A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, Mapping on multi/many-1006 core systems: Survey of current and emerging trends, Design Automa-1007 tion Conference, vol.1, pp.1-1, 2013.

A. Jantsch, N. D. Dutt, and A. M. Rahmani, Self-awareness in systems on chip 1009 -A survey, IEEE Design & Test, vol.34, issue.6, pp.8-26, 2017.

Y. Lecun, Y. Bengio, and G. E. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, and O. , , p.1013

A. Cristal and M. Valero, A general guide to applying machine learning to 1014 computer architecture, Supercomputing Frontiers and Innovations, vol.5, issue.1

Z. Wang and M. O'boyle, Machine learning in compiler optimisation

. Amalthea-project-consortium, Amalthea -An Open Platform 1018 Project for Embedded Multicore Systems, 2015.

L. S. Indrusiak, P. Dziurzanski, and A. K. Singh, Dynamic Resource Allocation 1021 in Embedded, High-Performance and Cloud Computing, River Publishers 1022 Series in Information Science and Technology, p.1023, 2016.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.20, issue.3

Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line 1026 learning and an application to boosting, J. Comput. Syst. Sci, vol.55, issue.1, pp.1027-119, 1997.

C. Fyfe, Do Smart Adaptive Systems Exist?, vol.173, p.1030

S. Fuzziness and . Computing, , p.79, 2005.

S. B. Kotsiantis, Supervised machine learning: A review of classification 1033 techniques, Informatica (Slovenia), vol.31, issue.3, pp.249-268, 2007.

A. Gamatié, R. Ursu, M. Selva, and G. Sassatelli, Performance prediction of 1035 application mapping in manycore systems with artificial neural networks, 1036 in: MCSoC, IEEE Computer Society, pp.185-192, 2016.

T. Stefanov, A. Pimentel, and H. Nikolov, Daedalus: System-level design 1038 methodology for streaming multiprocessor embedded systems on chips, 1039 Handbook of Hardware/Software Codesign, pp.1-36, 2017.

X. An, A. Gamatié, and É. Rutten, High-level design space exploration for 1041 adaptive applications on multiprocessor systems-on-chip, Journal of Sys-1042 tems Architecture -Embedded Systems Design, vol.61, issue.3-4, pp.172-184, 2015.

X. Y. Zhu, M. Geilen, T. Basten, and S. Stuijk, Multiconstraint static schedul-1044 ing of synchronous dataflow graphs via retiming and unfolding, IEEE 1045 Transactions on Computer-Aided Design of Integrated Circuits and Sys-1046 tems, vol.35, pp.905-918, 2016.

A. Gamatié, S. L. Beux, E. Piel, R. Ben-atitallah, A. Etien et al., , p.1048

J. Dekeyser, A model-driven design framework for massively parallel 1049 embedded systems, ACM Trans. Embed. Comput. Syst, vol.10, issue.4, 2011.

A. K. Singh, C. Leech, B. K. Reddy, B. M. Al-hashimi, G. V. Merrett et al., , p.1057

, Machine learning for run-time energy optimisation in many-core systems, Proceedings of the Conference on Design, p.1059, 1058.

, DATE '17, European Design and Automation Association, vol.3001, p.1060

B. Belgium, , pp.1592-1596, 2017.

A. Irpan, Deep reinforcement learning doesn't work yet, 2018.

Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, Smite: Precise qos predic-1065 tion on real-system smt processors to improve utilization in warehouse scale 1066 computers, Proceedings of the 47th Annual IEEE/ACM International 1067 Symposium on Microarchitecture, MICRO-47, p.1068

D. C. Washington and . Usa, , pp.406-418, 2014.

S. Sankaran, Predictive modeling based power estimation for embedded 1071 multicore systems, Proceedings of the ACM International Conference 1072 on Computing Frontiers, CF '16, pp.1073-370, 2016.

P. Micolet, A. Smith, and C. Dubach, A machine learning approach to map-1076 ping streaming workloads to dynamic multicore processors, SIGPLAN Not. 1077, vol.51, issue.5, pp.113-122, 2016.

A. Matsunaga and J. A. Fortes, On the use of machine learning to predict 1080 the time and resources consumed by applications, Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, p.1082

, Grid Computing, CCGRID '10

N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, Multi-task learn-1086 ing for straggler avoiding predictive job scheduling, J. Mach. Learn. Res. 1087, vol.17, issue.1, pp.3692-3728, 2016.

Y. Wen, Z. Wang, and M. F. O'boyle, Smart multi-task scheduling for opencl 1090 programs on cpu/gpu heterogeneous platforms, pp.1-10, 2014.

B. Taylor, V. S. Marco, and Z. Wang, Adaptive optimization for opencl pro-1093 grams on embedded heterogeneous systems, Proceedings of the 18th

, ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools 1095 for Embedded Systems, pp.11-20, 2017.

H. Sayadi, N. Patel, A. Sasan, and H. Homayoun, Machine learning-based ap-1097 proaches for energy-efficiency prediction and scheduling in composite cores 1098 architectures, 2017 IEEE International Conference on Computer De-1099 sign, p.1100, 2017.

, , pp.129-136, 2017.

R. Bitirgen, E. Ipek, and J. F. Martinez, Coordinated management of multiple 1103 interacting resources in chip multiprocessors: A machine learning approach, Proceedings of the 41st Annual IEEE/ACM International Symposium 1105 on Microarchitecture, vol.41, p.1106, 1104.

U. Dc, , pp.318-329, 2008.

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, and O. , , pp.121-128, 2017.

C. V. Li, V. Petrucci, and D. Mossé, Exploring machine learning for thread 1113 characterization on heterogeneous multiprocessors, Operating Systems Re-1114 view, vol.51, pp.113-123, 2017.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang et al., , 1116.

A. Mclachlan, B. Ng, P. S. Liu, Z. Yu, M. Zhou et al.,

D. Hand and . Steinberg, Top 10 algorithms in data mining, Knowledge and 1118 Information Systems, vol.14, pp.1-37, 2008.

T. G. Dietterich, Machine-learning research -four current directions, pp.97-136, 1997.

R. E. Schapire, The strength of weak learnability, Machine Learning, vol.5, issue.2, pp.197-227, 1990.

. Wikipedia, Artificial Neural Networks: approximation theorem

, Weka -Data Mining 1127 Software in Java, 2017.

J. Ceng, J. Castrillón, W. Sheng, H. Scharwächter, R. Leupers et al., , p.1129

H. Meyr, T. Isshiki, and H. Kunieda, Maps: An integrated framework for mpsoc 1130 application parallelization, pp.754-759, 2008.

A. Mallik, S. Mamagkakis, C. Baloukas, L. Papadopoulos, and D. Soudris, , p.1132

S. Stuijk, O. Jovanovic, F. Schmoll, D. Cordes, R. Pyka et al., , p.1133

F. Capman, S. Collet, N. Mitas, and D. Kritharidis, Mnemee -an automated 1134 toolflow for parallelization and memory management in mpsoc platforms, 48th ACM/IEEE Design Automation Conf. (DAC'11), 1135.

K. Latif, C. Effiong, A. Gamatié, G. Sassatelli, L. Zordan et al., Dzi-1138 urzanski, L. Soares Indrusiak, An Integrated Framework for Model, p.1139

, FDL: Forum 1140 on specification & Design Languages, p.1141

. Spain, , 2015.

. Dreamcloud-project-consortium, McSim -Manycore platform Simula-1144 tion tool for NoC-based platform at a Transactional Level Modeling level, 1145.

K. Latif, M. Selva, C. Effiong, R. Ursu, A. Gamatié et al., , p.1147

L. Dan, P. Ost, L. Dziurzanski, and . Indrusiak, Design space exploration for 1148 complex automotive applications: An engine control system case study, 8th Workshop on Rapid Simulation and Performance Evaluation: Methods 1150 and Tools, p.1149, 2016.

D. Cnrs and . D5, 2 -Abstract Simulation Platform, European Dream-1152

. Cloud and . Project, , 2015.

A. Butko, F. Bruguier, A. Gamatié, G. Sassatelli, D. Novo et al., , p.1155

M. Robert, Full-system simulation of big.little multicore architecture for 1156 performance and energy exploration, 2016 IEEE 10th International 1157 Symposium on Embedded Multicore/Many-core Systems-on-Chip
URL : https://hal.archives-ouvertes.fr/lirmm-01418745

, , pp.201-208, 2016.

C. J. Van-rijsbergen, Information Retrieval, 1160.

H. He and E. A. Garcia, Learning from imbalanced data, IEEE Trans. on, p.1161

K. and D. Eng, , vol.21, pp.1263-1284, 2009.

L. S. Indrusiak and P. Dziurzanski, An interval algebra for multiprocessor re-1163 source allocation, pp.165-172, 2015.