
HAL Id: lirmm-02148503
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02148503

Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Level of detail based network adapted synchronization
for cloud gaming

Richard Ewelle Ewelle, Yannick Francillette, Ghulam Mahdi, Abdelkader
Gouaich, Nadia Hocine

To cite this version:
Richard Ewelle Ewelle, Yannick Francillette, Ghulam Mahdi, Abdelkader Gouaich, Nadia Hocine.
Level of detail based network adapted synchronization for cloud gaming. CGAMES 2013 - 18th
International Conference on Computer Games, Jul 2013, Louisville, United States. pp.111-118,
�10.1109/CGames.2013.6632616�. �lirmm-02148503�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02148503
https://hal.archives-ouvertes.fr


Level Of Detail Based Network Adapted
Synchronization for Cloud Gaming

Richard Ewelle Ewelle, Yannick Francillette, Ghulam Mahdi, Abdelkader Gouaı̈ch
, Nadia Hocine and Julien Pons

LIRMM, University of Montpellier, France, CNRS
Email: {ewelleewel, francillet, mahdi, gouaich, hocine, jpons}@lirmm.fr

Abstract—Video games are considered as a major sector of
popular entertainment and digital culture. With the arrival of
cloud gaming, more video games become ubiquitous as they
can be hosted on centralized servers and accessed through the
Internet by thin clients with limited capabilities. Cloud computing
within the game context has attracted significant attention due to
its principal characteristics of scalability, availability and com-
putational power. However, current cloud gaming systems have
very strong requirements in terms of bandwidth and network
resources. Thus, when devices have limited bandwidth and/or
people are located in areas with limited network connectivity,
they can not take advantage of these services.

This paper presents an adaptation technique inspired by the
level of detail (LoD) approach in 3D graphics. It is based on a
cloud gaming paradigm for the minimization of the effect of poor
network parameters (delay, loss, jitter) in order to enhance the
game interactivity and improve the player quality of experience
(QoE). A pilot experiment has been carried out to evaluate
this approach through a game prototype. The results of this
experiment show that the LoD based adaptation in cloud gaming
provides a significant QoE enhancement on poor or congested
networks.

Index Terms—cloud gaming, quality of experience, level of
detail, client-server game

I. INTRODUCTION

Video games are gaining increasing attention both from
entertainment industry and from scientific community. Begin-
ning with basic and toy games, they quickly evolved into rich
interactive and animated environments approaching movies in
terms of visual excitement.

A key aspect that will increase the use of video games in
general, is to enable them to be accessible from every platform,
and from everywhere in a way that maintains their realism and
speed, the high quality graphics or any other aspect that can
influence the players’ quality of experience (QoE).

This objective has been partialy achieved by using cloud
computing model for video games. Gaikai’s [1] vision is that
“When video games can be accessed as easily as movies and
music, we believe they will become the number one form of
entertainment in the world”.

Cloud gaming, also called “gaming on demand”, is the type
of online gaming that works on the same principle as video on
demand. It allows direct and on-demand streaming of video
games on a computing device using only a thin client. Here,
the actual game is stored on the operator’s server and directly
streamed to the device. Given its advantages, cloud gaming can
be considered as a new paradigm that may change the way

computer games are delivered and played. That is probably
why many companies such as Onlive [2], StreamMyGame [3]
and Gaikai [1] have started offering cloud gaming services.

However, these cloud gaming systems have very strong
requirements in terms of network resources. This restricts
access to these services to small devices with limited network
capabilities and to people living in areas where the network
bandwidth is still limited. Besides, as the number of connected
players increases, the server-side network bandwidth has to
be increased, otherwise it will become the bottleneck of the
overall system.

In this paper, we suggest taking advantage of cloud gaming
platform to build video games that are accessible on devices
with limited network resources, while maintaining the player’s
QoE.

The main contribution of this paper consists in an organi-
zation to adapt game entities’ states synchronization in client-
server games. We focus on the organization of game entities
as the means to express different priorities depending on their
importances in the game scene.

Indeed, whenever the generated network traffic for the game
exceeds the capabilities of the actual network (bottleneck), our
framework ensures that the entities with the high priority are
given more network resources than the ones with low priority.
This can therefore enable us to reduce the overall traffic load,
meeting the limited network constraints.

This approach focuses on the interaction between video
games and the cloud platform. Thus the general question
guiding our study is:

How to build and run video games efficiently over the cloud
while maintaining an acceptable player’s QoE?

In cloud gaming, many factors can affect the player’s quality
of experience. Following the study in [4], the quantitative
measurement of player experience mainly depends on the sub-
jective factors: response time and graphics quality or received
video quality. The game response time refers to the total delay
from the occurrence of the player input to the display of the
resulting graphic or video frame on the device. The received
game video quality is influenced by the image quality in each
frame and the smoothness of all the frames. The subjective
factors are affected by a number of objective factors, which can
be categorized into two groups: video settings (resolution, data
rate, frame rate, codec) and network parameters (bandwidth,
delay, packet loss and jitter). For this paper, we focus on



optimizing these objective factors in order to enhance the
player experience and maintain it in an acceptable range when
the network bandwidth decreases.

The rest of the paper is organized as follows: Section II
discusses the background of this work. section III presents the
related work which is followed by our proposed adaptation
approach in section IV. Section V describes the experimental
framework and the game used to validate our approach; we
then analyze the results of our pilot experiment with player
evaluation in terms of QoE and, we conclude this paper in
section VI by presenting conclusion and future directions.

II. BACKGROUNDS

A. Cloud computing

According to Geoffrey et al in [5], a cloud is a hardware and
software infrastructure which is able to provide services at any
traditional IT layer: software, platform, and infrastructure. The
claimed advantages are minimal deployment time and reduced
costs thanks to an on-demand and pay-per-use model. Here is
a little exploration of the layers in the cloud computing stack
from the bottom up, as presented in [5]:

1) Infrastructure as a service (IaaS): Provides the dis-
tributed multi-site physical components to support cloud
computing.

2) Platform as a service (PaaS): Provides computational
resources via applications and services that can be
developed and hosted.

3) Software as a service (SaaS): Provides applications
/services using a cloud platform, rather than providing
cloud features themselves.

Cloud Computing offers to application providers the possi-
bility to deploy a product as a SaaS and to scale it on demand,
without building or provisioning a data center. With respect to
this definition, cloud gaming can be viewed as offering games
as applications through the cloud to gamers.

B. Cloud gaming

In the simplest form, cloud gaming is just executing games
on a server located in the cloud instead of users’ devices.
When launched the client contacts the server to establish the
connection and starts the game. As explained in [6], usually
there are two connections: one connection to send the player’s
controller input to the server and one connection to receive the
video or commands from the server.

Figure 1 explains this communication flow. The client runs
two processes: the main (video) process, and the input process.
The video process receives packets from the server; these
packets are used to decode the video stream. When a complete
frame has been decoded, it is displayed in the application’s
window. The input process polls for input events from the
player. When an event is received it is written into a packet
and sent to the server. A typical server also runs two processes:
a video streaming process that captures frames from the game,
encodes them into a video, and then sends the video output to
the client; and an input process that receives inputs from the
client application and passes those inputs to the game.

Fig. 1. Cloud gaming architecture

For an interactive experience, such a system has some
requirements such as low end-to-end delay, high compression
efficiency, and low encoding complexity. Wang et al. in [4],
have divided these requirements in two groups: the video
parameters and the network parameters.

For instance, the perceived loss of quality in the image can
be caused by an inefficient video compression process from the
source or by a poor network configuration such as a congested
network.

The quality of the video and the interactivity of the game
is therefore influenced by network parameters e.g. packet loss
rate, delay and jitter. With video streaming, the game response
time typically consists of the codec delay, caused by video
encoding and decoding, the network round-trip delay and the
client’s play out buffering delay. To guide our state of the
art, we are going to review studies aiming to optimize these
network parameters.

C. Client-server game loop

A game loop is presented in the figure 2. The game starts
with an initialization stage where all the objects and entities
of the game model are initialized. After this phase, the game
loops between the update and rendering phase. In the update
phase, all the entities in the game model are updated and in
the rendering phase, the game produces the graphic output.

In a client-server setup with the cloud gaming paradigms,
the phases of this game loop are distributed among the client
and the server. Two approaches are generally found in the
literature:

• The client and the server have a representation of the
game model. The client side periodically synchronizes
its local game model with the server side’s remote game
model which is the central one. This is done by receiving
update messages about state change in the game model.

• The most used solution in industrial cloud gaming sys-
tems is based on video streaming [2], [7], [3]. Here, the



Fig. 2. Client-Server Game loop

server executes the game logic and the graphical output is
produced and transmitted to the client as a video stream.

III. RELATED WORK

In the cloud gaming paradigm, to improve the interactivity
performance of a game architecture, two main causes for
delays have to be analyzed: network latencies and video
processing costs. Several research works have already brought
contributions to the optimization of the video processing
mechanism, but in our study we are focusing on network
optimization.

For the network settings optimization context, A. Jurgelionis
et al. in Games@Large [8], propose a distributed gaming
platform for cross-platform video game delivery. The system
executes games on a server PC, located at a central site or at
home, captures the graphic commands, streams them to the end
device, and renders the commands on the end device allowing
the full game experience. For end devices that do not offer
hardware accelerated graphics rendering, the game output is
locally rendered at the server and streamed as video to the
client. The advantage of this approach is that the architecture
is transparent to legacy code and allows all type of games
to be streamed. For devices with rendering capabilities, it
discharges the server from rendering and encoding the game
output, enhancing the server performance, it also reduces
the amount of data to be transmitted since only graphics
commands are sent to the client, thus reducing the game
latency. For users with low end devices, the latency of video
encoding and video transmission remain the same as in other
cloud gaming architecture like Onlive. Sending only graphic
commands reduces the traffic load in the network, but the
generated traffic is still important and may not be supported
in some network configurations.

In the attempt to reduce the network load in state syn-
chronization for client-server games in general, several works
have contributed to the development of efficient synchroniza-
tion schemes. In particular, packet compression [9] tries to

speed up transmissions by reducing bandwidth requirements.
Indeed, minimizing the number of bits needed to represent
a game information is a proficient method to diminish the
traffic present in the network. Aggregation [10] is another
technique attempting to reduce the overhead associated with
each transmission therefore limiting the bandwidth required by
the application. Specifically, before being transmitted, packets
are merged in larger ones thus reducing the overhead. Both
schemes, however, pay the latency benefits achieved with an
increment in computational costs. Information compressed and
aggregated, needs to be recovered with decompressing and
disaggregating algorithms at the receiving end, thus increasing
the time required to process each single event. Moreover,
aggregation can origin further waste of time if a transmission
is delayed while waiting for having available other events to
aggregate.The packet compression technique is also often used
in video game streaming.

To reduce both the traffic load in the network and the
computational cost to process each game event, Interest Man-
agement techniques have been used [11]. In some multi-player
game scenario, events generated are relevant only for a small
fraction of the players. Therefore, implementing an area-of-
interest scheme for filtering events, as well as a multi-cast
protocol, could be put in good use to match every packet with
the nodes that really need to receive it and, consequently, to
reduce both the traffic and processing burden at each node
[12]. Games having interest areas occupying a significant
portion of the global virtual environment could hence be
further delayed if Interest Management schemes would be
implemented.

In order to be less dependent from the real responsiveness
of the network, optimistic algorithms for synchronizing game
state at servers can be used in order to avoid delay perception
at destination [13], [14]. In case of lousy interactivity between
client and server, in fact, an optimistic approach executes
events before really knowing if ordering would require to
process other on the way events first. Game instances are thus
processed without wasting any time in waiting for other even-
tually coming packets. On the other hand, this performance
gain is paid with some occurrence of temporary consistency
loss. In our work, we are dealing with synchronous real-time
games, therefore maintaining the consistency of the game is a
must.

Dead reckoning is another method that can help to min-
imize the effects of latency, but it can also introduce some
temporary incoherence between the factual game state and the
assumed one at the server [15]. In fact, attempting to limit the
bandwidth required by the application, this scheme utilizes
a reduced frequency in sending update packets while com-
pensating the lack of information with prediction techniques.
Obviously, predicted movements and actions are not always
trustful. These eventual restoring actions further impacts on
interactivity and playability of the game.

All these mechanisms propose enhancements that can im-
prove the performance of a real-time networked game by
reducing the traffic load between the client and the server.



Nonetheless, this traffic reduction introduces some computa-
tion expenses contributing to the lag or other incoherence in
the game. Techniques such as interest management and dead
reckoning are widely used to reduce both the network load and
the computational cost for a better player quality of experience.
None of the analyzed work have tried to couple the traffic
reduction with a scheduling mechanism for an efficient mes-
sage passing (messages with different importances) between
the client and the server, nor have tried to adapt the traffic
generated by the game to the actual capacity of the network.

We present here a novel synchronization adaptation tech-
nique, specifically designed for an efficient event delivery syn-
chronization in client-server games with the cloud paradigm.

IV. ADAPTATION FRAMEWORK

In this section, we introduce the LoD principles and present
our proposed approach for client-server synchronisation.

A. Level of detail

The graphical Level of detail (LoD) technique has been
introduced by James Clark [17] to manage the processing load
on graphics pipeline while delivering an acceptable quality of
images.

The technique is based on the idea that structuring the
rendering details of a 3D object can optimize the processing
quality, if the object’s visible details are proportional to the
distance from which the object is viewed.

Fig. 3. Basic concept of LoD: An object is simplified by different
representations by varying number of polygons [16]

The figure 3 presents the rational of Clark: by changing the
number of vertices, we see the change in the quality and the
visualization of a sphere.

Geometric datasets are usually too large in data size and
complex (in terms of time and computational resource de-
mands) so their rendering can become a tedious and time
consuming process. The LoD approach suggests different
representations of a 3D object model by varying in the details
and geometrical complexity. The geometrical complexity of an
object is determined by the number of polygons used for his
representation. The more complex an object is, the more time
consuming its rendering will be.

Although there can be other factors involved in the com-
plexity and resource demand of a graphical model of an
object, the relations between polygonal quantity and resource
consumption are generally considered as established ones [18].
For example, one can determine the difference in rendering
quality by observing the figure 3. This figure also makes it

possible to draw a general conclusion on how the number of
polygons affects the rendering quality of an image’s graphical
representational.

Once these different representations of a model are on hand
(as shown in the figure 3), the LoD technique will suggest their
selection at a particular time point based on certain positive
selection bias. The latter can be their size, camera distance or
any other criteria.

The application of this technique for our work is the ability
to have different synchronization needs for each entity, and
select one at a particular time based on certain criteria. This
way, only certain entities will get the maximum amount of
communication resources while others get less. These entities
can see their communication resources changed when the
network situation changes or when their importance in the
game changes.

B. Overview

In classical networked game architecture with the cloud
gaming paradigm, all the game entities of a scene are updated
in a synchronous basis. We aim at optimizing these state
synchronizations between the client and the server. We make
the assumption that there are different synchronization needs
per entities. Some need a small update rate and for others
larger update rate will be enough. For example, background
entities need less synchronization than target entities in a
shooting game. We therefore need an efficient message passing
protocol for better performances. That is why, we apply a
LoD inspired mechanism to prioritize some updates over
others. This enables us to lower the game’s communication
requirements.

The approach maintains a bidirectional multi-level QoS for
game entities at runtime. Meaning that the adaptation needs to
lessen the games communication requirements when it notices
a bottleneck in the network (materialized by an increase in
the response time, or packet loss in case of UDP packets) and
maintain an optimal communication rate otherwise.

The proposed framework uses entity organizations. Here
entities belong to a a synchronization group (with a specific
synchronization or communication rate) and have specific roles
within that group. The group association is done according
to the significance of the entities in the organization. The
significance of an entity can be defined in many different ways
depending of the game designer settings. For this paper, we
used the functional importance of an entity in the game as
significance.

C. Organizational model of entities

We use organizations for several reasons:
• Organizing and representing different communication lev-

els of entities, so that a change in the network load steers
the use of a particular communication level for an entity.

• Evaluating the relative importance of the entity in real
time in other to select the most appropriate communica-
tion level.



Our organization model is inspired by the AGR model [19].
Here we briefly define the AGR model. The AGR (Agent,
Group, Role) model advocates organization as a primary
concept for building large scale and heterogeneous systems.
The model does not focus on the internal architecture nor the
behavior of individual agents but suggests organization as a
structural relationship between collection of agents. The AGR
model defines three main concepts as its basis for an organiza-
tional structure : agent, as an active and communicating entity
; groups are comprised of agents in the set by tagging them
under a collection ; finally an agents functional representation
in a group is given by defining its role.

Our proposition matches the AGR model with the same
basic components:

• Agent: An agent representing a game entity in the game
scene.

• Role: A role representing the reason why the game entity
is in the game. Each entity in the scene has a role and a
role can be shared by several agents.

• Group: A group is a set of entities that are synchronized
at the same frequency. In our approach, several group
with different update frequencies are defined. Each group
also has a score coefficient (see score coefficient below)
threshold, that the entities should satisfy to be associated
to the group.

An entity can move from one group to another at any moment
according to the observed network settings and his significance
in the game. The game engine ensures the message passing
using a module called network updater.

Each update transmission uses some communication re-
sources for its completion. We describe a score coefficient as
an abstract measurement unit for the notion of communication
resources for weighting entities communication requirements.
Each entity has a significance regarding its communication
requirements.

An entity’s score coefficient is calculated at runtime using
a combination of the actual network setting (here for UDP the
packet loss percentage) and the entity’s significance. This way
the entity’s importance is proportional to the network load at
running time. At any time. This score coefficient of an entity
is computed using the following formula:

ScoreCoefficient =
Significance ∗ CurrentNetworkLoad

This generic notion of significance is a value that defines
whether the entity is important at the current time or not. This
score allows us to sort which are the most important entities at
the current time. As the significance of an entity is depending
to the game rules and the function of the entity, this notion can
be exploited in many ways. For the game prototype developed
in this paper, the significance is a weight defined on each roles
by the game designer through a configuration file.

In case of congestion, entities are reassigned to groups. As
general rule, an entity goes in a group only if its score coef-
ficient is lower than the group’s score coefficient’s threshold.

D. Implementation

1) Game Engine: The game engine maintains a collection
of communication groups. Here, when the game notices a dras-
tic change in network load, the score coefficient of each entity
is recalculated and entities are assigned the communication
group matching the required score coefficient’s threshold.

Fig. 4. Adaptation framework

2) Network load computing: The current network load is
the main parameter for the calculation of the score coefficient,
and represents the traffic load generated by the game at
running time. Because our message passing is done using
the UDP protocol, as a representative of network traffic load,
we monitor the packet loss in the network since in case of
congestion some packets will be lost. Knowing that with UDP,
there is no guaranty on the reception of packets.

To monitor the packet loss at runtime, the server periodically
sends a number of monitoring packets to the client and simply
counts the number of responses it receives back. Each missing
response is marked as packet loss. Thus in case of network
congestion, the amount of packet loss will increase, and
therefore our adaptation scheme will recalculate the score of
the entities changing the communication profile of the game.

E. How it works

To illustrate our approach, here is a simplified version of
a shooting game, ”My Duck Hunt”, developed to evaluate
the approach. You will find a more complete description
in the subsection V-A. Suppose that we have 3 types of
entities: clouds, ducks and a reticle. Lets say the objective
is to point the reticle on the ducks and shoot. These entities
have different functional importances in the game, therefore
different significances as defined in the subsection IV-C. Here
the significance is a weight value associated with each entity.

• Cloud: represents clouds that are moving in the back-
ground. Less importance; weight: 1.5.

• Duck: represents ducks that are flying in the game scene.
Ducks are the targets. Medium importance; weight: 1.

• Reticle: represents the player’s weapon’s pointer in the
screen. More important, weight: 0.5.

Suppose that we have 3 synchronization groups with differ-
ent communication rates and score thresholds:

• Degraded: Less important entities; rate: every 100ms.



• Medium: Semi important entities; rate: every 50ms.
• Optimal: More important entities, rate: every 10ms.
When the game starts and when any drastic change is

noticed in the network load, entities are redistributed to the
groups.

• Without LoD: All the entities will always be attributed to
the optimal group. Their updates will be sent every 10ms
and then will evenly compete for network resources,
therefore will be impacted the same way by any network
congestion.

• With LoD: if there is no congestion on the network, all
the entities will be on the optimal group. In case of
congestion, the entities are redistributed to the groups
using the formula in IV-C to compute their current score
coefficient. So if the groups thresholds are well set, the
clouds will belong to the degraded group with updates
sent every 100ms, the ducks will belong to the medium
group with updates sent every 50ms, and the reticle will
belong to the optimal group with updates sent every
50ms, reducing the overall traffic load.

V. PILOT EXPERIMENT

The objective of this experiment is to evaluate the impact of
the LoD based synchronisation on the player’s experience. For
that, we observe and compare the reaction of players during
a game session with and without the proposed approach.

A. My Duck Hunt video game

The video game ”My Duck Hunt” has been developed to
conduct this experiment. This is a competitive shooting game
inspired from the traditional Duck Hunt video game [20]. The
rules of the game are the following : the player sees a scene
where five kinds of entities evolve: the reticles, the ducks, the
flamingos, the gombas and the clouds. The player controls the
reticle and has to achieve the following goals :

• The game is divided in 5 rounds or waves of ducks.
• The player should kill as many ducks as he can. For each

duck killed, the player gains points.
• The player must not kill flamingos.
• The player should protect flamingos from gombas by

killing gombas. Each flamingo killed result in point loss.
The clouds are in the scene as decoration elements. The figure
5 shows a screen shot of the game. In this screen shot, the
ducks are the entities with the black body and the green head.
The flamingos are pink and the gombas are the brown entities
on the floor.

B. Protocol

The study follows a repeated-measures design. The can-
didates have to play two versions of My Duck hunt. One
that includes the our LoD inspired proposition and the other
without the proposition. In the later game, all the entities are
updated at the same rate.

The experiment proceeds as follows :

Fig. 5. Screen shot of ”My Duck Hunt” video game

1) The candidates get a quick introduction about the rules
of the game through a desktop demo version of the
game.

2) The candidates play one version then the other (the
order is random for all the players). The subjects are not
informed about the difference between the two versions.
During the game, each subject has to report when she/he
perceives a ”lag” or interactivity shortage by holding the
key space.

3) At the end of each wave, each candidate evaluates the
quality of experience during this wave. He gives a note
between 1 and 5. 1 indicates a bad game experience. 5
means an good game experience.

4) At the end of the experiment, the candidates are indi-
vidually interviewed.

C. Network configuration

In order to be able to control the network environment, the
experiment is performed on a Local Area Network. In this
LAN we have the game server machine, the client and a proxy
for delay and packet loss simulation. The proxy forwards all
the packets from the client to the server and vice-versa. Since
we are using UDP connections to send the updates, the proxy
simulates a congested network by ignoring all the packets
received while a certain threshold of packets sent per second is
reached. This threshold represents the capacity of the network
or the available bandwidth: number of packets to forward per
second. So to drastically change the capacity of the network
for a game, we just need to change this threshold value.

The game server is a Dell Precision M6500 with the
following configuration : a Intel Core i7 Q 720 CPU and 4
Go of RAM. The server is configured with the four following
groups ranged by other of importance:

1) Optimal group: Entities with the highest communica-
tion requirements. In this group the update frequency of
entities is 5 ms and the threshold score to stay in this
group is 7.



2) Enhanced group: Entities with relatively high commu-
nication requirements but lesser than those in the optimal
group. Update frequency = 35 ms, threshold = 15.

3) Medium group Entities with average needs in network
resources. Update frequency = 40 ms, threshold = 70.

4) Degraded group Entities with the lowest communica-
tion needs. Update frequency = 75 ms.

The proxy is started at the same time as the game and it
is launched with a configuration file dictating the network
capacity variations during the game. This first 210 seconds
of this configuration is given in the table I. From 0 to 30
secondes, the proxy forwards 6000 packets per second; from
30s to 60s, it forwards 3000 packets per second, marquing a
50% network quality degradation, etc...

Time 0s 30s 60s 90s 120s 150s 180s 210s
Pkts/s 6000 3000 5000 2900 7000 2500 3500 3100

TABLE I
PROXY CONFIGURATION FOR NETWORK CAPACITY

D. Participants

The pilot test was conducted on 9 subjects. These partici-
pants are between 21 and 30 years old with a mean of 25.33
The distribution of players based on their playing frequencies,
it is given in the table II. Only one participant has reported
that he does not play video games. The other participants play
games at least once a week.

Never 1 per year 1 per month 1 per week everyday
1 1 2 5 0

TABLE II
PLAYING FREQUENCIES DISTRIBUTION

The distribution of players based on their games genre
preferences is given by the table III. Real time video games
are video games where all of the players can send their inputs
at the same time. For example, First Person Shooter, Fighting
and Racing games. Turn based games are games where the
players have to wait their turn to send their inputs. According
to the table, most of the participants prefer real time video
games.

Real time games Turn based games
6 3

TABLE III
PREFERRED GENRE DISTRIBUTION

E. Hypothesis

In order to evaluate the impact of the proposition we have
stated the following hypotheses :

• H.A.0 There is no difference in the game experience
between the two versions of the game for each wave.

Fig. 6. Pictures of the experiment

• H.B.0 There is no difference concerning the global game
experience for the entire game session between the two
versions of the game.

• H.C.0 There is no difference in the ratio of, the amount
of time the space key is pressed and the game session
duration, between the two versions of the game.

F. Result

We use the paired t-test to reject the three hypotheses.
The statistical analysis was performed using R http://www.
r-project.org version 2.15.0.

The hypothesis H.A.0 is rejected for the five waves with
p−value < 0.5. The difference between the game experience
when using Lod and without Lod is statically significant. The
results of the t-test are summarized in the table IV.

Wave number M t(8) p-value
Wave 1 1.2222 4.4 0.002287
Wave 2 1.555556 6.4236 0.0002039
Wave 2 1.666667 3.7796 0.005391
Wave 4 1.222222 3.0509 0.0158
Wave 5 1.666667 3.0151 0.01668

TABLE IV
RESULTS

The hypothesis H.B.0 is rejected by the t-test. The dif-
ference of the global game experience for the entire game
session between the game with Lod based adaptation and the
game without Lod is statically significant with a mean M =
1.777778, t(8)=8.6298, p− value = 2.521e− 05

The hypothesis H.C.0 is rejected by the test. The different
between the ratio of, the amount of time the space key is
pressed and the game session duration between the two game
versions is statically significant with a mean M = -0.1197444,
t(8) = -2.4535 and p− value = 0.03972.



G. Discussion

The data gathered during the experimentation and the sta-
tistical study show the effect of our approach on the players’
interactivity with the game, therefore their QoE. In fact all the
three hypothesis were rejected meaning that the players have
perceived a significant gain of the game experience with the
adaptation technique not only for each wave but also for the
overall game session.

The t-test results have also rejected the hypothesis H.C.0.
but with a higher p − value than the others. Because we
choose a p − value threshold of 0.5, the hypothesis is still
rejected but we can see that the results are not strong as in
the two first hypothesis. A reason for this is that during the
experiment, not all participants were following the guideline
we gave them about pushing the space key every time they
notice a loss of interactivity or a decrease in the playability
of the game, instead they were complaining verbally. Thus
for some participants the data we gathered from the space
key, does not reflect the quality of experience they actually
experienced.

Finally, these results validate our approach on improving
the overall quality of interactivity of the game, showing that
adapting the network load generated by the game to the actual
network capacity significantly increase the perceived quality
of the game.

Our approach is not perfect, here are some limitations:
• Since the setting the configuration parameters (entity’s

weight, score coefficient threshold) of the platform is
done manually by the game designer, the whole adap-
tation can be very subjective. A bad configuration of this
system, can result to a very bad player’s QoE. In our
work, we suppose that the game designer knows what is
doing(the significance of each entity) and the parameters
are well set.

• It is also important to note that, while this approach
reduces the bandwidth needed for a good quality game,
it does not eliminate the requirement of a minimum
bandwidth for an enjoyable game. It for sure requires
less bandwidth than the classic cloud gaming services.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a level of detail inspired synchro-
nization scheme used in cloud gaming. The challenges in this
context are due to the variability and sometimes the shortage of
network connectivity required to enjoy a classic cloud gaming
service using video streaming. For that we propose a new
adaptation technique using entities organization to: (1) mini-
mize the effect of these network settings for maintaining game
interactivity and an improved player’s quality of experience (2)
get benefit of the elasticity, the availability and scalability of
the cloud in video games.

The next objective is to implement our version of the
adaptation scheme using a topology heuristic (distance to
camera) as the significance of the entities coupled with a multi-
player environment, where each player has a different camera

and sees different angles of the game scene. We will then
to carry out a large scale experiment in a multiplayer cloud
gaming environment.

REFERENCES

[1] Gaikai, “Gaikai chooses new nvidia geforce grid to fuel explosive
growth in cloud gaming,” http://www.nvidia.com/content/PDF/NVIDIA-
GeForce-Grid-Gaikai-Case-Study-HR.pdf, 2012, [Online; accessed 31-
Octobre-2012].

[2] Onlive, “Onlive official web page,” http://www.onlive.com, 2012, [On-
line; accessed 31-Octobre-2012].

[3] StreamMyGame, “Streammygame official web page,”
http://www.streammygame.com, 2012, [Online; accessed 31-Octobre-
2012].

[4] S. Wang and S. Dey, “Modeling and characterizing user experience in a
cloud server based mobile gaming approach,” in Proceedings of the 28th
IEEE conference on Global telecommunications, ser. GLOBECOM’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 4231–4237. [Online].
Available: http://dl.acm.org/citation.cfm?id=1811982.1812085

[5] T. M. C. Geoffrey Raines, “Cloud computing and soa,” 2009, [Online;
accessed 31-Octobre-2012]. [Online]. Available: http://www.mitre.org/
work/tech papers/tech papers 09/09 0743/09 0743.pdf

[6] D. R. D. Barievi, , and M. Chandrashekar, “Gameon: Analysis and
implementation of cloud gaming,” 2011, [Online; accessed 31-Octobre-
2012]. [Online]. Available: http://www.cs.ucsb.edu/∼manasa/cs276.pdf

[7] G-Cluster, “G-cluster official web page,” http://www.gcluster.com, 2012,
[Online; accessed 31-Octobre-2012].

[8] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä,
A. De Gloria, and C. Bouras, “Platform for distributed 3d gaming,”
Int. J. Comput. Games Technol., vol. 2009, pp. 1:1–1:15, Jan. 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/231863

[9] B. S. An, M. Lee, K. H. Yum, and E. J. Kim, “Efficient data
packet compression for cache coherent multiprocessor systems,” in
Proceedings of the 2012 Data Compression Conference, ser. DCC ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 129–138.
[Online]. Available: http://dx.doi.org/10.1109/DCC.2012.21

[10] T. Ferrari, “End-to-end performance analysis with traffic aggregation,”
2000.

[11] K. L. Morse, L. Bic, and M. Dillencourt, “Interest management
in large-scale virtual environments,” Presence: Teleoper. Virtual
Environ., vol. 9, no. 1, pp. 52–68, Feb. 2000. [Online]. Available:
http://dx.doi.org/10.1162/105474600566619

[12] S. E. Deering, “Host extensions for ip multicasting,” United States, 1989.
[13] D. D. J. S. Steinman, J. W. Wallace and D. Elizandro, “Scalable

distributed military simulations using the speedes object-oriented simu-
lation framework,” in Proceedings of Object-Oriented Simulation Con-
ference (OOS’98), ser. OOS’98, 1998, pp. 3–23.

[14] L. Gautier, C. Diot, and J. Kurose, “End-to-end transmission control
mechanisms for multiparty interactive applications on the internet,” in
In IEEE Infocom, 1999, pp. 1470–1479.

[15] S. K. Singhal, “Effective remote modeling in large-scale distributed
simulation and visualization environments,” Stanford, CA, USA, Tech.
Rep., 1996.

[16] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney, Level
of Detail for 3D Graphics. New York, NY, USA: Elsevier Science Inc.,
2002.

[17] J. Clark, “Hierarchical geometric models for visible surface algorithms,”
Communications of the ACM, vol. 19, no. 10, pp. 547–554, 1976.

[18] M. F. Deering, “Data complexity for virtual reality: Where do all the
triangles go?” in Virtual Reality Annual International Symposium, 1993.,
1993 IEEE. IEEE, 1993, pp. 357–363.

[19] J. Ferber, F. Michel, and J. Baez, “Agre: integrating environments with
organizations,” in Proceedings of the First international conference
on Environments for Multi-Agent Systems, ser. E4MAS’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 48–56. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-32259-7 2

[20] Wikipedia, “Duck hunt,” http://en.wikipedia.org/wiki/Duck Hunt, [On-
line; accessed 12-October-2012].

View publication statsView publication stats

https://www.researchgate.net/publication/258564913

