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Abstract. A Model Predictive Control (MPC) strategy is proposed in
this paper for large-dimension cable-driven parallel robots working at
low speeds. The latter characteristic reduces the non-linearity of the
system within the MPC prediction horizon. Therefore, linear MPC is
applied and compared with two commonly used strategies: Sliding mode
control and PID+ control. The simulations aim at comparing disturbance
rejection performances and the results indicate a superior performance of
the proposed controller. Indeed, MPC takes into account control limits
(cable tension limits) directly in the control design which allows the
controller to better exploit the robot capabilities. In addition, actuation
redundancy is resolved as an integral part of the control strategy, instead
of calculating the desired wrench and then applying a tension distribution
method.

Keywords: Cable-driven parallel robots, model predictive control, dis-
turbance rejection

1 Introduction

A rather typical control strategy for Cable-Driven Parallel Robots (CDPRs) is
the combination of a linear feedback control with computed torque applied as
a feedforward term [1]. Indeed, the computed torque (also known as feedback
exact linearization) enables the application of usual linear control methods [2, 3].
Besides, Sliding Mode Control (SMC) is an advanced nonlinear feedback control
that has been implemented successfully in CDPRs [4–7]. The main advantages of
SMC are the possibility to attain finite time convergence, simple implementation
and robustness to uncertainties. However, recent and advanced SMC methods
still present chattering issues in experimental setups [6] even if some previous
studies presented methods in order to reduce it [7].

Since a fully-constrained CDPR has more cables than degrees of freedom
(DOF), there are infinitely many possible combinations of cable tensions gen-
erating a desired wrench. The choice of one of these combinations is an actua-
tion redundancy resolution problem where cable tension lower and upper limits
should be taken into account. The lower limit is a positive tension to avoid
cable slackness. The upper limit is set in order to account for the mechanical
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limitations of the cables, motors, etc. Several previous works deal with CDPR
actuation redundancy resolution, e.g. [8, 9].

Usually, the control strategy and the resolution of actuation redundancy are
addressed separately. This paper proposes the use of Model Predictive Control
(MPC) as the control strategy, which has the advantage of solving the tension dis-
tribution problem as an integral part of the control strategy. MPC is a feedback
control design which, at each decision instant, computes the sequence of future
controls inputs that optimizes a cost function satisfying the system constraints.
The cost function is formed by a weighted sum of individual costs (tracking er-
rors, control input and other performance measures). MPC is considered as one
of the most general way of posing a control problem in the time domain [10,
11]. It defines an optimized admissible control sequence if the considered model
is sufficiently close to reality. Moreover, control limits can be directly handled,
which is an important advantage since the optimized performance is often ob-
tained with active constraints. If the MPC is applied to a linear optimization
problem without constraints, the solution is analytic, e.g. in [12], where General-
ized Predictive Control (GPC) is successfully applied to a medical. Nevertheless,
constraints [13] and nonlinear systems [14] have been successfully addressed as
well.

This paper presents the design, implementation and simulation of an MPC
scheme for motion control of large-dimension CDPRs. To the best of our knowl-
edge, MPC has never been used to control CDPRs. Several applications of CD-
PRs involve a large workspace and relatively low velocities of the mobile platform
[15–18]. Hence, within a reasonable prediction horizon, the CDPR dynamics may
be approximated as being a linear time invariant system. Based on this assump-
tion, linear MPC is applied in this paper. Simulation results compare the per-
formances obtained with the proposed MPC and two other control strategies,
namely SMC and PID+ Controller [19]. The performance evaluation focuses
mainly on external disturbance rejection.

The paper is organized as follows. The modeling of a spatial CDPR is in-
troduced in Section 2. Two state-of-the-art control schemes, SMC and PID+
Control, and the proposed MPC strategy are introduced in Section 3. These
three methods are compared through numerical simulations in Section 4. Con-
clusions and future works are drawn in Section 5.

2 Dynamic Modeling of CDPRs

The dynamic modeling of a spatial CDPR is presented in this section. The
control schemes introduced later in Section 3 are based on this model. Figure 1
illustrates a CDPR with the notations used in its kinematic modeling. The robot
consists of a n-DOF mobile platform driven by m cables. The spatial case where
n = 6 is considered and the m cables (m ≥ 6) are considered massless and
inextensible. Each cable has one end attached to the platform and the other
end wound on a winch drum. The cables are responsible for transmitting to
the platform the efforts applied by the winches. Cable tensions τ applied on
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the platform generates the wrench f . These variables are related linearly by the
wrench matrix W, so that f = W τ [9].

The length li is defined as the distance between the drawing point Ai and and
the attachment point Bi. Point Ai is the drawing point defined by the pulley
attached to the base frame. This point is considered as being fixed. Point Bi
is the attachment point of cable i on the platform. The cable length vector is
l = [l1, ... , lm]T .

l
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y
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Winches

Fig. 1. Illustration of a CDPR with notations for kinematic modeling

Let x, ẋ, ẍ be the platform pose, velocity and acceleration, respectively1. The
pose (position and orientation) of the platform is then defined by x = [pT , ψT ]T .
p is the position vector of the reference point of the platform. Vector ψ defines
the orientation of the platform. Typically, it is composed of three Euler angles.

Using Newton-Euler formalism, the dynamics of the platform can be written
as [20]

M(x) ẍ + C(x, ẋ) ẋ = g(x) + f (1)

where matrices M and C are given by

M(x) =

[
mp I3 −mp ĉ
mp ĉ H

]
, C(x, ẋ) ẋ =

[
mp ω̂ ω̂ c
ω̂Hω

]
(2)

Scalar mp is the platform mass and I3 is the identity matrix of dimension 3.
The present model considers that the platform geometric center and its center

of mass may not be coincident and, accordingly, c =
[
cx cy cz

]T
is the vector

going from the platform geometric center to its center of mass. Matrices ω̂ and
ĉ are the skew-symmetric matrices associated to ω and c, respectively, with
ω the angular velocity of the platform. The matrix H is defined as H = I +
mp ĉ ĉ

T where I is the platform inertia matrix relative to its center of mass.

1 We highlight that ẋ 6= dx
dt

, since angular velocity is not equal to the derivative of the

vector of Euler angles. Similarly, ẍ 6= d2x
dt

.
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The vector of gravitational forces is g(x) = mp g
[
0 0 −1 −cy cx 0

]T
. The

wrench applied by the cables on the platform is f = W τ .

3 Proposed Control Schemes

The goal of this paper is to compare MPC performance to those obtained with
strategies commonly used for CDPRs. Namely, MPC is compared to: (i) A lin-
ear PID+ controller [19], based on the controller proposed in [20], and (ii) SMC.
These two strategies were recently validated experimentally, demonstrating ap-
plicability and good performances. A brief description of these control methods
is presented in the following section.

3.1 Background on the State of the Art Controllers

For a given reference trajectory in time ti 6 t 6 tf , the desired poses, velocities
and accelerations are denoted as xd(t), ẋd(t) and ẍd(t), respectively. At a given
instant t, the error in the Cartesian space is expressed as ex(t) = xd(t) − x(t).
Similarly, the error in joint space is ej(t) = ld(t)− l(t), where ld(t) is the vector
of desired cable lengths obtained with the inverse kinematics.

PID+: The PID+ control strategy applies the following wrench

f = M(x)ẍd + C(x, ẋ) ẋd − g(x) + W

(
Kp ej + Ki

∫ t

ti

ej(τ) dτ + Kd ėj

)
(3)

where Kp, Ki and Kd are diagonal matrices containing the linear feedback PID
gains.

Sliding Mode Control: The SMC strategy defines a sliding surface s = ex + Ce ėx,
with Ce = diag(c1, ..., cn). The wrench to be applied on the platform is

f = M
(
ẍd + Cd (ẋd − ẋ) + K sat(s) + Qs

)
+ C(x, ẋ) ẋd − g(x) (4)

where K, Q and Cd are diagonal gain matrices. The function sat(s) is a contin-
uous approximation of the sign function. Each component of this vector-valued
function is calculated as follows

sat(si) =

 1, if si > ∆
si
∆ , if |si| 6 ∆
−1, if si < ∆

(5)

The resulting function presents the same output than the sign(s) function
except for the interval −∆ 6 s 6 ∆ in which a linear interpolation eliminates
the discontinuity.
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Redundancy Resolution: The two above control strategies define wrench f .
The final control output is the vector of cable tensions τ (or motor torques). For
fully-constrained CDPRs, m > n and actuation redundancy shall be resolved to
determine τ being given f , i.e., the equation system W τ = f is underdetermined
and an appropriate vector of cable tensions τ shall be determined among the
infinitely many possible ones (assuming a non-singular pose). In this work, the
following common optimization problem is used to resolve actuation redundancy

min
τ
‖τ‖2 (6)

s.t. W τ = f (7)

τmin 6 τ 6 τmax (8)

Using (6), the 2-norm of τ is minimized. As constraints, the tension distri-
bution shall generate the desired wrench (7) and the cable tensions shall be in
an admissible interval (8). The constraint (8) is necessary mainly for two rea-
sons: avoiding cable slackness (0 6 τmin 6 τ ) and not violating mechanical
limitations of the cables, motors, etc (τ 6 τmax).

In some cases, the wrench demanded by the controller is not feasible. In
the space of cable tensions, the intersection of the subspaces defined by the
constraints (7) and (8) is empty. Another strategy should then be defined and
the following optimization problem is proposed

min
τ
‖W τ − f‖P

s.t. τmin 6 τ 6 τmax
(9)

where the subscript P indicates that the 2-norm is calculated with a weighting
positive definite diagonal matrix P, which is necessary since f has components
with inconsistent units (forces and moments).

3.2 Proposed Model Predictive Controller (MPC)

A model predictive control strategy is proposed in the present section. The
continuous model (1) may be approximated as a discrete-time system

y(t+∆t) =

[
x(t+∆t)
ẋ(t+∆t)

]
= A(t)y(t) + B(t) τ (t) + v(t). (10)

where the vector v and the matrices A and B are given by

v =

[
0nx1

∆tM−1g

]
(11)

A =

[
In ∆t In

0nxn In −∆tM−1 C

]
(12)

B =

[
0nxm

∆tM−1W

]
, (13)
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where time t has been omitted, being given that v, A and B are calculated at
time t.

MPC predicts the states over a given horizon t + N ∆t. Equation (10) is
applied N times in order to obtain y(t+ i∆t), with i = 1, ..., N . As mentioned
earlier, the proposed MPC strategy is applied to large-dimension CDPRs moving
at low velocities. Therefore, for a small horizon N ∆t, the linear time varying
system (10) may be approximated by a linear time invariant system. Matrix A is
considered as A(t+ i∆t) = A(t), i = 1, ..., N . Similarly, B and v are considered
constant over the MPC optimization horizon.

With this approximation, linear MPC can be applied. A vector Y(t) contain-
ing the states over the prediction horizon is calculated as follows

Y(t) =


y(t+∆t)

...
y(t+N ∆t)

 =


A

A2

...
AN


︸ ︷︷ ︸

D

y(t) +



B 0 . . . 0

AB B 0 . . . 0

A2B AB B 0 . . .

...
AN−1B AN−2B . . . B


︸ ︷︷ ︸

E


τ (t)

τ (t+ ∆t)

...
τ (t+ (N − 1)∆t)


︸ ︷︷ ︸

U(t)

+...

...+


v

Av + v

...
AN−1v +AN−2v + ...+ v


︸ ︷︷ ︸

F

Similarly, the reference trajectory yd = [xTd , ẋ
T
d ]T should be defined over the

prediction horizon

w(t) =


yd(t+∆t)
yd(t+ 2∆t)

...
yd(t+N ∆t)

 (14)

For a given current state y(t), the control is responsible for finding a trade-off
between minimizing the predicted error w(t)−Y(t) and minimizing the control
effort U(t). To this end, the following cost function can be considered

J
(
y,U

)
= (w −Y)TKY (w −Y) + UTKUU (15)

where Ky and KU are diagonal weight matrices.

The minimization of J for a given current state is equivalent to

min
U

[
UT (ETKY E + KU )︸ ︷︷ ︸

Hc

U + 2 (D y + F−w)TKY E︸ ︷︷ ︸
dT

U
]

(16)
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This minimization is a case of quadratic programming (QP). Constraints on
cable tension limits and rates of change can be easily added

τmin 6 τ 6 τmax
|τ̇i| 6 τ̇max

}
⇒ AineqU 6 bineq (17)

Accordingly, at each time step, a QP problem is solved in order to determine
the optimal control output τ (t). This problem is stated as

min
U

1

2
UTHcU + dTU

s.t. AineqU 6 b
(18)

The QP problem (18) can be efficiently solved with the Interior Point method
implemented in the MATLAB function quadprog.

The optimal argument U(t) = [τT (t), τT (t + ∆t), ..., τT (t + (N − 1)∆t)]T

contains all vectors of future control outputs over the control prediction horizon.
The controller applies the first sample of the obtained sequence and maintains
this action until the next time step. After that, the algorithm is repeated. The
new state y(t+∆t) is measured and the states Y(t+∆t) = [y(t+2∆t)T ... y

(
t+

(N +1)∆t
)T

]T are estimated and optimized taking U(t+∆t) as argument. The
procedure is repeated until t > tf .

4 Simulation Results

This section presents simulation results that compare the performances obtained
with the three control strategies presented in Section 3. The context of these
simulations is the project Hephaestus [21] where a large-dimension CDPR is
intended to automatize several tasks in the construction and maintenance of
building facades. The main task of the CDPR is the installation of curtain wall
modules. The robot workspace is a rectangular region in front of the building
facade. Thereby, the CDPR mobile platform can get curtain wall modules on
the ground and position them where needed on the building facade. Since the
CDPR will operate in an outdoor environment, it will be subjected to exter-
nal disturbances. One of the main concerns is the incidence of wind gusts. For
this reason, the simulations presented in this section focus on external distur-
bance rejection performances of the proposed control strategies. An impulsive
disturbance is applied and the response of the CDPR is analyzed. Note that
the simulated trajectory is relatively short. However, the simulation of a longer
trajectory would not affect the results which highlight the disturbance rejection
capabilities of each control strategy.

The initial and final positions are depicted in Fig. 2. The path between these
two positions is a straight line segment. The trajectory is the fastest possible re-
specting upper bounds on linear velocities, accelerations and jerks. These bounds
are 0.3m/s, 0.3m/s2 and 1.0m/s3, respectively. The resulting trajectory has con-
tinuous derivatives up to the acceleration level. The desired orientation of the
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platform is constant along the trajectory. An impulsive disturbance fd is applied

at the instant t = 2 s. This impulsive wrench is fd =
[
55 55 550 0 0 0

]T
(N) and it is applied at the reference point of the platform.

The CDPR configuration (cable drawing points, cable-platform attachments,
and cable arrangement) can also be seen in Fig. 2. Moreover, the parameters
of the CDPR dynamic model are the following: τmin = 100N, τmax = 14kN,
mp = 1000kg, [c]Fp = [0 5 0]Tm, I = diag([400 100 400])kg.m2.

Fig. 2. Initial and final positions of the simulated trajectory

In the following, the obtained results with the three proposed motion control
strategies of Section 3 are presented and discussed. Control parameters used for
the simulations are the following: Kp = 71400 I8, Ki = 71400 I8, Kd = 71400 I8,
Ce = 2 × 10−3 I6, Cd = 36 I6, Q = 40 I6, K = 0.2 I6, N = 20, ∆t = 6 × 10−4,
∆r = 5× 10−1, KY p = 6× 109, KY v = 1× 10−2, KU = 2× 10−5 I8N .

Scalar KY p are the components of KY related to pose errors, whereas KY v is
related to velocity errors. Value of ∆t is used in (5) as ∆ for translational inputs
of sat(s), and ∆r is used for rotational inputs.

Figure 3 shows the evolution versus time of the norms of the translational
and rotational errors. All the control strategies are able to cancel the tracking
error caused by the applied external disturbance but PID+ presents an oscil-
latory behavior and increased settling time. SMC responds faster and without
oscillations. MPC presents the fastest response, resulting in the smallest tracking
errors along the whole trajectory.

The histograms of Fig. 4 present a performance comparison on different as-
pects. Let et be the 2-norm of the translational error. Histogram (a) quantifies
the maximum value et over the trajectory. Histogram (b) compares the RMS
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Fig. 3. Norm of the (a) translational and (b) rotational errors

value of et along the trajectory. Taking these two performance measures, MPC
leads to the smallest error.

Fig. 4. Comparative results: (a) maximum error, (b) error RMS, (c) maximum cable
tensions, (d) maximum cable tension derivatives, (e) RMS of cable tension derivatives,
and (f) consumed energy.

Regarding cable tension values, as shown in Fig. 4-(c), MPC demands the
maximum allowed value τmax = 14 kN. This is also shown in Fig. 5, which depicts
the cable tensions near the instant of application of the impulsive disturbance.
Indeed, as discussed earlier, the main advantage of MPC is that the controller
takes into account the constraints of the system and optimizes the control actions
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in order to reduce the tracking errors. Here, the maximum allowed cable tension
is an active constraint just after the impulsive disturbance is applied. In the
case of SMC, the maximum tension value is 13.7 kN along the trajectory which
indicates that this controller response is close to the largest admissible value
τmax = 14 kN. If higher gains were used, the wrench f would then be unfeasible.
In order to not exceed τmax, the strategy described in Eq. (9) would be necessary
and the resulting wrench would not be equal to f . However, the MPC strategy
does not lead to this risk. The PID+ controller has |τmax| = 9.1 kN. This
relatively low tension is a consequence of the use of small gains Kp. Indeed, small
gains were used because larger gains lead to high frequency oscillations of cable
tensions. For instance, increasing the gains of less than 1% with this strategy,
RMS(τ̇) is equal to 86 kN (more details about this measure are discussed in the
following paragraph).

The time derivative of the cable tensions is a measure of the aggressiveness
of the control action. Large values of this variable may excite high frequency dy-
namics which are difficult to control. Figure 4-(d) presents the maximum deriva-
tive of cable tensions over the trajectory considering all cables. Mathematically,
values in Fig. 4-(d) are equal to maxt

(
maxi |τ̇i(t)|

)
. The smallest maximum ca-

ble tension derivative is obtained for the PID+, which is an advantage of this
method. SMC is the most aggressive controller considering this performance mea-
sure. The proposed MPC strategy constraints this variable (Eq. (17)). Therefore,
any value can be imposed independently of the rest of the controller parame-
ters. In simulations, the value used is 800 kN/s and Fig. 4-(d) shows that this
value is reached. Fig. 4-(e) presents the values of the maximum RMS value of
τ̇i considering all cables i = 1, ...8. More precisely, Fig. 4 (e) presents values
of maxi

(
RMS(τ̇i)

)
. MPC presents the largest RMS of the cable tension deriva-

tives. Note that the MPC optimization cannot take as constraint variables that
depends on the system states beyond the prediction horizon. The prediction
horizon covers only a small part of the whole trajectory over which the RMS
values are calculated.
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Fig. 5. Simulated cable tensions for (a) PID+ Controller, (b) Sliding Mode Controller
and (c) Model Predictive Control.
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The consumed energy over the trajectory (Fig.4-(f)) is roughly the same for
all the control schemes. Nevertheless, MPC leads to the highest consumption.
The consumed energy is calculated as

∫ tf
ti
|l̇(t)T τ (t)|dt.

5 Conclusions and Future Work

An MPC strategy was proposed for large-dimension CDPRs. Considering that
the robot works at low velocities, a linear MPC approach was selected. A linear
time invariant system is considered along the MPC optimization horizon. MPC
allows to minimize the error between the desired trajectory and the predicted
positions while taking into account constraints on cable tensions. Since cable
tensions are the argument of this optimization, actuation redundancy resolution
is integrated within the MPC optimization. Simulation results validate these
advantages by comparing the disturbance rejection performances of the proposed
MPC strategy with two other commonly used controllers (PID+ and SMC).
MPC yields the smallest errors when compared to these two other controllers.
In future works, the modeling errors due to the assumption of a linear time
invariant system should be quantified. Indeed, the non-linear dynamics of the
CDPR will differ from the proposed linear time invariant system according to the
mobile platform dynamics and the MPC optimization horizon. These modeling
errors may be predicted and the relevance of the proposed linear MPC may be
evaluated in a general case. Additionally, experimental tests should be conducted
to validate the simulations presented in this paper. Experimental validation may
also clarify the feasibility regarding computational burden, which is a critical
aspect of using MPC for real-time control of CDPRs.
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