
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015. 1

Introducing Geometric Constraint Expressions
into Robot Constrained Motion Specification

and Control
Gianni Borghesan1, Enea Scioni1,2, Abderrahmane Kheddar3, Herman Bruyninckx1,4

Abstract—

THE problem of robotic task definition and execution
was pioneered by Mason, [1], who defined setpoint

constraints where the position, velocity, and/or forces are
expressed in one particular task frame for a 6-DOF robot.
Later extensions generalized this approach to constraints in
i) multiple frames, ii) redundant robots, iii) other sensor spaces
such as cameras, and iv) trajectory tracking. Our work
extends tasks definition to i) expressions of constraints, with
a focus on expressions between geometric entities (distances
and angles), in place of explicit set-point constraints, ii) a
systematic composition of constraints, iii) runtime monitoring
of all constraints (that allows for runtime sequencing of
constraint sets via, for example, a Finite State Machine), and
iv) formal task descriptions, that can be used by symbolic
reasoners to plan and analyse tasks. This means that tasks
are seen as ordered groups of constraints to be achieved
by the robot’s motion controller, possibly with different set
of geometric expressions to measure outputs which are not
controlled, but are relevant to assess the task evolution.
Those monitored expressions may result in events that
trigger switching to another ordered group of constraints to
execute and monitor.

For these task specifications, formal language definitions
are introduced in the JSON-schema modeling language.

Index Terms—Software, Middleware and Programming
Environments; Motion and Path Planning; Behaviour-Based
Systems.

I. Introduction

Specifying what one wants a robot to do, instead of
having to code manually how it has to do it, is still
a challenge for the research community; for example,
in Fig. 1, where a simple open-the-drawer task is rep-
resented, what the robot does is to open the drawer.

Manuscript received: August 12, 2015; Revised October 6, 2015;
Accepted November 27, 2015.

This paper was recommended for publication by Editor Tamim
Asfour upon evaluation of the Associate Editor and Reviewers’ com-
ments. The authors gratefully acknowledge the support from the
European Commission’s FP7 project “RoboHow” (FP7-ICT-288533),
and KU Leuven’s Geconcerteerde Onderzoeks-Actie “Global real-time
optimal control of autonomous robots and mechatronic systems”.

1Mechanical Engineering, University of Leuven, Belgium.
2Engineering Department (ENDIF), University of Ferrara, 44122

Ferrara, Italy.
3CNRS-AIST Joint Robotics Laboratory (JRL), UMI3218/RL, Japan,

and CNRS-Université Montpellier, LIRMM, Interactive Digital Human,
France.

4Mechanical Engineering, Eindhoven University of Technology, the
Netherlands.

Digital Object Identifier xxxxxxxxxxxxxxxxxxx

Drawer Handle Frame

End-effector Frame

approach axis

Distance gripper-handle

opening axis

handle direction

gripper normal direction

Figure 1. The representation of the a grasping task for the (topmost)
handle and open-the-drawer task needs the definition of many geo-
metric features upon which constraints must be enforced.

However, the task specification concerns the satisfaction
of some geometric constraint (distance to zero, correct
alignment, etc.), in order to grasp the uppermost handle.
The how-to-do task specification approach can be made
easy if regarded from the perspective of recent con-
strained optimization based control. Instantaneous motion
of the robot’s joints is computed as the solution of a
constrained optimization problem in which:
• the objective function defines the general behavior

(e.g. time, energy consumption...) and can even
include weight-prioritized tasks and/or utility func-
tions;

• the constraints expressed as equality as well as in-
equality functions, define the sub-space in which the
solution belongs to in terms of the task and robot
“state variables”.

Moreover, the switching between different sets of object-
ive functions and constraints is ruled on the basis of
monitoring, the extent to which some functions (not ne-
cessary constraint functions) assume given values during
the task execution. Previous work such as, e.g., Stack
of Tasks (“SoT”, [2]), instantaneous Task Specification and
Control (“iTaSC”, [3]), Whole Body Control (“WBC”, [4]),
or a revised versions of the Task Frame Formalism, (“TFF”,
[5], [6]), are examples of such a trend.

However, a large part of these formalisms, a robot
can be driven to achieve complex tasks that require the
definition of many constraints in different spaces and
in different reference frames. However, large part of the
research has focused on maturing the control aspects

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015.

(namely the numerical solver part), leaving the way tasks
are designed and formalized untreated.

Summing up, the state of the practice is that:
• current frameworks do not follow the rule of the sep-

aration of concerns (see e.g. [7]): they do not separate
the configuration of the hardware platform, of the
data communication and synchronization between
software components, etc., from the task definition.

• a formal semantics is still missing, reducing the
opportunities to use task planning at the symbolic
level to automatically generate tasks.

Looking at the above considerations’ state-of-the-art,
we are convinced that a fundamental step to ease the
employment of constraint-based systems and task-based
programming is to separate the task description from
its implementation and describe the first with a Domain
Specific Language that follows semantic rules. Our main
contribution is therefore the design of a DSL that allows
abstraction of: i) the space where tasks are expressed,
which is defined in terms of a symbolic expressions, and
ii) the type of control to be enforced on such space, which
is defined in terms of the achieved behaviour.

II. Tasks as sets of constraints: fundamentals
Our goal is to describe a task constraint with a minimal

set (of properties, relations, equations...), in such a way
that the specification is abstracted (as much as possible)
by the implementation of how to solve for the constraint
during the execution of the task. We start considering the
simplest task description formalism, the Task Frame Form-
alism, [1], [5], where each constraint is defined employing
a minimal set of specifications, namely: i) the controlled
and task frames, ii) selection matrix S that expresses
which, among the six components of the Cartesian space,
are controlled in position and which are controlled in
force, and iii) the reference values. Thus, the description
of a task (in the Task Frame Formalism) consists of at
most six non-conflicting constraints, that are applied in
the controlled frame (that normally corresponds to the
robot end effector) and expressed in a frame where po-
sition and orientation are chosen to represents elements
of interest for the task itself. Employing the Task Frame
Formalism approach, Bruyninckx and De Schutter, [5],
already proposed a generic way of defining a tasks as a
set of constraints (an example is given in Listing 1).

1 move compliantly {
with task frame directions
xt: velocity 0 mm/sec
yt: velocity 0 mm/sec

5 zt: velocity v_des mm/sec
axt: velocity 0 rad/sec
ayt: velocity 0 rad/sec
azt: velocity 0 rad/sec

} until zt force <- f_max N

Listing 1. Example of a guarded-motion task definition from [5].

Other works followed this line, either focusing on the
specification (e.g. [8]), or on the flexibility of constraint
definition (e.g. [3]).

The Task Frame Formalism separates the task descrip-
tion from its implementation: indeed, Listing 1 fully
defines a task, with no explicit dependancies to robot
information, such as: i) the kinematics (redundancy as
well as mechanical and actuator constraints), ii) the con-
trol laws employed in the motion or force control, and
iii) the perception capabilities (estimation, observation...).
Similar considerations can be applied to more recent
frameworks (e.g. SoT, [2], and WBF, [4]), that, while
posing the emphasis on different aspects, maintain the
same approach in task definition.

Our extensions to this task description approach are:
• a wider choice of the constrained variables, which,

instead of being related to the Cartesian space rep-
resentation (not always suited to easily describe a
generic relationship between two bodies), will be
represented as (one of a enumerable set of functions
between) geometric primitives. In this regard, Sec. IV
focuses on the description of the geometric expres-
sions, and on the geometric primitives used by these
geometric expressions;

• the substitution of the type of control (e.g., force and
position) with the type of behaviour that we want to
achieve; which includes the description of the type
of control and the type of constraint, Sec. V;

• the specification of measurement expressions that are
employed to monitor the task execution state and to
trigger changes in the robot behaviour.

The combination of the previous elements (expressions,
behaviours and monitors) formally defines a Domain Spe-
cific Language (DSL) for robotic tasks. Task instances,
as well as the specification itself, have been encoded
as JavaScript Object Notation (JSON) [9] and JSON-
Schema [10] documents, respectively. This allows us to
decouple the language-dependent task grounding from
the formal description, not only to guarantee portability
and legibility, but also to exploit existing tools and
model validators. The validation of the model semantic
is the first step to allow automatic reasoning systems
that generate symbolic plans, [11], [12], or symbolic task
scheduling, [13]. Further numerical post-check opera-
tions have been implemented in the host language of the
controller. For sake of brevity, we will report snippets of
the models written in JSON-Schema only for the model
point and the entity1.

III. Analogies with symbolic planning
While we develop this formalism as a way to describe

tasks at an abstract level, we later realized that this
effort has overlapping goals with works that investigate
how to bridge the gap between symbolic planning and
continuous action planning. In the latter, actions are
often the result of the execution of pre-computed joint
trajectories; these trajectories are in turn generated from
one or more target configurations that are then checked

1All the models described can be retrieved at https://github.com/
gborghesan/jgeom constr and accompanying material.

BORGHESAN et al.: INTRODUCING GEOMETRIC CONSTRAINT EXPRESSIONS INTO ROBOT CONSTRAINED MOTION SPECIFICATION AND CONTROL 3

Table I
Summary of geometric primitives, grounded in frame {w}.

Geometric primitive: symbol: entity composed by:
point expr. in {w} p{w} scalars x, y, z
versor expr. in {w} n̂{w} scalars x, y, z s.t. || · || = 1

line expr. in {w} n{w} point origin, versor direction
plane expr. in {w} P{w} point origin, versor normal

for feasibility and reachability (e.g. in [14], [15] RRT-
based methods are used). In [16], object geometry is
leveraged to reduce computation time of RTT, while in
[17] the Task Space Regions are described: TSRs allow
to combine constraints expressed in Cartesian space and
compute joint trajectories by means of a RRT-based
algorithm. Generally, path planning is solved in joint
space: as a consequence, if the state of the environment
changes, replanning is preferred to active control (e.g.
[15]), and it is not easy to deal with under-constrained
goals. Moreover, planning deals with joint trajectories,
and interaction tasks cannot be detailed.

We favour (constraint-based) control rather than full-
planning. Constraint-based control is known to be com-
pliant to changes in the environment (as shown in [3])
and allows for the exploitation of unconstrained degrees
of freedom (dof). It is naturally suited for hybrid (force-
position) task specification. On the other hand, complex
environments can cause a task-based control to fall in
local minima that a global trajectory planner can avoid.
From these considerations, the reader can see that the
two approaches are in fact complementary and cover
different requirements.

IV. From geometric entities to expressions

This section introduces the geometric concepts of
i) geometric entities (a geometrical feature such as a point,
a versor, a line, a plane, etc.), ii) geometric primitives (entit-
ies expressed in a frame), and iii) geometric expressions (a
scalar function that relates primitive). Expressions can
be non-geometric as well (e.g. joint expressions).

Expressions are a relationship that maps joint-space
values and measurements, to task-space values (con-
trolled, measured, etc.). The use of expressions is two-
fold: i) to compute “deviations” from (task-space) posi-
tions, or ii) to compute the “Jacobian” (the partial deriv-
ative of the expression w.r.t. joint angles) that relates joint
velocities (forces) to generalized velocities (torques).

Since our focus is task specification, no assumption
is made on how values and Jacobian are computed
(e.g. analytically, numerically, with solution of implicit
equations, etc.).

A. Geometric entities

The elementary entities considered are the point and
the versor; both have three parameters, that can be rep-
resented by triples (x, y, z). Additionally, the versor must
comply with unitary norm constraint. Combinations of

1 { "id": "http://.../point#",
"$schema": "http://json-schema.org/draft -04/←↩

schema#",
"description": "Point Entity",
"type": "object",

5 "properties": {
"x": {
"type": "number",
"description": "coordinate along x-axis" } ,

"y": {
10 "type": "number",

"description": "coordinate along y-axis" } ,
"z": {
"type": "number",
"description": "coordinate along z-axis" } ,

15 "type": { "enum": ["point"] }
} ,
"required": ["x", "y", "z", "type"],
"additionalProperties": false

}

Listing 2. Formal JSON meta-model of a point entity.

1 { "id": "http://.../primitive#",
"$schema": "http://json-schema.org/draft -04/←↩

schema#",
"description": "Geometric Primitive",
"type": "object",

5 "properties": {
"object_frame": {
"type": "string",
"description": "reference frame" } ,

"entity": { "$ref": "#/definitions/entity" }
10 } ,

"required": ["object_frame", "entity"],
"additionalProperties": false,
"definitions": {
"entity": {

15 "oneOf": [
{ "$ref": "http://.../point#" } ,
{ "$ref": "http://.../versor#" } ,
{ "$ref": "http://.../plane#" } ,
{ "$ref": "http://.../line#" }]

20 } } }

Listing 3. Formal JSON meta-model of a geometric primitive.

points and versors yield the other two common geomet-
ric entities, line and plane, each with five free parameters
in its representation. (Choosing a non-minimal set of
representation parameters often simplifies specification.)
Since a line is oriented and has an origin, projection
relationships can be defined (see below).

B. Geometric primitives
Entities need a frame to ground their coordinate repres-

entations: so, a geometric primitive (Listing 3) associates
a geometric entity with a frame. The four possible geo-
metric primitives are reported in Table I, along with the
associated mathematical symbol. Formal meta models of
point entity and primitive are given in Listing 2–Listing 3;
a meta model represents all the formal constraints that
every individual instance must conform to.

C. Geometric expressions
The list of primitives in Table I is not exhaustive, but

suffices for most scalar expressions that describe posi-

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015.

Table II
Summary of geometric expressions between primitives.

point line
point point-point distance

line
line-point distance

projection of point on line

distance btw lines
projection (p1-f1)
projection (p2-f2)

plane point-plane distance

(a) Geometric expressions on distances.

versor plane
versor angle btw versors
plane incident angle angle btw planes

(b) Geometric expressions on angles.

tioning between pairs of objects. For example, Tables IIa
and IIb give distance and angle expressions. Since most
of the table entries are self-explaining, we focus only on
the explanation of the line-point and line-line distances.

The line-point entry (Fig. 2a) has two expressions: the
line-point distance, that is the distance between the point
p2 and the point of shortest distance f1, and the projection
of point on line, that is the (signed) distance between the
points p1 and f1.

The line-line entry (Fig. 2b) has three distance expres-
sions: the distance from lines, distance d between the two
lines, the signed distance between the point p1 and the
minimum distance point f1, and the signed distance
between the origin of the line p1 and the minimum
distance point f2.

{
o

1
}

{
o

2
}

p1

p2

l1

n̂1

f1

proj.

line-point
distance

(a) Line 1 is expressed in{
o1

}
, Point 2 in

{
o2

}
.

{
o

1
}

{
o

2
}

p1

p2

l1

l2 n̂1n̂2

f1

f2

proj.
proj.

distance
between lines

(b) Lines 1 and 2 are expressed in
{
o1

}
and

{
o2

}
, respectively.

Figure 2. Graphical representations of the five possible relations
between a point and a line (Fig. 2a), and between two lines (Fig. 2b).

D. Expressions in joint space
Many cases need to express constraints in a robot’s

joint space, the most obvious cases being limits in torque,
position, or velocity.

E. Composite expressions
Many tasks require more complex expressions, either

as a combination of the elementary expressions above, or
based on more complex geometrical shapes, or specified

directly as geometric “curves”. The approach introduced
in this paper is to enumerate all models that one requires
in a specific task context, and with this approach it is
straightforward to extend the enumeration list. Here are
a number of such higher complexity expressions.

a) Non-scalar expressions: multi-dimensional expres-
sions, as (3D) rotations. Rotations are often used when
full orientation is constrained. But in many practical
cases, analogous results can be achieved using three
angle between versors expressions.

b) Sensor-space expressions: in some applications con-
straints are directly expressed in a sensor space, e.g. in
visual servoing with eye-in-hand camera. If this kind
of relation cannot be expressed by means of geometric
expression, a new expression must be formalized, and
the underling implementation realized:

y = f (χu, q, . . .),

where χu is the relative position of the measured object
w.r.t. the camera, y the measured output, and q the robot
configuration.

c) Virtual Fixtures and Mechanisms: are geometric
constraints modelled as kinematic chains. These computer
generated geometric features were pioneered by [18]
to overlay real sensory feedback in telerobotics. Later
on [19] extended virtual fixtures to generate control
primitives in robot teleprogramming of remote robots in
the presence of delay. Recently, they are largely exploited
in teleoperation and shared control scenarios, especially
in the robotic medical field (see [20] and cited works).
In this case, more complex primitives are employed, as
often the goal of the task is to constrain the end effector
to move in a sub-space defined on top of generic curves,
and leaving few free directions of motion. These motion
primitives are simple and their combination for complex
tasks is not always easy or even possible. The concept of
virtual mechanism proposed in [21] and also in [22] allows
a more systematic description of the task and embed a
task controller with desired properties (e.g. passivity).

Virtual fixtures and mechanisms that rely on linear,
rotational, or spherical degrees of freedoms models can
be achieved with geometric expressions. More complex
scenarios (e.g. moving on a generic curve or surface)
require an extension to the entity and primitive sets, with
new expression models.

V. The behaviour

The “output space” of a task specification is described
by geometric expressions, but what kind of constraints
should be realised in such space must still be specified.

The latter specification is what we call the behaviour; a
behaviour is a way to specify what we want to achieve
in a given space while delegating the determination of
the control law to the underling solver.

The paper considers the following behaviours:
• Positioning, used in position regulation problems.

BORGHESAN et al.: INTRODUCING GEOMETRIC CONSTRAINT EXPRESSIONS INTO ROBOT CONSTRAINED MOTION SPECIFICATION AND CONTROL 5

Table III
List of behaviours: each behaviour is related to the type of control and its specification, the type of set-point, the needed measurements
(position measurement is always needed), and the related constraint (either equality or inequality). Inequalities needs two set-points,

representing the upper and lower bound values. Specification is optional for limiting behaviours.

behaviour
needs:

specification
controller setpoints (one of) Force

measurement
constraints

yd ẏd yd, ẏd λd λd, λ̇d = <

Positioning Position X X X dominant pole [1/s]
Move Velocity X X dominant pole [1/s]

Physical interaction Force X X X X dominant pole [1/s]
Compliant motion Impedance X X X Stiffness [N/m] or [Nm/rad]

Position Limit Position X×2 X (dominant pole [1/s])
Velocity Limit Velocity X×2 X (dominant pole [1/s])

Force limit Force X×2 X X (dominant pole [1/s])

• Move, to specify direction and rate of motion, rather
than only the desired final position.

• Physical Interaction, to control force or impedance
occurring in physical contact.

• Compliant positioning, to control the position of
the system, while allowing for physical compliance
in order to cope with unexpected or partially mod-
elled contacts.

• Limits, to reduce the space of feasible solutions, pre-
venting the robot from going in undesired positions
or to exert excessive forces.

Table III matches behaviours with the needed character-
istics of the system, in terms of: i) type of control, ii) type
of set-point (position, velocity, forces, either constant
or provided by a trajectory generator), iii) and type of
constraint. These functionalities (to be provided by the
system developers) are introduced here to examplify the
meaning of each behaviour. In particular: i) in the first
three cases, the goal is to have a zero steady state error
in either position, velocity, or force, ii) in the compliance
mode we want to regulate the position, but allowing
deviations proportional to force, and iii) with limits,
we want to specify the bounds. In addition, the first
four behaviours need a parameter to indicate i) the
time constant of the error, in the first three cases, or
ii) the relation between angular or linear displacement
(along the output direction) w.r.t. the disturbance (force
or torques respectively).

With the first three laws, we seek an asymptotically
zero converging error in position, velocity, or force,
respectively, and the error dynamic should be “similar”
to a first order system. In the case of position control:

ẏ◦d = Kp(yd − y), (1)

where ẏ◦d is the velocity actuated (see [3]), and the gain
Kp is the specification, and its dimension is [1/s] regardless
of the constrained variable; a feed-forward term (ẏd or
λ̇d, in Table III) could also be taken into account.

The compliant motion behaviour, instead, achieves a
given displacement from a rest position as response
to disturbances (e.g. an external force). Henceforth, the

tuning parameter represents a desired apparent stiffness:

δ f = Kδy. (2)

Lastly, in case of limiting-type behaviours, parameters
are considered optional, since in many cases (e.g. joint
position or effort limits), the desired interval should not
be violated (and no convergence rule toward limits is
needed). On the contrary, in cases where limiting beha-
viours are used to define “soft tasks” (e.g. an auxiliary
task as described in Sec. VI-A), these gains can be used to
assess a smooth convergence toward the limits following
the control equation (2).

The described behaviours cover many of the tasks
proposed in literature; however, if the need arises, it is
possible to extend the enumerated list with additional
behaviours (or add additional parameters to the pro-
posed ones), provided that controllers exist that are able
to execute them.

VI. Constraints, Monitors, and Task definitions

A. Constraint definition

A constraint is defined as a set including the following
combination: i) an expression, ii) a behaviour, and
(optionally) iii) a trajectory generator, that produces the
desired setpoint, as described in Table III.

In all but the simplest tasks, several constraints are
enforced together. Since the initial conditions, the envir-
onment, and other aspects can be unknown at the time
of defining the application, or vary between executions,
tasks could results in conflicting objectives that cannot
be achieved simultaneously.

For this reason, it is necessary to express explicitly
in which way conflicts should be handled at run-time.
Designing the behaviour of the system when constraints
are conflicting cannot be done in an exhaustive way
without peering to the underlying implementation and
the possible options that it provides. To the best of the
authors’ knowledge, two methods are used: i) weighting
of “deflection” of constraints from their nominal val-
ues, employed in velocity- and acceleration- resolved
schemes, and ii) prioritization of constraints, achieved
mostly with null space projectors.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015.

In our experience, we found out that three priority
levels suffice, in most applications (see [13], [23] for use
cases). We named these three levels as follows:

1) Safety constraints: constraints that are necessary
for the robot platform or critical surroundings in-
tegrity, (e.g. hardware limitations, non-desired colli-
sion avoidance, sustain balance in humanoid robots,
etc.).

2) Primary constraints: the actual constraints to be
executed.

3) Auxiliary constraints: constraints that facilitate the
execution of primary constraints; an example is the
optimization of the robot pose configuration with
respect to the manipulability index, [24], another
one is gazing, etc.

B. Monitor definition

Driven by the necessity to change the system beha-
viour once a task is fulfilled, we include monitors in the
task description. Monitors observe expression variables,
raising an event once a particular logical condition is
fulfilled on the monitored expression value. Monitors
can be used to verify pre-, per- as well as post-conditions,
e.g. [13]. A monitor can either observe:

1) a controllable variable (for example a variable that
is used as constraint), or

2) a measured quantity that is influenced by the ro-
bot actions, but cannot be directly controlled. This
quantity can be measured in terms of: i) a variable
that lives in the space described by an expression,
or ii) an external monitored value.

For the cases 1) and 2i, a monitor is defined as: i) an
expression (that specifies the space where the variable
lives), ii) an event name (e.g. finished, failed), iii) the
(monitored) variable type (POSITION, VELOCITY, FORCE),
that is expressed in the space defined by the expression,
iv) a comparison type (<, >, ∈, <), v) reference value(s).
The external monitor (case 2ii) allows for composability
with external sources, for example, time-out or safety
events.

C. Task definition

Finally, the formal definition of a Task wraps the
previous things together; it includes i) at least one
primary constraint, and ii) at least one (end-of-task)
monitor. Optionally, it can have iii) safety constraints, and
iv) auxiliary constraints.

Thus, the minimum specification of the task corres-
ponds to a constraint (an expression, a behaviour that
rules which kind of control must be used, and a reference
value) and one monitor (that dictates the end of the task
execution). Having a well defined end-of-task monitor is
instrumental to define the post-condition(s) of the task
to be used in plan reasoning and scheduling algorithm
(see [13] and references).

ga
{o2}

ĝn
{o2}

{
o2

}gp
{o2}

(a) Gripper: the line ga
{o2}represents the direction of approach of

grasping, while versor ĝn
{o2}must be parallel to the handle axis

direction ĥa
{o1a}.

{
o1b

}

{
o1a

}
ĥa
{o1a}

oa
{o1b}

hp
{o1a}

hz
{o1a}

(b) Drawer: axis of the handle and direction of opening oa
{o1b}

are
the two main features.

Figure 3. Some of the geometric entities involved in the task definition.

VII. Task specification example
This section illustrates the proposed approach by

means of an open-a-drawer operation composed of the
following tasks: i) Approach the handle of the drawer,
ii) Grasp the handle, and iii) Open the drawer. In order to
show the results of task specification (without introdu-
cing the disturbances of controllers, uncertainties, etc.),
we report the execution of this example run with kin-
ematic simulation, using the software described in [25].

In addition, the accompanying multimedia shows the
same experiment executed by the real robot, as well as
a “spreading tomato” example, that makes use of force
constraints and monitors.

In the following, we briefly describe the tasks in a
narrative way2. The simulation consist of 3 tasks, whose
switching is managed by a finite state machine that
reacts upon the event generated by the monitors.

A. Geometric Primitives
The object frames that are involved in the Geometric

Primitives are the following:
•

{
o1a

}
, attached to the handle center, with the z-axis

along the handle itself.
•

{
o1b

}
, attached to the chest of drawers (fixed in the

world).
•

{
o2

}
, the grasp frame of the robotic hand, i.e. the

frame that is the center of the grasp once the hand
closes.

2Specifications are available in the examples/app folder of accompa-
nying material.

BORGHESAN et al.: INTRODUCING GEOMETRIC CONSTRAINT EXPRESSIONS INTO ROBOT CONSTRAINED MOTION SPECIFICATION AND CONTROL 7

On such frames, the following geometric primitives are
defined:
• hp
{o1a}

(handle_position): point in origin of
{
o1a

}
.

• ĥa
{o1a}

(handle_axis_direction): versor aligned

with the z−axis of
{
o1a

}
.

• hx
{o1a}

, hy
{o1a}

, hz
{o1a}

handle_axis_(x-y-z): three

lines with origin in
{
o1a

}
, and aligned with the x−,

y−, or z−axis, respectively.
• oa
{o1b}
opening_axis: line with origin in

{
o1b

}
, and

aligned with the opening direction.
• gp
{o2}

(grasp_position): point in origin of
{
o2

}
.

• ĝn
{o2}

(grasp_normal_direction): versor aligned

with the x−axis of
{
o2

}
.

• ga
{o2}
grasping_axis: line with origin in

{
o2

}
, and

aligned with its z−axis.

B. “Open the drawer” tasks description
The example application is ruled by a simple three-

states machine, whose state transitions are executed in
response to the event raised by monitors (described in
Sec. VII-C). The states (approach the tray, grasp the handle,
and open the drawer) are ordered sequentially, and, for
each state, a different set of task is enforced. In each task
a set of primary constraint is enforced; in addition, in each
task, a safety constraint is enforced in order to limit the
joint positions in their range, (Position Limit behaviour).

a) Approach the tray (S.1): In this phase, the robot
should bring its end effector in such a position that can
conveniently grasps the handle. To do so, the robotic
hand should be: i) oriented toward the object, ii) rotated
along its z- (approach-) axis in the “correct” way, and
then iii) bring the distance between the grasping point
and the handle center to zero. This description translates
in a set of Positioning behaviours, ruled by the following
expressions:
a) line-point distance between ga

{o2}
and hp

{o1a}
should be

zero,
b) angle btw versors ĝn

{o2}
and ĥa

{o1a}
should be zero,

c) while three line-point projections
(
hx
{o1a}

, gp
{o2}

)
,(

hy
{o1a}

, gp
{o2}

)
, and

(
hz
{o1a}

, gp
{o2}

)
, should go to zero.

These set of constraints allow for a one full degree of
freedom (angle of approach to the handle around its
normal axis). Note that expressions c) dictate that the
distance between the origins of the frames

{
o1a

}
and

{
o2

}
be zero. However, we express three constraints in place
of a point-point distance as the derivative of such expres-
sion is ill-defined at the desired value, thus causing local
instability around such point.

b) Grasp the handle (S.2): While the positioning con-
straints are held, we close the gripper.

c) Open the drawer (S.3): At this point, the drawer is
opened, so we command to increase the distance along
the line direction of opening, by increasing the point-line
projection between oa

{o2}
and gp

{o2}
. As we do not want

the handle grasp to be broken, we continue to enforce
previous constrains.

C. Monitors and trajectory generator
For this example, we limit a sketch of possible monit-

ors that can dictate the success of the action, leaving out
the management of other occurrences.
a) Approach the tray: the final goal is to reach the center

of the handle. We use the point-point distance between
the origins of frames

{
o1a

}
and

{
o2

}
. In this case, the

monitored expression is different to the controlled
ones (the three line-point projections).

b) Grasp the handle: success can be achieved by force
direct/indirect measurement in the grasp space. How-
ever, we rely on position information (the distance
between fingertips).

c) Open the drawer: success can be acknowledged by
monitoring when the distance between the gripper
position and the initial drawer position is above a
given threshold.

All the constraints that are described are commanded
to the final value by means of trapezoidal trajectory
generator. The results can be appreciated in Fig. 4, where
the time evolution of all expressions are reported. In
these figures we reported also which is the monitored
expression, and the transitions between tasks.

VIII. Conclusion
This paper formalises task representations, using a

strictly specified set of symbolic elements (and very few
numerical values). The aim is to help the unification of
the various state-of-the-art approaches that deal with
complex tasks on complex robotic systems. The benefit
of this process is manifold: by defining constraints with
a limited number of formally described elements, it
becomes possible to design reasoning algorithms to sort
out the best plan for a given action (e.g. [11], [13])
and check (semantically) whether a task is ill- or well-
defined, without prior knowledge of the solver specifics,
and/or with a lot less involvement of human developers.
This progress helps in the “ease of use” of task specific-
ation, but also in “verification & validation” of robotic
applications. The set of primitives and relations can
be extended, both for the geometric expressions (e.g.
segments, planar polygons, solids, oriented curves to
provide virtual guidance, . . .), or any other expressions
that meets the above-mentioned criteria.

References
[1] M. T. Mason, “Compliance and Force Control for Computer

Controlled Manipulators,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 11, no. 6, pp. 418–432, 1981.

[2] N. Mansard, O. Khatib, and A. Kheddar, “A Unified Approach
to Integrate Unilateral Constraints in the Stack of Tasks,” IEEE
Transactions on Robotics, vol. 25, no. 3, pp. 670–685, 2009.

[3] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decre, R. Smits,
E. Aertbelin, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” International Journal of Robotic
Research, vol. 26, no. 5, pp. 433–455, 2007.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015.

0 102 4 6 8 12

−1.5

−1.0

−0.5

1.5

0.0

0.5

1.0

Time [s]

D
is

ta
n

ce
an

d
p

o
si

ti
o

n
s

[m
] Distance

pos. along x
pos. along y
pos. along z

monitored

S.1 S.2 S.3

(a) x, y, z positions of gripper w.r.t. the handle (initial, fixed) frame,
and total distance between frame origins.

0 102 4 6 8 12

0.0

1.2

1.0

0.8

0.6

0.4

0.2

Time [s]

D
is

ta
n

ce
[m

],
an

g
le

[r
ad

]

Point-line dist.
angle (ĝn

o2, ĥo1a)

S.1 S.2 S.3

(b) Point-line distance between the gripper grasping direction and the
handle frame origin, and misalignment between the handle axis and
normal grasping directions.

0 102 4 6 8 12

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Time [s]

G
ri

p
p

er
o

p
en

in
g

[c
m

]

gripper

monitored

S.1 S.2 S.3

(c) Distance between gripper fingers.

Figure 4. Values of constrained and monitored expressions during
simulation. Vertical lines shows the transitions between states (labelled
from S.1 to S.3, each one corresponding to a set of primary constraints).
In the first state, the gripper is opened (Fig. 4c), aligned (Fig. 4b), and
brought to the handler (Fig. 4a). State transitions is triggered when total
distance (blue flat line in Fig. 4a) decreases under a given threshold.
During S.2 the gripper is closed (Fig. 4c), and, lastly, the gripper is
commanded to move back to x = −0.3 m (thin solid line in Fig. 4a).
The monitored expressions in each task are highlighted with a fat gray
underling line.

[4] L. Sentis and O. Khatib, “A Whole-Body Control Framework for
Humanoids Operating in Human Environments,” in IEEE Proc. of
the Int. Conf. on Robotics and Automation, 2006.

[5] H. Bruyninckx and J. De Schutter, “Specification of force-
controlled actions in the “task frame formalism” - a synthesis,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
581–589, 1996.

[6] T. Kröger, B. Finkemeyer, and F. M. Wahl, “Manipulation Primit-
ives - A Universal Interface between Sensor-Based Motion Control
and Robot Programming,” in Robotic Systems for Handling and
Assembly, ser. Springer Tracts in Advanced Robotics. Springer
Berlin Heidelberg, 2011, vol. 67, pp. 293–313.

[7] D. Vanthienen, M. Klotzbucher, and H. Bruyninckx, “The 5C-
based architectural Composition Pattern: lessons learned from
re-developing the iTaSC framework for constraint-based robot
programming,” Journal of Software Engineering for Robotics, vol. 5,
no. 1, 2014.

[8] T. Kröger, B. Finkemeyer, and F. M. Wahl, “A Task Frame
Formalism for Practical Implementations,” in IEEE International
Conference on Robotics and Automation, New Orleans, LA, USA,
April 2004, pp. 5218–5223.

[9] T. Bray, “RFC 7159, The JavaScript Object Notation (JSON)
Data Interchange Format,” August 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7159

[10] F. Galiegue and K. Zyp, “JSON Schema, Draft 0.4v,”
August 2013. [Online]. Available: http://tools.ietf.org/html/
draft-zyp-json-schema-04

[11] M. Beetz, L. Mosenlechner, and M. Tenorth, “CRAM– A Cognitive
Robot Abstract Machine for everyday manipulation in human
environments,” in IEEE/RSJ Proc. of International Conference on
Intelligent Robots, 2010, pp. 1012–1017.

[12] P. Doherty and F. Heintz, “A delegation-based cooperative ro-
botic framework,” in IEEE International Conference on Robotics and
Biomimetics, Dec 2011, pp. 2955–2962.

[13] E. Scioni, G. Borghesan, H. Bruyninckx, and M. Bonfe, “Bridging
the gap between discrete symbolic planning and optimization-
based robot control,” in IEEE International Conference on Robotics
and Automation, May 2015, pp. 5075–5081.

[14] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in IEEE
International Conference on Robotics and Automation, May 2011, pp.
4575–4581.

[15] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” International Journal of Robotics Research,
vol. 32, no. 9-10, 2013.

[16] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric
constraints,” International Journal of Robotic Research, vol. 33, no. 14,
pp. 1726–1747, 2014.

[17] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” Interna-
tional Journal of Robotics Research (IJRR), vol. 30, no. 12, pp. 1435
– 1460, October 2011.

[18] L. B. Rosenberg, “The use of virtual fixtures as perceptual over-
lays to enhance operator performance in remote environments,”
Wright Patterson Air Force Base, OH: U.S.A.F Armstrong Labor-
atory, Technical Report AL-TR-1992-XXX, 1992.

[19] C. Sayers, Remote control robotics. Springer Verlag, 1999.
[20] J. Abbott, P. Marayong, and A. Okamura, “Haptic Virtual Fix-

tures for Robot-Assisted Manipulation,” in Robotics Research, ser.
Springer Tracts in Advanced Robotics, 2007, pp. 49–64.

[21] L. D. Joly and C. Andriot, “Imposing motion constraints to
a force reflecting telerobot through real-time simulation of a
virtual mechanism,” in IEEE International Conference on Robotics
and Automation, Nagoya, Japan, 21-27 May 1995, pp. 357–362.

[22] K. Kosuge, T. Itoh, T. Fukuda, and M. Otsuka, “Tele-manipulation
system based on task-oriented virtual tool,” in IEEE International
Conference on Robotics and Automation, vol. 1, Nagoya, Japan, 21-27
May 1995, pp. 351–356.

[23] E. Scioni, G. Borghesan, H. Bruyninckx, and M. Bonfe, “A frame-
work for formal specification of robotic constraint-based tasks
and their concurrent execution with online qos monitoring,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept 2014, pp. 2963–2969.

[24] G. Borghesan, E. Aertbeliën, and J. De Schutter, “Constraint- and
synergy-based specification of manipulation tasks,” in IEEE Proc.
of the Int. Conf. on Robotics and Automation, 2014.

[25] E. Aertbeliën and J. De Schutter, “eTaSL/eTC: A constraint-based
task specification language and robot controller using expression
graphs,” in IEEE/RSJ International Conference on Intelligent Robots,
2014.

View publication statsView publication stats

https://www.researchgate.net/publication/286381831

