putational cost for a better player quality of experience. None
of the analysed work has tried to couple the traffic reduction
with a scheduling mechanism for an efficient message passing
(messages with different importance) between the client and
the server, nor have tried to adapt the traffic generated by
the game to the actual capacity of the network. We present
here a novel synchronization adaptation technique, specifically
designed for efficient event delivery in client-server games with
the cloud paradigm.

VI. CONCLUSION

In this paper, we have presented a new network aware
adaptation technique for game state synchronisation in cloud
gaming. We tackle the challenges of instability and shortage
of network resources required to enjoy a classic cloud game.
Based on LoD principles, our proposed approach uses entities
organization model in order to minimize the effect of low or
unstable network capabilities in maintaining game interactivity
and improving player’s QoE.

Future work is to support wider range of significances
for an entity. We will need to implement a version of the
adaptation scheme using a topology heuristics (distance to
camera) as the significance of the entities. We will also perform
a large scale experimentation in a multi-player cloud gaming
environment where each player has his own network resources,
his own camera and sees different angle of the game scene.

REFERENCES

[1] T. M. C. Geoffrey Raines, “Cloud computing and soa,”
2009, [Online; accessed 31-Octobre-2012]. [Online]. Available:

http://www.mitre.org/work/techpapers/tech papers 09/09 0743/09 0743.pdf

[2] Onlive, “Onlive official web page,” http://www.onlive.com, 2012, [Online;
accessed 31-Octobre-2012].

[3] StreamMyGame, “Streammygame official web page,”
http://www.streammygame.com, 2012, [Online; accessed 31-Octobre-2012].

[4] Gaikai, “Gaikai chooses new nvidia geforce grid to fuel explosive growth in
cloud gaming,” http://www.nvidia.com/content/PDF/NVIDIA-GeForce-Grid-
Gaikai-Case-Study-HR.pdf, 2012, [Online; accessed 31-Octobre-2012].

[5] S. Wang and S. Dey, “Modeling and characterizing user experience in
a cloud server based mobile gaming approach,” in Proceedings of the
28th IEEE conference on Global telecommunications, ser. GLOBECOM’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 4231–4237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1811982.1812085

[6] G-Cluster, “G-cluster official web page,” http://www.gcluster.com, 2012, [On-
line; accessed 31-Octobre-2012].

[7] T5-Labs, “T5-labs official web page,” http://www.t5labs.com, 2012, [Online;
accessed 31-Octobre-2012].

[8] D. R. D. Barievi, , and M. Chandrashekar, “Gameon: Analysis and
implementation of cloud gaming,” 2011, [Online; accessed 31-Octobre-2012].
[Online]. Available: http://www.cs.ucsb.edu/ manasa/cs276.pdf

[9] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney, Level of
Detail for 3D Graphics. New York, NY, USA: Elsevier Science Inc., 2002.

[10] J. Clark, “Hierarchical geometric models for visible surface algorithms,”
Communications of the ACM, vol. 19, no. 10, pp. 547–554, 1976.



[11] J. Ferber, F. Michel, and J. Baez, “Agre: integrating environments
with organizations,” in Proceedings of the First international conference
on Environments for Multi-Agent Systems, ser. E4MAS’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 48–56. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-32259-72

[12] Wikipedia, “Duck hunt,” http://en.wikipedia.org/wiki/Duck Hunt, [Online;
accessed 12-October-2012].

[13] B. S. An, M. Lee, K. H. Yum, and E. J. Kim, “Efficient data packet
compression for cache coherent multiprocessor systems,” in Proceedings
of the 2012 Data Compression Conference, ser. DCC ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 129–138. [Online]. Available:
http://dx.doi.org/10.1109/DCC.2012.21

[14] K. L. Morse, L. Bic, and M. Dillencourt, “Interest management
in large-scale virtual environments,” Presence: Teleoper. Virtual
Environ., vol. 9, no. 1, pp. 52–68, Feb. 2000. [Online]. Available:
http://dx.doi.org/10.1162/105474600566619

[15] S. E. Deering, “Host extensions for ip multicasting,” United States, 1989.

[16] S. K. Singhal, “Effective remote modeling in large-scale distributed simulation
and visualization environments,” Stanford, CA, USA, Tech. Rep., 1996.

[17] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P. Laulajainen,
R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä, A. De Gloria,
and C. Bouras, “Platform for distributed 3d gaming,” Int. J. Comput.
Games Technol., vol. 2009, pp. 1:1–1:15, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1155/2009/231863


