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Abstract

Application mapping in multicore embedded systems plays a central role in

their energy-efficiency. The present paper deals with this issue by focusing on

the prediction of performance and energy consumption, induced by task and

data allocation on computing resources. It proposes a solution by answering

three fundamental questions as follows: i) how to encode mappings for train-

ing performance prediction models? ii) how to define an adequate criterion for

assessing the quality of mapping performance predictors? and iii) which tech-

nique among regression and classification enables the best predictions? Here,

the prediction models are obtained by applying carefully selected supervised

machine learning techniques on raw data, generated off-line from system ex-

ecutions. These techniques are Support Vector Machines, Adaptive Boosting

(AdaBoost) and Artificial Neural Networks (ANNs). Our study is validated on

an automotive application case study. The experimental results show that with

a limited set of training information, AdaBoost and ANNs can provide very

good outcomes (up to 84.8% and 89.05% correct prediction score in some cases,

respectively), making them attractive enough for the addressed problem.
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1. Introduction1

Multicore and manycore architectures have become the de facto solutions to2

meet the energy-efficiency requirement in modern computer systems. The aim3

is to provide the systems with higher performance levels at the cost of minimal4

power consumption. Typically, for high-performance and embedded computing5

systems, this amounts to maximize the number of floating-point operations per6

second (FLOPS) and the millions of instructions per second (MIPS) respectively,7

per consumed Watt. Nevertheless, the advantage of multicore architectures8

comes with a non-trivial resource allocation challenge on which depend the9

energy-efficiency gains. As a matter of fact, the mapping and scheduling of10

both tasks and data on available processing cores and memory have a strong11

impact on performance and power consumption.12

Existing mapping methodologies [1] adopt either design-time or runtime op-13

timization approaches to improve the behavior of both homogeneous and het-14

erogeneous multicore systems. At runtime, the mapping management may incur15

data/tasks migrations onto the available computation resources. This is orches-16

trated in various ways: either centralized or distributed. Generally speaking,17

the problem of finding optimal mapping and scheduling solutions is known to18

be NP-hard. Some pragmatic approaches that address this problem exploit19

heuristics combined with domain-specific knowledge to explore nearly optimal20

solutions [1]. Having the relevant information on system behavior according21

to variable runtime situations is one major challenge in such adaptive system22

management [2]. Collecting these information (e.g., CPU usage, memory and23

communication interconnect usage) is often tedious and intrusive to the system,24

especially when targeting fine-grained data.25

Given the important progress made recently in machine learning techniques,26

particularly in deep-learning [3], we envision opportunities to apply them when27

dealing with application mapping in multicore systems. Machine learning has28

gained an increasing attention in system design, including computer architec-29
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tures [4] or compilers [5]. To predict the performance of mappings, supervised30

machine learning techniques are considered in this work. They enable to build31

class or value prediction models while minimizing a loss function denoting the32

prediction error percentage on the training data set. On the other hand, un-33

supervised machine learning techniques enable to identify clusters of similar34

behavior or to determine insightful feature representations from raw data sets.35

Beyond these techniques, which are usually applied off-line, other approaches36

such as reinforcement learning and evolutionary algorithms enable online learn-37

ing.38

1.1. Context of this Study39

We consider the dynamic resource allocation question in multicore systems,40

as illustrated in Figure 1. Application workloads are described by hierarchical41

task graphs, where each task consists of a runnable graph [6]. Runnables are42

basic entities defining task behaviors in terms of runtime and communication. A43

mapping performance predictor is coupled loop-wise with a mapping heuristics44

module, which implements typical mapping selection techniques (e.g., evolution-45

ary algorithms) on a given multicore execution platform. A component, called46

workload mapper, is in charge of applying the selected mapping decisions at47

runtime. It acts as a centralized processing element that realizes every mapping48

suggested by the mapping heuristics module.49

The dynamic resource allocation question has been thoroughly covered in50

a recent book [7], considering application domains such as high-performance51

computing, cloud computing and embedded computing. Several approaches52

have been discussed: allocation and optimization inspired by control automation53

theory, search-based allocation heuristics such as genetic algorithms, distributed54

allocation based on swarm intelligence, and value-based allocation. These ap-55

proaches are typical candidates for implementing the above mapping heuristics56

module.57

The performance predictors, investigated in the current work, are the ideal58

complements of the above mapping heuristics module. Indeed, the predicted59
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Figure 1: Dynamic resource allocation in multicore systems

performances, e.g., execution time, speedup or energy-efficiency, help in taking60

efficient mapping decisions at runtime. Note that in place of performance pre-61

dictors, alternative candidates are performance evaluation tools, such as multi-62

core system simulators, analytic methods or worst-case performance estimation63

methods. However, these solutions may come with an overhead in the global64

execution time due to their inherent simulation time; or to their pessimistic65

over-approximations. To avoid this issue, here, we rather investigate an empir-66

ical approach that leverages prediction models trained on raw data generated67

off-line from different system execution scenarios. The models are built with68

machine learning techniques capable of extracting useful insights from system69

behavior. When invoked, they are expected to predict estimates of mapping70

performances in little-to-no time (e.g., for usage in fitness functions of genetic71

algorithm-based heuristics). These estimates must be relevant enough to enable72

the mapping heuristics module to take efficient decisions. While the current work73

does not aim at any new mapping heuristics, its main purpose is to speedup74

the decision loop shown in Figure 1, by reducing the computation complexity75

associated with the performance predictor leveraged by the mapping heuristics76

module.77

1.2. Problem Formulation78

The problem dealt with in this paper is defined as follows:79
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Definition 1 (Mapping Performance Prediction Problem). Given an ap-80

plication to execute on a multicore platform, we are interested in its mapping81

issue onto the available cores. Here, the mapping is addressed at the granularity82

of the runnables. We consider machine learning techniques to predict the per-83

formance induced by the possible mapping choices, while meeting the following84

requirements:85

1. accuracy: the successful prediction percentage reaches at least 80%;86

2. feasibility: data used for learning are obtained at minimal and costless87

intrusion in systems;88

3. responsiveness: predictions are performed in short delays.89

Intuitively, the above prediction issue is a regression problem, i.e., given a90

mapping scenario, we would like to predict its induced performance numbers.91

However, if we partition the domain of all possible values into sub-domains and92

predict the sub-domain to which the performance numbers of a given mapping93

scenario belong to, the above problem can be formulated then as a classification94

problem. Each sub-domain is seen as a class (or a label). For example, one95

may want to map an application according to three target performance ranges96

or classes: high, medium and low. A classification technique would be therefore97

preferred. Accordingly, if we refine the number of classes into more classes,98

fine-grained and more accurate predictions could be obtained.99

1.3. Our Contribution100

We address the above mapping problem by considering two off-line super-101

vised machine learning approaches: on the one hand, classification through102

Support Vector Machine (SVM) [8] and Adaptive Boosting (AdaBoost) [9] tech-103

niques, and on the other hand, regression by using Artificial Neural Networks104

(ANNs) [10]. These approaches have been widely applied with a great success105

in machine learning problems [11]. SVM has been very popular in machine106

learning thanks to its ability to apply in both classification or regression prob-107

lems, even though it is often used in the former. AdaBoost provides an original108
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vision combining different learners that enable accurate classifications while act-109

ing together. On the other hand, ANNs have been proved powerful enough to110

solve various regression problems. Compared to classification techniques, find-111

ing a good compromise between accuracy and training cost is however more112

challenging with ANNs due to their tedious parameterization.113

To solve the mapping problem, three fundamental questions are identified114

and answered throughout this paper: i) how to encode mappings for training115

performance prediction models? ii) how to define an adequate criterion for as-116

sessing the quality of mapping performance predictors? and iii) which technique117

among regression and classification enables the best prediction rates? In this118

paper, we mainly consider execution time and energy consumption as target119

performance metrics to predict.120

Based on these questions, the main contributions of the current paper are121

summarized as follows:122

• different representations trade-offs are analyzed regarding mapping en-123

codings for prediction model training. The aim is to identify a simple124

representation, which is compact and informative enough to be tractable125

with the selected machine learning techniques. Three mapping encoding126

variants are compared. They all capture the positions of execution enti-127

ties and data in a given multicore system, under the form of vectors or128

matrices of topological coordinates.129

• a custom metric for assessing the prediction accuracy is proposed, which130

fits well the mapping problem formulated above. The usual accuracy mea-131

sure relies on the difference, i.e., error percentage, between predicted val-132

ues and actual values: the lower this difference the better the prediction. It133

is not necessarily well-adapted for the mapping problem, especially when134

considering the potential imprecision affecting the values predicted by re-135

gression. The proposed metric relies on a relative comparison: it checks136

whether the performances induced by a pair of mappings are relatively137

comparable in the same way w.r.t. to their actual and predicted values.138
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For instance, if the actual performance of a mapping (computed here with139

a multicore system simulator) is actually better (or worse) than that of140

another mapping, then this also holds for their respective predicted per-141

formances. We refer to this metric as the percentage of successful tendency142

prediction (or PSTP for short).143

• a comparative study of the considered supervised machine learning ap-144

proaches is carried out on an automotive application case study, composed145

of several tens of execution entities. A suitable mapping encoding is se-146

lected from the above analysis and the PSTP metric is applied to evaluate147

the considered classification and regression based machine learning tech-148

niques. The training process is done off-line and the resulting prediction149

models are usable for online prediction. Our results show that, under some150

conditions, AdaBoost and ANNs can enable respectively up to 84.8% and151

89.05% prediction accuracy w.r.t. PSTP, which is relevant enough for152

steering efficient resource allocation decisions.153

The above contributions rely on our preliminary work, published in a confer-154

ence [12], now extended with the following new results: a formalization of used155

design concepts (Sections 4.1, 4.2 and 5.2); the application of two additional156

supervised machine learning techniques (Sections 6.2 and 6.3); the improve-157

ment of the ANN-based evaluation (Section 6.4); and a comparison of all three158

techniques w.r.t. an application case study (Section 7).159

Organization of the paper. The rest of the paper is organized as follows:160

Section 2 discusses some related work; Section 3 introduces the machine learning161

techniques selected in this study; Section 4 describes our system design frame-162

work; Section 5 addresses how to effectively use the selected machine learning163

techniques for solving the mapping performance prediction problem; Section 6164

evaluates the machine learning techniques on an application case study; Section165

7 discusses some important outcomes resulting from these evaluations; finally,166

Section 8 gives concluding remarks and perspectives.167
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2. Related Work168

Application mapping on multicore platforms has been studied for decades in169

literature [1]. To find out near-optimal mapping solutions, many mapping tech-170

niques adopt search-based approaches combined with some analyses to evaluate171

considered mappings w.r.t. the design requirements. The analyses typically rely172

on system-level simulations of application specification in C on FPGA platform173

[13], on analytical models [14, 15] for a fast evaluation of different mapping174

scenarios, or on UML-based model-driven design frameworks [16].175

Some recent approaches distinguish themselves from others by advocating176

machine learning techniques to address the mapping problem. This trend is177

surveyed in [17]. The authors discuss the usual control methods employed to178

achieve the runtime management: mapping, dynamic voltage and frequency179

scaling (DVFS), and dynamic power management to optimize power/energy180

consumption. Then, cover a number of approaches relying on reinforcement181

learning and supervised learning. In [18], reinforcement learning is applied182

through a cross-layer system approach to predict the best energy-performance183

trade-off in multicore embedded systems. It relies on a biologically-inspired184

runtime power management framework implementing a Q-learning algorithm,185

which selects the voltage-frequency levels to minimize energy consumption. The186

Q-table is made up of state-action pairs, where a state represents the CPU cycle187

count and current performance, an action represents the appropriate voltage-188

frequency values to set up. Despite its attractive features, reinforcement learning189

is not easy to deploy in practice for various reasons (overhead of online learning,190

difficult setting of learning parameters, e.g., reward function – see [19]). For this191

reason, we rather consider supervised learning in this paper, as in the related192

work discussed next.193

Generally speaking, when applying learning techniques to the mapping prob-194

lem w.r.t. a given optimization goal (e.g., performance metrics), one usually195

needs to investigate either key parameters, such as the number of threads to196

be partitioned, the task/thread-core binding choices, which influence the opti-197
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mization goal; or simply the performance metrics of interest. He or she could198

then formulate the target problem as a learning problem with the corresponding199

learning features in order to predict the values of the parameters. Most of learn-200

ing features found in existing works are: either application-specific attributes,201

such as number of loops and branch instructions; or hardware resource-specific202

attributes, such as cache and memory size and architecture; or system runtime203

execution statistics, such as cache miss and hit rates. Based on these criteria,204

we classify a selected related work as summarized in Table 1.205

In [20], the authors propose a methodology named SMiTe to predict the206

performance interference on simultaneous multi-threading (SMT) processors.207

It employs a suite of software ”stressors” to quantify applications’ contention208

characteristics defined as sensitivity and contentiousness of shared resources,209

e.g., cache memories. A regression-based prediction model is then built by210

using measurements of such characteristics to predict the level of performance211

degradation that applications may suffer from co-locations. In [21], the authors212

develop statistical power models by using linear regression to estimate per-core213

power consumption. Only a small number of parameters such as the CPU cycles214

and L1 instruction/data cache access rates of each core are selected as the input215

features to train prediction models. The experimental results show that they216

could offer simple yet accurate enough power prediction models.217

A machine learning based approach is proposed in [22] for the optimal map-218

ping of streaming applications described by the StreamIt formalism onto dy-219

namic multicore processors. To maximize the system performance, the authors220

employ a k-Nearest Neighbors (KNN) model to predict the best number of221

threads for streaming applications and a linear regression (LR) model to pre-222

dict optimal number of cores for threads allocation. Input features are extracted223

by using correlation analysis. Fine-grained features such as number of distinct224

multiplicities and number of unconditionally executed blocks for KNN, average225

number of conditional blocks and average size of all blocks for LR have been226

used. In [23], the authors apply machine learning to predict execution time,227

memory and disk consumption of two bioinformatics applications deployed on228
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Table 1: Summary of discussed learning techniques for application mapping. LR= linear

regression, KNN = k-Nearest Neighbors, DT = Decision Tree, MTL= Multi-Task Learning,

CPI = Cycles Per Instruction. The symbol ∗ denotes application-specific features, the symbol

◦ denotes hardware resource-specific features, and the symbol • indicates system runtime

execution behavior attributes.
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different hardware resources. Beyond KNN and LR, they address further tech-229

niques, e.g., SVM and Decision Trees (DT). The impact of application-specific230

attributes, such as the processed length of single nucleotide sequences and the231

taxa size of the input nucleotide datasets, as well as resource-specific attributes,232

e.g., as CPU speed, amount of memory, speed of memory, on the prediction233

accuracy is evaluated.234

In [24], the authors propose multi-task learning (MTL) formulations to pre-235

dict and avoid slow running (or straggler) tasks. They formulate the straggler236

prediction problem as a binary classification problem, and consider system-237

level counters such as CPU and memory usages as learning features. Further238

studies on the mapping of OpenCL kernels onto CPUs and GPUs use SVM239

models [25, 26]. The authors formulate the mapping problem as a classification240

problem, and devise SVM-based prediction models. These models are trained by241

using fine-grained static code features (e.g., number and types of instructions)242

and some runtime parameters extracted from a compiler. These approaches243

focus on the analysis of each OpenCL kernel program, based on which the most244

suitable type of processor (CPU or GPU) can be predicted for kernel mapping,245

w.r.t. given optimization criteria.246

In [27], the authors apply machine learning to find out energy-efficient con-247

figurations for running multi-threaded workloads on heterogeneous multicore ar-248

chitectures. Machine learning models including Multi-Layer Perceptron (MLP),249

regression and tree-based classifiers, are built while taking into account fine-250

grained hardware performance counters information, e.g., cache misses and ac-251

cesses, branch mispredictions at run-time from a multi-threaded application.252

These models aim at predicting parameter values such as core type, voltage253

and frequency for maximizing the energy-efficiency. While comparing the built254

machine learning models, the authors observed that complex predictors such as255

MLP achieve higher accuracy compared to simpler regression-based and tree-256

based classifiers, but they have higher overheads in hardware. In an earlier work257

[28], ANNs have been used for coordinating the dynamic allocation of shared258

multiprocessors-on-chip resources. The global resource allocation problem is for-259

11



mulated based on monitored information about the execution of applications.260

Each ANN takes as input several fine-grain information related to the hard-261

ware resources, including L2 cache space, off-chip bandwidth, power budget,262

the number of read and write hits/misses in the L1 cache. Based on these in-263

formation the performance of the application is predicted for better allocation264

decisions. In [29], the authors apply ANN-based machine learning to predict265

the performance of multiple threads running on heterogeneous cores. The aim266

is to maximize the throughput. For this purpose, fine-grained system execution267

information such as L1, L2 and L3 cache miss rates, instruction mix ratios are268

collected to feed the ANN models.269

In this paper, we mainly concentrate on the accurate performance prediction270

for application mapping onto multicore architectures by considering low-cost271

and coarse-grained input training information, i.e., mapping locations of tasks272

and data, combined with global performance numbers associated with each map-273

ping instance. To obtain high prediction accuracy, the aforementioned related274

work require fine-grained information as indicated via the input learning features275

in Table 1, and thus need to implement some non-trivial module to collect such276

data at runtime. On the other hand, these studies alleviate the performance277

prediction problem of mappings by either focusing on task/thread executions278

on some specific resources such as in [21, 25, 26, 24] without considering the279

communication aspects, or focusing on the prediction of threads and/or cores280

numbers or core configurations such as in [23, 22, 27] without investigating the281

explicit thread/task-core binding solutions. No microarchitecture-dependent in-282

formation is required in our approach contrarily to approaches such as [29] or283

[30]. By considering a minimal information, we show how selected machine284

learning techniques, i.e., SVM, AdaBoost and ANN, can be applied to build285

relevant performance prediction models useful for mapping decisions in the flow286

depicted by Figure 1.287
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3. Selected Supervised Machine Learning288

We briefly recall in the next the main principles of the three supervised289

machine learning techniques selected for our study. The tools used for applying290

these techniques are briefly presented.291

3.1. Classification Techniques: SVM and AdaBoost292

The Support Vector Machines (SVM) [8] technique is usually considered a293

must-try in machine learning approach [31]. Given a set of training examples,294

each marked as belonging to a class among a number of classes, the aim of SVM295

is to find the best classification1 function to distinguish the class members.296

(a) linear classification

(b) nonlinear classification

Figure 2: SVM applied to a 2-class learning problem: in case 2a the best classification function

is denoted by the solid line; in case 2b the input space is transformed into a feature space

with linearly separated dataset.

Figure 2a shows a two-class learning problem with a linearly separable297

dataset, and a corresponding linear classification function consisting of a hy-298

1SVM can be also applied in regression problem, even though it is only used for classification

in our work.
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perplane that separates the members of the two classes. As there are many299

such linear hyperplanes, SVM enables to find the best function (e.g., the solid300

line in Figure 2a, right-hand side) by maximizing the margin between the two301

classes. Geometrically, this margin corresponds to the shortest distance between302

the closest data points to a point on the hyperplane. In addition to linear clas-303

sification, SVMs can also perform a nonlinear classification by using kernel trick304

to deal with data sets that are not linearly separated. This is done by trans-305

forming the input space into a high-dimensional feature space in which the data306

set can be separated linearly as shown in Figure 2b. To perform such trans-307

formation, a kernel function denoted by φ is required. The most widely used308

kernel functions are Radial Basis Function (RBF), linear and polynomial. Let309

x and y be two vectors in the input space, the simplest linear kernel is defined310

by their inner product plus an optional constant, whereas RBF and degree-d311

polynomial kernels are respectively defined as:312

K(x, y) = exp(−||x− y||
2

2σ2
) (1)

and313

K(x, y) = (xTy + c)d (2)

where σ and c are free parameters trading off the influence of higher-order versus314

lower-order terms.315

Since the mapping problem addressed in this paper is a non-linear classifica-316

tion problem, choosing the suitable kernel function φ is very important to find317

the best SVM classification models.318

The Adaptive Boosting (AdaBoost) algorithm [9] is one of the most im-319

portant ensemble methods [32]. Its main idea is to construct a strong learner320

by combining multiple weak or base learners. It is adaptive in the sense that321

consequent weak learners are adjusted iteratively in favor of those instances322

misclassified by previous classifiers.323

Given a weak or base learning algorithm and a training set as shown in324

Figure 3 (left-hand side), where the symbols + and − represent instances that325
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Figure 3: Constructing a strong learner by combining weak learners generated iteratively in

AdaBoost.

belong to two different classes, AdaBoost works as follows. First, it assigns equal326

weights to all the training examples. Let Di denote the weights distribution at327

the ith learning round. From the training set and D1 the algorithm generates328

a weak learner denoted by h1 as shown in Figure 3 (right-hand side) by calling329

the base learning algorithm. Then, the weights of the incorrectly classified330

instances denoted by circles are increased, and an updated weight distribution331

D2 is obtained. From the training set andD2, AdaBoost generates again another332

weak learner. This process is repeated for a fixed number of rounds, and the final333

model is derived by combining the weighted outputs of the previously generated334

weak learners. The weights of the weak learners are determined during this335

training process. It has been proven that even when the base learners are weak,336

as long as the performance of each one is slightly better than random guessing,337

the final model can converge to a strong learner [33].338

3.2. Artificial Neural Networks (ANNs)339

We consider the feed-forward neural networks, also known as Multi-Layer340

Perceptron (MLP) [10], consisting of: one input layer of neurons, one output341

layer of neurons, and one or several hidden layers of neurons. An example of342

such a network is illustrated in Figure 4. The connections between the neurons343

of different layers are weighted. The weights of the connections, denoted by344

wk, are adapted during the training process. Given an input mapping Mi, the345

output of the network o = pred(Mi) should match as much as possible the346

expected value eval(Mi). Once the network is trained enough, it is used as a347

predictor for unseen mappings.348
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Figure 4: Multi-layer Perceptron with one hidden layer.

The MLP network features interesting approximation properties: any con-349

tinuous function can be approximated closely by an MLP [34] with a single350

hidden layer. However, the number of neurons in the hidden layer may be large351

and cannot be determined algorithmically. To learn a function, an input vector352

of values is fed to the network through the input layer. The algorithm used to353

adapt the weights during the training phase is back-propagation. The weights354

are adapted in order to minimize the error between the output value calculated355

by the network and the actual value of the function computed at that input356

vector. This learning process is repeated for every input vector. Its outcome,357

i.e., whether or not the network approximates well the function, is dependent on358

the initial values of the weights and on the number of the neurons in the hidden359

layer. To obtain a suitable network, the process needs to be performed multi-360

ple times by varying the weights and/or the number of hidden layers and their361

included neurons until suitable parameter values are found, w.r.t. the expected362

accuracy of the approximated function.363

3.3. Considered Machine Learning Tools364

There are several machine learning tools nowadays. Two of them are con-365

sidered in this work: the scikit-learn v0.9.12 package and the Weka v3.8.0366

toolset [35]. The former is used to train classification models with SVM and367

AdaBoost, while the latter is applied for training regression-based prediction368

models with ANNs.369

2http://scikit-learn.org
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For SVM-based classification with the scikit-learn package, the main pa-370

rameters one needs to tune are the following:371

• kernel function: one can choose among linear, poly, rbf and sigmoid;372

• gamma: kernel coefficient for poly, rbf and sigmoid functions;373

• C : penalty parameter of error term.374

For AdaBoost-based classification, the tuning parameters in the scikit-learn375

package are as follows:376

• base estimator : the base estimator from which the boosted ensemble is377

built;378

• n estimators : the maximum number of estimators;379

• learning rate: it is used to shrink the contribution of each classifier;380

• algorithm: either SAMME.R(default) or SAMME. The former uses the prob-381

ability estimates to update the additive model, while the latter uses the382

classifications only. The SAMME.R algorithm enables a faster training.383

For regression-based prediction with the Weka v3.8.0 toolset, we consider384

its associated MLPRegressor package: a multilayer perceptron with a single hid-385

den layer. This package exploits the optimization capability provided in Weka,386

by minimizing the given loss function plus a quadratic penalty with the Broyden-387

Fletcher-Goldfarb-Shanno (BFGS) method. The ANN tuning parameters of the388

MLPRegressor-based prediction are described as follows:389

• number of hidden neurons (large numbers induce long learning durations);390

• ridge parameter : used to determine the penalty on the size of the weights;391

• seed value for initializing the weight values of the networks;392

• activation functions: Sigmoid or Softplus;393

• loss function: squared error or approximated absolute error;394

17



• a tolerance parameter for the delta values;395

• conjugate gradient descent (rather than BFGS) for accelerating the train-396

ing process;397

• parallel calculation of loss function and gradient when training on multiple398

CPU cores.399

The application of the above machine learning techniques to the case study400

addressed in Section 6 will consist in finding the parameter values that provide401

precise-enough performance predictions.402

4. Multicore System Design403

We present the design concepts used in this study for the description and404

simulation of multicore systems. These concepts enable to specify applications405

through a task graph oriented representation (see Section 4.1). Existing appli-406

cation parallelization tools [36] [37], combined with designers’ analysis, help to407

derive such task graphs. Network-on-Chip based multicore system models are408

used for application mapping and execution with a simulator (see Section 4.2).409

Finally, the encoding of the resulting mappings is addressed (see Sections 5.1410

and 5.2) for performance prediction.411

4.1. Application Design Concepts412

We define the modeling concepts dedicated to application description. These413

concepts are inspired by the Amalthea formalism [6], which has been introduced414

for automotive software design.415

Definition 2 (Runnables and labels). We consider the following notions:416

• a runnable r is a function representing the smallest unit of code schedulable417

by an operating system, and associated with non functional attributes, e.g.,418

execution time;419
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• a label l is a symbolic concept representing a memory location, associated420

a size attribute.421

The value of a non functional attribute of a runnable r can be either a422

point-wise value v ∈ R or an interval of values (lwb, upb), lwb, upb ∈ R or a423

probabilistic distribution. This enables to specify various value approximations.424

For instance, considering the execution time of a runnable, a point-wise value425

can be used to capture an average/worst-case/best-case execution time. An426

interval captures a variation of execution time between worst-case and best-427

case scenarios, while a probabilistic distribution will describe a probabilistic428

law characterizing the execution time behavior. The unit of label size is byte.429

In the sequel, we respectively denote byR and L the sets of all runnables and430

labels. Runnables and labels are combined to build a task, which corresponds431

to an aggregate execution entity.432

Definition 3 (Tasks). A task t = (R,L, dep, release) is a labeled directed433

graph of runnables such that the set of runnables R ⊆ R represents the graph434

vertices; L ⊆ L is a non-empty set of labels associated with the edges connecting435

the runnables r ∈ R; dep ⊆ R× (L ∪ ∅)×R defines the edges of the graph; and436

release is an attribute specifying whether the release mode of task t is either437

periodic or sporadic or aperiodic, together with the corresponding periodicity438

value.439

From the above definition of dep, the edge connecting two different runnables440

within a task can be either associated with a label or not: a labeled edge ex-441

presses a data communication between connected runnables, while non-labeled442

edges model precedence between connected runnables.443

Example 1. The task t = (R,L, dep, release) where R = {r0, r1, r2, r3, r4},444

L = {l1, l2}, dep = {(r0, l1, r2), (r1, r4), (r1, l2, r3), (r2, r4), (r4, r3)} and release =445

〈aperiodic,−−〉 represents an aperiodic task, composed of five connected runnables.446

Here, only two runnable connections correspond to data communications achieved447
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through labels l1 and l2. The specification of task t is the same as for the task448

T4 shown graphically in Figure 5.449

Upon the release of a task, all its associated runnables are scheduled for450

execution. Let us denote by T the set of all tasks. Tasks are combined together451

to build applications as described in the next.452

Definition 4 (Application). An application a = (T, dep) is a directed graph453

of tasks such that T ⊆ T and dep ⊆ T × T .454

Concretely, applications are graphically described by using Amalthea nota-455

tions [6], which capture the design concepts defined above.456

Example 2. An application model composed of five tasks with various release457

modes is illustrated in Figure 5. The periodic task T0 has a period of 5ms. It458

interacts with the periodic tasks T1 and T2. Task T3 denotes a sporadic task with459

a minimum inter-release interval specified as (lwb, upb). Task T4 is an aperiodic460

task with a release mode defined according to a given distribution law. A zoom461

in this task shows a sub-graph of five runnables Ri,i∈0..4. Runnables R0 and R2462

communicate via the label L1: R0 writes L1 while R2 reads L1. The size of L1463

represents the exchanged data volume.464

Figure 5: A simple application model in Amalthea

In the remainder of the paper, for the sake of simplicity we will use the465

notation X.a in order to refer to an attribute a of a concept X. For instance,466

given a task t, the runnable ri in task t is denoted by t.ri.467
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4.2. Application Mapping on Execution Platforms468

We consider execution platforms composed of multiple cores that exchange469

data via a communication interconnect, e.g., a crossbar. Each individual core470

is composed of a CPU and a local memory. Let C denote the set of all cores.471

Definition 5 (Execution Platform). An execution platform p = (C, I) is472

defined as a subset C ⊆ C of cores, interconnected by an interconnect I as473

communication infrastructure.474

With the high number of cores in target execution platforms, the chosen475

communication interconnect is Network-on-Chip (NoC), as it scales better com-476

pared to bus and crossbar.477

When applications are mapped on a given execution platform, each task (or478

runnable) is assigned to a core CPU in charge of processing the corresponding479

functions. Label variables are assigned to memory locations in the cores. When480

a runnable and its accessing labels are mapped onto different cores, the corre-481

sponding communications become remote and require transactions via the NoC.482

Otherwise, the memory accesses are local and do not incur any NoC transaction.483

Definition 6 (Application mapping on execution platform). Given an ap-484

plication a and an execution platform p, a mapping m of a on p is defined as:485

(a.T × p.C) ≡def (a.T.R× p.C) ∪ (a.T.L× p.C) (3)

i.e., the runnables a.T.R and labels a.T.L associated with each task T of the486

application a are mapped onto the cores p.C of the platform p.487

Figure 6 depicts a typical scenario where runnables are mapped onto the488

CPU part of the cores in an execution platform. The labels are mapped onto489

memory locations within cores. The bottom part of Figure 6 illustrates a mul-490

ticore platform models where cores communicate with each other via a network491

interface (NI), connecting them to the NoC. Each core model includes a CPU492

(dark blue box) and a local memory (red dashed box).493
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The McSim-TLM-NoC (Manycore platform Simulation tool for NoC-based494

systems at Transactional Level Modeling) [38] [39] is an Amalthea-based sim-495

ulator that is used to evaluate mapping scenarios. The multicore architecture496

considered in this simulator relies on an abstract cache-less core model [40]497

[41], which supports priority-preemptive runnable execution (and Round-Robin498

scheduling for runnables with the same priority level). The runnables mapping499

decisions are defined in the mapping heuristics module (see Figure 1). An ex-500

ample of mapping consists in allocating tasks that strongly communicate with501

each other on the same (or closest) cores, in order to reduce the overall com-502

munication traffic [40]. Each core in McSim-TLM-NoC is composed of two503

main units: an execution unit and a communication unit, which deal with their504

corresponding instructions within the executed runnables. The different cores505

communicate through either a bus, a crossbar or a mesh-oriented packet-based506

Network-on-Chip (NoC). In the current work, we use a NoC, where each node507

in the network includes a core and a local memory. An XY routing algorithm is508

applied for packet exchanges between nodes. The runtime and energy consump-509

tion information computed by McSim-TLM-NoC are estimated on the basis of510

instruction costs relying on ARM Cortex-A7 and Cortex-A15 CPUs. Further511

details on the simulator implementation can be found in [41].512

McSim-TLM-NoC provides a clean and simple interface allowing to map513

runnables and labels onto platform resources, through custom mapping algo-514

rithms. Once the mapping is defined, the different runnables are scheduled515

and executed [40]. Contrarily to cycle-accurate simulators such as gem5 [42],516

McSim-TLM-NoC is fast enough to enable the evaluation of thousands of appli-517

cation mappings in a quite reasonable time. This enables to produce mapping518

examples usable as training data for performance prediction.519
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Figure 6: Application mapping on a multicore platform.

5. Application of Selected Machine Learning Techniques to Mapping520

Performance Prediction521

The effective use of the selected machine learning techniques (see Section 3)522

to address the mapping performance prediction problem, requires some answers523

to two crucial questions: i) how to define a relevant mapping encoding for model524

training? ii) how to adequately assess the quality of the generated prediction525

models? These questions are addressed in the sequel.526

5.1. Mapping Encoding for Training527

We discuss three candidate mapping encodings, as illustrated in Figure 7:528

• Encoding 1 (Figure 7a). In this scenario, the vector describing a mapping529

has as many entries as there are runnables and labels in the model of an530

application. To build such a vector, the runnable and label identifiers are531

sorted in an arbitrary order once and for all. The cores of the platform532

are indexed using integers. Then:533

– each mapping vector component, corresponding to a runnable iden-534

tifier, is initialized with the index value of the core on which this535
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(a) Encoding 1 (b) Encoding 2 (c) Encoding 3

Figure 7: Three application mapping encodings.

runnable is mapped. For instance, if the ith component of such a536

vector V corresponds to a runnable Ri, then the value of V [i] is537

equal to the index of the core on which Ri is mapped;538

– in a similar way, for each label, the corresponding mapping vector539

component is initialized with the index of the core containing the540

memory on which the label is mapped.541

• Encoding 2 (Figure 7b). This scenario is similar to the previous one ex-542

cept that now core indexes are not single integers but two integers, corre-543

sponding to the Cartesian coordinates of cores within the two-dimensional544

space inherited from the mesh topology of the considered NoC intercon-545

nect. Here, the size of the vector representing the mapping is twice as546

large as in the first encoding approach.547

• Encoding 3 (Figure 7c). In this scenario, we encode a mapping through548

a square matrix. The number of columns and the number of rows of the549
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matrix are equal to the number of runnables in an application. Each row550

(and column) entry is associated with a runnable identifier.551

Let us assume that a runnable Ri writes data to a label L and another552

runnable Rj reads data from L. The flits (i.e., the elements composing a553

packet exchanged in a NoC) sent by Ri to L have to perform h(w) hops554

in the NoC depending on the mapping locations of Ri and L. When Rj555

reads data from L, the flits traveling from L to Rj perform h(r) hops.556

Finally, the value at entry (i, j) of the encoding matrix is defined as:557

(h(w) ∗ nw) + (h(r) ∗ nr) (4)

where nw is the number of flits written by Ri on L and nr is the number558

of flits read by Rj from L. Finally, the matrix resulting from the encoding559

is transformed into a vector by putting its columns on top of each other560

or by aligning its rows next to each other.561

Which mapping encoding to select? The first encoding may not render562

well the similarity or dissimilarity between different mappings. Typically given563

the scenario shown in Figure 7a, let us consider a first pair of mappings M1 and564

M2 such that M1 and M2 only differ by the location of one specific runnable.565

In M1 this runnable is mapped on core 5 (in the matrix shown on top of Figure566

7a) while in M2 the runnable is mapped on core 3. The Manhattan distance567

between the vectors representing M1 and M2 is 2. Now, let us consider mappings568

M3 and M4 such that in M3 the same runnable is mapped on core 4 and in569

M4 this runnable is mapped on core 8. The Manhattan distance between the570

vectors encoding M3 and M4 is 4. By comparing with the Manhattan distance,571

mappings M1 and M2 appear to be more similar than mappings M3 and M4.572

However, M3 and M4 are topologically more similar since the locations of the573

runnable of interest are closer in that case than in the case of M1 and M2:574

cores 4 and 8 are closer to each other compared to cores 5 and 3. From this575

observation, the first mapping encoding scenario does not appear appropriate576

enough. So, we will consider the two other encodings.577
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The size of vectors in the second encoding is linearly proportional to the578

number of runnables and labels. In the third encoding, the size of the vector579

depends quadratically on the number of runnables. This can make the training580

of learning models more complex. Indeed, real-life applications can feature581

huge numbers of runnables and labels. Thus, the data needed to successfully582

train learning models can grow exponentially in the dimension of the input583

vector. Reducing the size of this vector is necessary to speed-up the training584

by accelerating the training algorithms and by reducing the size of the required585

training set of data.586

From this remark, we finally select the second encoding scenario for our587

experiments in this paper, since it provides the best compromise in terms of rel-588

evance and tractability in size. Note that this encoding induces some constraint589

on the reusability of obtained prediction models for different applications. In-590

deed, the applications must have similar task graph structures, but the attribute591

values of the task, runnables and labels can vary. This restriction can be lifted592

however by building the prediction models at runtime, e.g., through an initial593

training phase during application execution where mappings are encoded and594

evaluated. Of course, this online learning process can have some cost, especially595

when achieved on the same execution platform as the application itself.596

5.2. Mapping Prediction Model Assessment597

The natural way to assess learned predictive models for both classification598

and regression problems is to calculate the prediction accuracy3, i.e., ratio of599

correct predictions over total predictions, obtained with trained models on previ-600

ously unseen test data instances. The higher the accuracy the better the model.601

F-measure [43] is another widely used metric to evaluate classification models,602

3The prediction accuracy is different from the loss metric (generally a percentage), which is

rather computed on training and validation data instances. The validation data set enables to

tune the parameters of the prediction model under training phase. The loss can be seen then

as a summation of the approximation errors made for predicted versus actual values/classes

in the training or validation sets.
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especially for imbalanced data. It is the harmonic average of the precision and603

recall metrics. A high F1-score indicates that the model has low false positives604

and low false negatives, and is thus able to correctly identify real threats and605

not disturbed by false alarms.606

Another way to assess the relevance of mapping performance prediction607

could rely on a ranking of considered mappings according to their predicted608

classes or performance metrics. Let Mi and Mj denote two different mappings;609

let eval(Mi) and eval(Mj) be respectively their actual metric values; and let610

pred(Mi) and pred(Mj) denote their respective predicted classes or metric val-611

ues. No matter the difference between the predicted and the actual classes or612

metric values of Mi and Mj , if eval(Mi) and eval(Mj) strictly compare simi-613

larly as pred(Mi) and pred(Mj), then the predictions become relevant enough614

to be exploited in the mapping heuristics module (see Figure 1). For instance,615

if eval(Mi) > eval(Mj), then one should have pred(Mi) > pred(Mj). We refer616

to this relative comparison as mapping metrics tendency prediction, i.e., how617

the predicted classes or performances of mappings ”tend” to behave relatively618

to each other, w.r.t. actual metric values.619

Definition 7 (Consistent tendency prediction). Let Mi and Mj denote two620

mappings; let eval(Mi) and eval(Mj) be respectively their actual metric values,621

and let pred(Mi) and pred(Mj) denote their respective predicted classes or met-622

ric values. A tendency prediction is said to be consistent if the values pred(Mi)623

and pred(Mj) are comparable in the same way as eval(Mi) and eval(Mj), i.e.:624

eval(Mi) ∼ eval(Mj)↔ pred(Mi) ∼ pred(Mj) (5)

where the operator ∼ belongs to {<,=, >}.625

In general, when the prediction accuracy of a trained model is high, the626

tendency will be very consistently predicted. However, the inverse is not true.627

Thus, prediction accuracy is not necessary the most suitable assessment criterion628

for our learning problem. Instead, we introduce a simpler yet adequate measure629

relying on tendency prediction.630
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Definition 8 (Percentage of successful tendency prediction – PSTP).631

Given a reference set T of testing mapping pairs, we define the percentage632

of successful tendency prediction (PSTP) as the percentage of mapping pairs633

〈Mi,Mj〉 ∈ T that satisfies the formula (5).634

Accurate prediction models are expected to provide very high PSTP values.635

In practice, it is difficult to reach a maximum prediction accuracy, especially636

with regression techniques, because of the approximations applied for value pre-637

diction. For instance, given two different application mappings Mi and Mj , let638

us consider eval(Mi) and eval(Mj) are close values when executed on an actual639

platform. The comparison of their predicted values, pred(Mi) and pred(Mj), ac-640

cording to PSTP will be consistent only if the prediction accuracy is high enough641

to distinguish how they compare. However, when eval(Mi) and eval(Mj) are642

quite different, the comparison of pred(Mi) and pred(Mj) according to PSTP643

has higher chance to be consistent, even without a moderate prediction accuracy.644

To assess the quality of built prediction models, it is worth evaluating PSTP645

on pairs of mappings 〈Mi,Mj〉 whose actual performance values differ by ∆%646

(where ∆ ∈ R+). The idea behind this filtering of mapping pairs is to elimi-647

nate test cases for which the performance comparison is highly sensitive to the648

prediction accuracy. We thus define such ∆-filter PSTP measure as follows:649

Definition 9 (∆-filter PSTP). Given a reference test set T of mapping pairs650

whose actual values differ by ∆% (where ∆ ∈ R+), we define ∆-filter PSTP over651

T as the percentage of mapping pairs 〈Mi,Mj〉 ∈ T that satisfies the formula652

(5).653

Note that for classification techniques, given a mapping pair 〈Mi,Mj〉, their654

respective predicted classes pred(Mi) and pred(Mj) are, instead of real numbers655

for regression techniques, class labels representing sub-domains of performance656

values. To make them directly comparable as real numbers, we encode class657

labels as natural numbers λ ∈ N in a way that reflects the greater than/less658

than/equal to relationships for the sub-domains derived from the domain of659

performance values.660
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Given a mapping pair 〈Mi,Mj〉 whose actual performance values Mi and Mj661

differ by ∆%, let us assume that the number of target classes enables to assign662

Mi and Mj into different classes. If both mappings are, however, classified into663

the same class, representing the same sub-domain of performance values, it then664

indicates that the classifier is not accurate enough to distinguish them. We refer665

to such predictions as unknown tendency predictions, characterized as follows:666

Definition 10 (Percentage of unknown tendency prediction – PUTP).667

Given a reference test set T of mapping pairs to be classified, we define the per-668

centage of unknown tendency prediction (PUTP) as the percentage of mapping669

pairs {Mi,Mj} ∈ T that satisfy:670

eval(Mi) ∼ eval(Mj)→ pred(Mi) = pred(Mj) (6)

where the operator ∼ belongs to {<,>}.671

Similarly to ∆-filter PSTP, the ∆-filter PUTP for classification is defined as672

follows:673

Definition 11 (∆-filter PUTP.). Given a reference test set T of mapping674

pairs whose actual values differ by ∆% (where ∆ ∈ R+), we define the ∆-filter675

PUTP over P as the percentage of mapping pairs 〈Mi,Mj〉 ∈ T that satisfies676

the formula (6).677

To summarize, the outcome of the classification of two different mappings678

Mi and Mj falls within one of the following cases:679

• correct prediction: when the predicted classes are ranked consistently680

w.r.t. the actual mapping performances values eval(Mi) and eval(Mj);681

• wrong prediction: when the predicted classes pred(Mi) and pred(Mj) are682

ranked in an opposite way w.r.t. the actual mapping performances values683

eval(Mi) and eval(Mj);684

• unknown prediction (only for classification): when the predicted classes685

pred(Mi) and pred(Mj) are identical while they should be distinct w.r.t.686

the actual mapping performances values eval(Mi) and eval(Mj);687
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In our experiments, we will mainly use PSTP as accuracy assessment metric688

for defined prediction models. The coverage of this assessment on the testing689

mapping set will be evaluated with PUTP in applied classification techniques.690

To formulate the mapping performance prediction problem as a classification691

problem, we partition the generated simulation data into a number of classes692

according to the metric value ranges. For execution time, it is done by taking693

the minimal and maximal execution times (denoted by minExec and maxExec)694

as the possible range of execution times [minExec,maxExec], and by dividing695

this range into sub-ranges of same length. The length is computed as follows:696

length = (maxExec−minExec)/N (7)

where N denotes a selected number classes. As a result, we obtain N intervals,697

as follows:698

[minExec,minExec+ length], ..., [maxExec− length,MaxExec] (8)

denoted by I1, ..., IN . The data samples can thus be classified into N classes ac-699

cordingly. An instance is classified in class Ci, if its execution time for instance,700

falls into the interval Ii. In this way, instead of predicting the execution time,701

we predict the class or interval a given mapping falls into. The larger the N702

gets, the more informative the prediction result gets.703

Finally, the model training, we partition the working mapping set as follows:704

65% of the mappings are used for training and the remaining 35% are used as705

unseen data for testing the quality of the prediction models. This partition-706

ing is compatible with common practices in machine learning – e.g., see the707

partitioning suggested in Weka [35].708

6. Comparison of Machine Learning Techniques on a Case Study709

We consider an automotive application case study [12] in order to evaluate710

the quality of the prediction models derived using the selected machine learning711

techniques: SVM, AdaBoost and ANN. The application, referred to as Demo-712

Car, corresponds to an engine control system, provided by Robert Bosch GmbH,713
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within the DreamCloud European FP7 project. As briefly mentioned in the in-714

troductory section, comparing the quality of our results w.r.t. existing mapping715

heuristics [1] is beyond the scope of this paper. Instead, we focus on the quality716

of performance value prediction, which is used by the mapping heuristics module717

to assess candidate mappings (see Figure 1).718

The inputs of DemoCar application are typical in automobiles, e.g., engine719

speed, temperature, battery voltage. Its outputs are the triggered cylinder720

number, the ignition time and the desired throttle position. In total, there are721

10 input message sources and 4 output message sinks. The considered Amalthea722

model of DemoCar is composed of 43 runnables and 71 labels. Out of these723

runnables, 22 runnables operate at high activation rate, 4 runnables operate724

at low activation rate, and 17 runnables get activated aperiodically upon some725

event occurrences.726

In the following, we discuss the generation of DemoCar mapping instances for727

training and testing the target prediction models. Classification techniques are728

first presented. Then, ANNs are applied. Finally, we discuss the effectiveness729

and efficiency of the three techniques.730

6.1. Experimental Setup731

Generation of the DemoCar Application Mapping Instances. The732

mappings of DemoCar feature a multicore execution platform composed of 6733

cores with a 2x3-mesh NoC architecture for communication. Here, each core734

model in McSim-TLM-NoC features an ARM Cortex-A15 CPU running at735

1GHz. Current automotive on-chip multicore systems do not exceed this core736

count. Note that even though a homogeneous multicore execution platform is737

considered here, our proposal can also deal with heterogeneity by associating738

tasks/runnables with instruction costs pertaining to different target computing739

elements, in McSim-TLM-NoC. This would probably result in different per-740

formance/energy outcomes in the resulting mapping vectors. Then, the exact741

same training and prediction methods remain applicable, as illustrated in the742

homogeneous design considered here.743
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The mapping of labels is fixed and identical in all mappings generated in this744

study. Only the mapping of runnables on core CPUs is variable. This choice745

has been made for the sake of simplicity as we can straightforwardly evaluate746

the impact of changes in runnable mappings. Even though relevant, taking747

into account possible changes in label mappings would make the exploration748

space much larger. Given a number R of runnables to be mapped on a number749

C of cores, there are CR possible mappings of the runnables on these cores.750

For DemoCar, this corresponds to 643, which is a very large exploration space.751

Within this space, we decided to compute with McSim-TLM-NoC simulator752

a maximum set of 30K mappings generated4 randomly according to a uniform753

distribution (for a relevant coverage of the possible mapping space). We checked754

there is redundant and no outlier mapping instance within this set of mappings.755

Each mapping instance is associated with its corresponding execution time and756

energy consumption computed with the simulator.757

Four different working mapping sets are considered for the training with all758

three supervised learning techniques: 3K, 5K, 10K and 30K mapping instances.759

This enables to explore how the quality of the prediction evolves with the size760

of working mapping sets.761

Prediction Model Evaluation Scenarios. The PSPT measure introduced762

previously is used for assessing the generated prediction models. For this pur-763

pose, we consider the set P(Mi,Mj) of all possible pairs of mappings without764

redundancy resulting from the testing subset mappings. Then, we evaluate the765

following cases:766

• case-0: PSTP over the set P(Mi,Mj). Given n the number of mappings in767

the test subset, the number of all possible pairs of mappings in P(Mi,Mj)768

is defined as: (n ∗ (n− 1))/2;769

• case-1: ∆-filter PSTP over the set P(Mi,Mj), where ∆ = 5 (i.e., only pairs770

4All mapping data sets used in the current study are available at https://seafile.lirmm.

fr/d/ca11a19a75c44013988f.
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of mappings such that the actual metric values of one mapping are 5%771

different from those of the other mapping);772

• case-2: ∆-filter PSTP over the set P(Mi,Mj), where ∆ = 10;773

• case-3: ∆-filter PSTP over the set P(Mi,Mj), where ∆ = 20.774

For classification-based approaches, we also use the PUTP measure (see775

Definition 10 in Section 5) to evaluate the coverage of PSTP on the testing776

set. In the reported experiments, we consider different numbers of classes N ∈777

{3, 9, 81, 512}. Figure 8 shows the distributions of the 30K mapping instances778

used later on, according to their induced execution times, and w.r.t. different779

numbers of classes. We notice that the resulting distributions are moderately780

unequal and may lead to imbalanced data problem [44], sometimes faced in781

classification problems. While the data set could be transformed to have more782

balanced distribution (e.g., by collecting more data or by applying sampling783

methods), we decide to keep the set unchanged. Advanced machine learning784

algorithms can deal with imbalanced data [44]. This is typically the case of785

Decision Trees.786

Our experiments are performed on an Intel Core i5-6600 host operating at787

3.4GHz. Most of the prediction model evaluations shown in the next sections788

concern execution time. Even though not reported, similar results are observed789

when focusing on energy. The main reason is that the evaluations obtained with790

McSim-TLM-NoC are often proportional for both metrics.791

6.2. SVM-based Prediction Modeling792

Figure 9 reports the performance of SVM models w.r.t. different numbers793

of classes. These results rely on the most favorable values selected for the794

kernel function function, gamma and C values: rbf, 1 and 1000 respectively.795

In particular, the kernel function value domain has been exhaustively explored.796

For each function, in average 30 combinations of gamma and C values are797

explored. The duration required to train every SVM model varies between less798

than 1 second to 13 minutes.799
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Figure 8: Distributions of 30K mapping instances w.r.t. execution time ranges. The Y-axis

denotes the number of mapping instances (in log scale) corresponding to each class ID shown

on the X-axis.

Let us consider Figure 9c. We obtain for case-0 a maximum PSTP value800

of 53.6% while the minimum is 43.9%. It means that with a 30K working801

mapping set, the best SVM prediction model would enable correct mapping802

pair comparisons only on 53.6% of evaluated pairs. For case-1, case-2 and803

case-3, after filtering the tested mapping pairs based on the difference in their804

execution times, we observe better results (i.e., ∆-filter PSTP where ∆ = 5%,805

10%, 20%). This respectively leads to 59.76%, 63.9% and 68.97% of correct806

mapping comparison. More generally, for each target number of classes shown807

in Figure 9, we observe the same trend: given a working mapping data set (i.e.,808

3K, 5K, 10K and 30K mapping sets), the PSTP gets better as 1) the number of809

training samples grows, and 2) the filtering ratio of the testing set of mapping810

pairs increases.811

In addition, the PSTP values get better when the number of classes is refined.812

34



(a) Targeting 3 classes (b) Targeting 9 classes

(c) Targeting 81 classes (d) Targeting 512 classes

Figure 9: Performance of SVM models according to PSTP criterion w.r.t. different target

classes.

The reason behind is that with a low number of classes, more mapping pairs tend813

to be classified into the same class. Then, the prediction model would not be814

able to predict their related tendency by comparing their execution time. This815

is characterized through the PUTP measures reported in Figure 10 accordingly.816

For instance, the PUTP value obtained in Figure 10a explains why the817

PSTP’s shown in Figure 9a are quite low. Let us take the best PSTP in Figure818

9a, which is 27.9% and its corresponding PUTP in Figure 10a, which is 63.0%.819

It means that only 37.0% of tested mapping pairs have been classified into dif-820

ferent classes, and among such pairs whose tendency can be compared, 75.4%821

were predicted correctly. However, a predictor that cannot compare mappings822

in most of the cases, even when providing good predictions whenever possible,823
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(a) Targeting 3 classes (b) Targeting 9 classes

(c) Targeting 81 classes (d) Targeting 512 classes

Figure 10: The percentage of unknown tendency predictions for SVM w.r.t. Figure 9.

is not preferable. Better predictions can be actually obtained by increasing the824

number of classes from 3 to 81, as observed in Figures 9 and 10: the PUTP825

decreases fast while the PSTP becomes better. When further refining the num-826

ber of classes from 81 to 512, the PUTP decreases very slowly, resulting in a827

poor evolution of the PSTP values (decrease from 69.0% to 68.0%). This in-828

dicates that the benefit from class refinement holds up to certain partitioning829

granularity.830

On the other hand, one possible reason behind the modest correct prediction831

scores obtained above with SVM technique can relate to the aforementioned832

possible data imbalance of the mapping instance sets (see Figure 8). In the833

next, experiments, we apply the AdaBoost algorithm, which includes Decision834

Trees as a weak learner, to check whether the correct prediction scores can be835

improved.836

36



(a) Targeting 3 classes (b) Targeting 9 classes

(c) Targeting 81 classes (d) Targeting 512 classes

Figure 11: Performance of AdaBoost models according to PSTP criterion w.r.t. different

target classes.

6.3. AdaBoost-based Prediction Modeling837

To anticipate any imbalanced data issue as discussed in Section 6.1, we838

have selected Decision Trees as base estimator. Different combinations of the839

other parameter values are then explored, and the best values are selected from840

around 100 explored combinations. Figure 11 reports the obtained prediction841

performance scores w.r.t. different numbers of classes, i.e., 3, 9, 81 and 512.842

These results are obtained by selecting 600 for n estimators, 0.4 for learning843

rate, and SAMME as algorithm. The duration required to train the AdaBoost844

models on the different training sets varies between 6 to 93 seconds.845

Comparing the prediction performance values of SVM and AdaBoost, we846

observe that the former outperforms the latter only when targeting 9 classes847

with a maximum PSTP of 62.6% versus 56.1%. However, when targeting 81848
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(a) Targeting 3 classes (b) Targeting 9 classes

(c) Targeting 81 classes (d) Targeting 512 classes

Figure 12: The percentage of unknown tendency predictions w.r.t. Figure 11.

and 512 classes, AdaBoost models achieves 80.1% and 84.8% PSTP scores re-849

spectively. In the same time, with AdaBoost a prediction performance always850

keeps improving as the number of classes increases, in contrast to SVM beyond851

81 classes (see Figure 9). To some extent, this indicates that the AdaBoost852

models distinguish more accurately different mapping instances.853

This is confirmed in Figure 12, which reports the PUTP scores for AdaBoost854

experiments. Here, the PUTP keeps decreasing as the number of classes grows,855

and drops to less than 1% with 512 classes. This result is quite promising,856

in particular when considering that the training time is less than 2 minutes!857

Finally, another interesting observation here is that the PUTP also remains858

stable w.r.t. different working mapping sets.859
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6.4. ANN-based Prediction Modeling by Regression860

We apply now a regression technique combined with MLP instead of classi-861

fication, to the same mapping performance prediction problem.862

From the explored parameter values, only the most promising ones are re-863

ported here. Four neurons are considered within the single hidden layer in864

selected ANN models. Depending on the size of the considered working map-865

ping sets, the other parameters of the ANN models vary as follows: the ridge866

parameter, the seed and the tolerance parameter are respectively 13.1, 34 and867

10−3 for 3K mappings; 13.1 (and 10 for energy prediction), 34 and 10−4 for 5K868

mappings; 0.21 (and 10 for energy prediction), 185 and 10−7 for 10K mappings,869

and 0.03, 185 and 10−7 for 30K mappings. The obtained prediction perfor-870

mance scores are depicted in Figure 13. Here, in addition to execution time,871

we also report the prediction of energy consumption. The training durations872

required for building the corresponding prediction models varies from 5 seconds873

to 4 minutes (note that during the initial ANN parameter exploration, some874

settings took even more than a day to complete, without giving better scores).875

(a) Execution time prediction (b) Energy prediction

Figure 13: Performance of ANNs according to PSTP criterion, w.r.t. different metrics.

In Figure 13a, we obtain for case-0 a maximum PSTP of about 74.6% while876

the minimum PSTP value is 72.23%. In other words, it means that in the877

best case (i.e., 30K mappings) the obtained prediction model enabled a correct878

comparison for 74.6% of evaluated mapping pairs. In case-1, after filtering879

the set of mapping pairs, there remain around 85.87% of this set. The PSTP880
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on this reduced set of mapping pairs yields a better score that reaches up to881

77.98%, which is slightly better than previously. By increasing the filtering of882

the set of mapping pairs, respectively in case-2 and case-3, we observe better883

results, leading respectively to 83.88% and 89.47% of correct mapping tendency884

prediction.885

(a) Execution time prediction (b) Energy prediction

Figure 14: Percentage of tested mapping pairs with ANN-based prediction for case-0, case-1,

case-2 and case-3

The prediction performance scores for energy consumption (see Figure 13b)886

generally follow similar trends compared to execution time. In particular, the887

very high score observed in case-3 results from the low number of tested map-888

ping pairs after the ∆-filtering. As a matter of fact, the variation in the en-889

ergy values of the generated mappings is not as large as for the corresponding890

execution time. Figure 14 shows the percentage of tested mapping pairs with891

ANN-based prediction for case-0, case-1, case-2 and case-3, as a consequence892

of the ∆-filter PSTP assessment.893

7. Gained Insights and Discussion894

The different experiments presented above show how classification and re-895

gression can be used to deal with the prediction of performances multi-task896

application mapping on multicore architectures. First of all, despite the poten-897

tial complexity of the addressed problem, the results obtained especially with898

the AdaBoost classification and ANN regression models are promising.899
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On the accuracy of evaluated techniques. Among the two evaluated clas-900

sification techniques, AdaBoost provides better results than SVM. Despite the901

high success of the latter in literature, it seems that the diversity of learners902

combined by the former is beneficial when facing typical situations such as data903

imbalance, which is more tractable with Decision Trees supported in AdaBoost.904

On the other hand, the ANN-based regression technique provides the most ac-905

curate prediction models in terms of PSTP score.906

In order to confirm the above observations about the three evaluated ma-907

chine learning techniques, we carried out similar experiments with a different908

application, executed on a 2x3-mesh multicore architecture. This application,909

referred to as light-weight DemoCar, is composed of 18 periodic runnables and 61910

labels [12]. We obtained similar trends as for the case study detailed in Section911

6. While all these results are obtained on a 2x3-mesh multicore architecture,912

we still expect similar trends when comparing the three techniques for architec-913

tures comprising more cores. Nevertheless, their corresponding training costs914

may increase as there would be more possible mapping vector configurations to915

be taken into account.916

Now, when focusing on the prediction errors about both execution time and917

energy values with ANNs, we obtain the distributions depicted in Figures 15a918

and 15b. Their respective mean values are 1.46% and 0.3%, while the standard919

deviations are 12.35 and 5.72. The number of mappings with an error less than920

20% accounts for 90.0% and 99.8% of tested mapping sets w.r.t. execution921

time and energy consumption respectively. This makes the built performance922

predictors relevant enough for a meaningful mapping comparison.923

On the implications about models integration in dynamic resource924

allocation. Our study on mapping performance prediction is motivated by925

the dynamic resource allocation flow illustrated in Figure 1. Here, the mapping926

heuristics module is responsible of taking efficient resource allocation decisions927

at runtime for enhanced energy-efficiency. For this purpose, it exploits mapping928

performance estimations or prediction to select the best resource allocation de-929
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cisions.930

(a) Execution time (b) Energy

Figure 15: Prediction errors distribution for ANN-based generated models. The Y-axis denotes

the number of mapping instances within the different error ranges reported on the X-axis.

In embedded real-time systems, the computing and memory resources are931

generally limited compared to high-performance or cloud computing systems.932

Therefore, it is difficult to envision a mapping design space exploration at run-933

time in embedded real-time systems as it will induce an overhead on the actually934

executed workload. An alternative pragmatic approach would pre-evaluate dif-935

ferent mapping options off-line, which could be leveraged afterwards at runtime.936

For more effectiveness, one should make sure to cover a priori all relevant design937

options. This is not easy to guarantee. An alternative solution, as promoted in938

the DreamCloud European project, is to consider fast performance estimation939

tools such as the McSim-TLM-NoC [40] or the Interval Algebra simulator [45].940

The current work opens an opportunity for an aggressive mitigation of the over-941

head related to the on-demand evaluation of mappings with these tools. For942

instance, the size and response time (for estimating the performance of a map-943

ping) of the ANN-based prediction model defined for the DemoCar application944

are respectively about a few tens of kilobytes and microseconds (See Table 2).945

The size and response time of the Interval Algebra simulator are respectively946

about a few megabytes and milliseconds, while they are about a few seconds947

and megabytes respectively for McSim-TLM-NoC. AdaBoost is more costly than948
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Interval Algebra in both response time and model size. For applications with949

high reactivity constraints, the ANN-based prediction model appears then as950

the most preferable.951

Table 2: Prediction models versus simulator for mapping performance estimation.

Response time (µs) Implement. size (KB)

Interval Algebra simulator [45] 2× 103 4.13× 103

McSim-TLM-NoC simulator [40] 1.2× 106 440

ANN prediction model 63 37

AdaBoost prediction model 2.4× 103 1.0× 104

On the requirements about the solution to the problem addressed in952

this paper (see Definition 1). The AdaBoost and ANN prediction models953

can meet the accuracy requirement specified earlier in the problem definition,954

with their respective ∆-filter PSTP scores of 84.8% and 89.05%, when ∆ =955

20. Concretely, these scores make the associated prediction models capable of956

identifying, when they exist, candidate mappings that can improve by 20%,957

e.g., the execution time, w.r.t. a reference mapping. While the above PSTP958

scores can be considered as reasonable enough for soft real-time automotive959

applications, higher scores would be however necessary for hard real-time tasks960

in order to make sure they meet their timing requirements.961

On the other hand, the mapping instances used to train the built prediction962

models are simple enough to be extractable in a costless manner from system963

executions. Only information about task/data allocation on target cores and964

memories, together with the induced global performance numbers, are required.965

This is easily captured via the proposed mapping encodings for fast learning,966

confirming that our approach favors the feasibility requirement.967

Finally, the responsiveness requirement is met by the selected prediction968

models. For instance, the average performance prediction time for a mapping969

is 63 µs on the desktop machine used to carry out the previous experiments,970

which is quite reasonable.971
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8. Conclusions and Perspectives972

In this paper, we applied machine learning to deal with the performance973

and energy consumption prediction of applications mapped onto multicore plat-974

forms. Our solution relies on simple coarse-grained information, i.e., the map-975

ping coordinates of application tasks, and thus avoids intrusion into a system976

to obtain training parameters. Two supervised machine learning approaches977

are investigated: classification based on SVM and AdaBoost, and regression978

based on ANNs. They have been experimented on an automotive application979

case study to evaluate their efficiency and effectiveness. The results show that,980

under some conditions, AdaBoost and ANNs can achieve very promising pre-981

diction accuracy with up to 84.8% and 89.05% respectively, which confirms the982

effectiveness of these two models for learning the multicore system behaviors.983

In the future, we would like to deepen our current proposal with methods984

enabling to overcome the possible learning scalability issue while enhancing the985

current prediction scores. One possible idea is to enrich the mapping encoding986

with more information about system characteristics. This could help the ma-987

chine learning models to better learn the system behavior. For instance, making988

explicit the data dependency information between runnables or the number of989

NoC traversal hops may contribute to a better performance prediction. This990

enhancement may come at the cost of large size input data for networks as there991

will be additional information to encode. and huge mapping encoding vectors992

could be difficultly tractable. Complementary techniques such as unsupervised993

machine learning (e.g., feature or attribute selection, which enables to keep only994

the most relevant features w.r.t. the learning problem) could be considered to995

mitigate this possible risk.996
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