
HAL Id: lirmm-02157786
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02157786v1

Submitted on 17 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FCA for Software Product Line representation: Mixing
configuration and feature relationships in a unique

canonical representation
Jessie Carbonnel, Karell Bertet, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Karell Bertet, Marianne Huchard, Clémentine Nebut. FCA for Software Product
Line representation: Mixing configuration and feature relationships in a unique canonical represen-
tation. Discrete Applied Mathematics, 2020, 273, pp.43-64. �10.1016/j.dam.2019.06.008�. �lirmm-
02157786�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02157786v1
https://hal.archives-ouvertes.fr

FCA for Software Product Line representation: Mixing configuration and
feature relationships in a unique canonical representation

Jessie Carbonnela, Karell Bertetb, Marianne Hucharda, Clémentine Nebuta

aLIRMM, CNRS & Université de Montpellier
161 rue Ada, 34095 Monpellier Cedex 5, France

bL3i, Université de La Rochelle
Av. Michel Crépeau, 17042 La Rochelle Cedex 1, France

Abstract

Software Product Line Engineering (SPLE) is a set of methods to help build a collection of software systems
which are similar enough to enable appropriate artefact reuse. An important task consists in documenting
in variability models the common and variable features which may compose the similar software systems
along with compatibility constraints between these features. Several models and formalisms have been
proposed to model variability: each one of them has specific properties making it pertinent to support
certain management operations, which are of primary importance in SPLE. Switching from one kind of
variability model to another is thus important to benefit from a wide range of operations and efficiently
manage a software product line. In this paper, we review the various approaches proposed to manage and
organise features and product configurations (a product configuration being a chosen subset of features).
We discuss the originality of concept lattices, canonical structures presenting a dual view on features and
configurations, and the advantages to use these structures as variability representations. Switching from
existing variability models to an equivalent concept lattice raises scaling issues related to the size of the
needed input dataset and thus hinders their exploitation. We propose an alternative relying on implicative
systems and define a transformation method which does not suffer from scaling issues.

Keywords: Software Product Line, Feature Model, Formal Concept Analysis, Concept Lattice

1. Introduction

Software Product Line Engineering (SPLE) [1] is a set of methods to help build a collection of software
systems which are similar enough to enable appropriate artefact reuse. In this way, it optimises development
and maintenance costs of the whole collection. To achieve efficient artefact reuse, analysing and modelling
the software systems’ variability is a crucial step. This task mainly consists in documenting the common
and variable artefacts which may compose the similar software systems, as well as constraints about the
compatibility of the different artefacts. A common way to document variability is to describe software
systems depending on a set of high level features representing the systems’ distinguishable characteristics
or behaviours [2, 3] and which are relevant to both designers and end-users. Each feature then matches a
set of low level software artefacts having eventually less meanings for the end-user. These features are then
organised in models depicting the corresponding artefact compatibilities: a combination of these features
satisfying the model’s compatibility constraints (called a valid configuration of the model) represents a high
level description of a functional software system which can be built by combining the corresponding artefacts.

These variability models are central to the SPLE paradigm because they are used to manage, maintain
and evolve the collection of software systems through different operations. Several notations and underlying

Email addresses: jcarbonnel@lirmm.fr (Jessie Carbonnel), karell.bertet@univ-lr.fr (Karell Bertet),
huchard@lirmm.fr (Marianne Huchard), nebut@lirmm.fr (Clémentine Nebut)

Preprint submitted to Discrete Applied Mathematics May 10, 2019

formalisms were proposed to manage both features and configurations. Some formalisms are better adapted
to support certain operations, and switching from one formalism to another is thus important to benefit from
all existing operations. For instance, feature models, the de facto standard for variability modelling, are
graphical and compact representations of all valid configurations: they are a pertinent notation to visualise
the existing features and their compatibilities, but support automated analysis with difficulty. In this case,
switching to another variability representation such as propositional formulas [4] or constraint programming
[5] may be more appropriate. We review in this paper the main proposed notations and formalisms to model
variability in terms of features, along with some of their properties and the operations they support: this is
our first contribution. Among these variability representations, concept lattices [6] are interesting structures
to model variability of a given set of configurations: a concept lattice is a canonical structure and, contrary
to the other proposed formalisms, it highlights relationships between the considered configurations, between
their features and between configurations and their features. They are unique in the variability modelling
landscape because they are the only formalism proposing a dual view on features and configurations, whereas
prevalent variability representations usually present only views on features. Due to this singularity, concept
lattices and their associated sub-hierarchies provide an original support for operations such as variability
restructuring [7], variability model composition [8] or exploratory search in the set of valid configurations [9].
The transformation steps enabling to represent in a concept lattice the variability information of a feature
model are then of primary importance but still not studied yet: this is the goal of this paper. A naive
solution would be to list the valid configurations of a feature model into a formal context, the input format
to build a concept lattice. However, the number of possible valid configurations of a feature model grows
exponentially with the number of features it depicts, and therefore restricts this solution to only small feature
models having computable and manageable numbers of valid configurations. In other words, the benefits
and originality of concept lattices reside in their features × configurations view, but it thus necessitates to
have a list of the set of valid configurations which is impossible in most of real industry cases. Therefore,
to use the operations supported by these structures, we need to avoid using input data representing the set
of configurations in extension and to favour compact input representations. We propose a solution to avoid
scaling issues related to formal context computation by showing how to obtain implicative systems on features
to build a feature closed sets lattice without building a formal context: this is our second contribution. We
also discuss the fact that these implicative systems are an useful representation of variability. Other scaling
issues are the ones related to the concept lattice computation, which can be avoided by using on-demand and
local generation algorithms [9, 10]: this is out of the scope of this paper. It is noteworthy that the opposite
transformation (from concept lattices to feature models) has been studied several times in the context of
reverse engineering feature models from software system descriptions [11, 12, 13].

This paper extends the work proposed in [14], in particular studying the feature model semantics so as
to provide elements of proof of the matching between feature models and the extracted implicative systems.
An algorithm is also given to extract an implicative system from a feature model. Finally, the size of the
different kinds of input datasets (representing closure operators) necessary to build concept lattices and
generated from feature models are compared in an experimental study.

The remaining of the paper is organised as follows. Section 2 provides background on software product
lines, shows how concept lattices can be used to represent variability, and how Formal Concept Analysis is
used for that purpose. In Section 3, the various formalisms to capture variability of a software product line
are analysed and compared. Section 4 details the use of implicative systems to face scaling issues related to
formal context computation for variability management. Section 5 studies the orders of magnitude of the
size of formal contexts and implicative systems built from feature models. It shows that implicative systems
are a practicable alternative when all possible objects (here the configurations) cannot be listed to construct
formal contexts.

2. Background

In this section, we first present Software Product Line Engineering (SPLE) and the prevailing approaches
to model variability (Section 2.2). Then, we define the basic elements needed for understanding Formal

2

Concept Analysis (FCA) and its associated structures (Section 2.3). Lastly, we review the approaches that
use FCA in the domain of Software Product Line Engineering (Section 2.4).

2.1. Software product lines engineering

Software Product Line Engineering (SPLE) [1] is a development paradigm that seeks to produce a set of
related and similar software systems as a single entity rather than individually produce each one of them.
SPLE is a collection of methods relying on software reuse and mass customisation to lower the development
cost and the time-to-market, to increase the quality of the produced software systems, and to broaden the
scope of offered products. From an implementation point of view, a Software Product Line (SPL) is based
on a common software architecture on which different software artefacts can be plugged depending on user
requirements, from what results an independent software system. The Software Product Line is composed
of the core architecture, the set of software artefacts that can be plugged on the architecture, and the set
of software systems that can be derived from them. A central task of this paradigm is thus to model the
SPL variability, i.e., what is common, what varies between the different software systems, and how it varies.
Variability representations are used, among others, for knowledge representation [15], to define the scope of
the product line [16], manage its evolution and maintenance [7], to perform design operations [17, 18] or for
product derivation [19].

2.2. Variability modelling

To capture and describe the variability of a software product line, Feature Modelling [16, 2, 20] and
Decision Modelling [21, 22] are the two prevailing approaches. Feature-oriented representations rely on a set
of distinguishable characteristics, called features, to describe and discriminate the software products. As an
example, features for a mail client may include having different interfaces, proposing filtering methods, or
offering to the users to define their own macros. Decision-oriented models define a software system through
the decisions taken by the user concerning the software composition. For instance, a decision may concern the
type of interface proposed by the mail client, or whether the user wants the filtering methods to be run server-
side or locally. In what follows, we call a product configuration (or simply a configuration) a description
of a software system through a variability modelling approach. In feature modelling, a configuration is
represented by a subset of features, whereas in decision modelling it corresponds to a set of user’s decisions.

The most commonly used formalisms to represent and organise features are Feature Models (FMs) [16, 2].
They are a family of visual languages that allow to represent 1) a set of features F hierarchically organised in
a feature tree, and 2) a set of relationships (also called dependencies or constraints) between these features.
These relationships can be expressed by graphical decorations in the feature tree and by additional cross-
tree constraints, that can be graphically represented on the tree, or textually expressed separately. The
relationships expressed between the features constrain the way they can be combined to compose a software
product. In other words, an FM delimits the scope of a product line by representing in a compact and
graphical way its set of valid product configurations. The vertices of the tree represent the features (from
F), while the edges (in F × F) correspond to refinement or sub-feature relationships in the domain (e.g.,
part of, implements). Edges can be decorated by a white disc meaning that if the parent feature is selected,
the child feature can be selected or not (optional). A black disc indicates that if the parent feature is
selected, the child feature is necessarily also selected (mandatory). Groups of edges rooted in a feature
represent feature groups. A xor-group, represented by a non-filled arc across an edge group, states that if
the parent feature is selected, exactly one feature has to be selected in the group. An or-group, represented
by a black-filled arc across an edge group, states that if the parent feature is selected, at least one feature
has to be selected in the group. Finally, cross-tree constraints, typically requires and exclude constraints,
can be added to complete the information given in the feature tree. Figure 1 shows a simple FM for mail
client websites.

A configuration derived from this FM necessarily includes an interface which is either a webmail or
(exclusive) an application. Optionally, a functionality allowing the user to define macros is offered. A
filtering service may also be optionally proposed. Some filtering services may be run server side to prevent
the reception of junk mails, or (inclusive) they may be run in local on already received mails. Two “require”

3

mail_client

interface filtering macro

webmail application server local

Xor Or

Requires Exclude

Optional Mandatory

Figure 1: (Left) Basic feature model’s relationships and their corresponding graphical representation; (Right) A basic feature
model for mail client systems

cross-tree constraints indicate that local filtering services need the macro functionality, and conversely. An
“exclude” cross tree constraint states that server side filtering services cannot be proposed on applications.

Decision Models (DMs) are textual representations that seek to document each decision a user can make
during the requirement specification phase, when deriving the final software product [21, 22]. DMs are gen-
erally depicted in tabular form, where each line of the table describes a decision in the form of a question,
and presents the type of the expected answer and its range. It may also present constraints about the
required form of the answer (e.g., cardinality) and conditions on when to consider the question. Table 1
presents a decision model about mail clients, inspired from the previous feature model of Figure 1.

Table 1: Decision model for mail clients

decision name description type range
cardinalities,
constraints

visibility,
relevant if

filter
support filtering

services?
Boolean {true, false} / /

filtering services
proposed filtering

services?
Enum

{server,
local}

1:2,
if macro then
{local} or
{server, local}

filter = true

interface
proposed client

interface?
Enum

{webmail,
application}

1:1,
if filtering services
⊇ {server} then
{webmail}

/

macro
support user

macros?
Boolean {true, false} if filtering services

⊇ {local} then true
/

While feature models focus on representing the domain by depicting the relevant features and their
interactions, decision models seek to simulate the product selection process by listing the set of decisions
the user has to make concerning the product to be derived. Thus, DMs guide the user into selecting a
final software, but do not necessarily give a correct overview of the product line domain. In fact, even
though some parts of the domain can be identified with a decision model (e.g., webmail and application
are two possible types of interface, macro is an optional functionality), it does not necessarily cover all the
domain information contrarily to a feature model. For instance, one can see in the feature model of Figure 1
that the feature interface is a sub-feature of mail client that is mandatory. However, this information does
not clearly appear in the decision model of Table 1; because having an interface is mandatory, it does not
represent any user decision. Only selecting the type of interface needs a user choice.

In this paper, we focus on the prevalent variability modelling approach that represents all domain infor-

4

mation: feature modelling. Therefore, in what follows, we work on software configurations represented as
a combination of features. We study Formal Concept Analysis, a mathematical framework widely used for
knowledge discovery and representation [23], to handle the variability of such software system configurations.

2.3. Concept lattices and Variability Representation

As Formal Concept Analysis (FCA) [6] provides an alternative framework for variability representation,
we here present the basic definitions and the qualities of FCA related to this domain. A straightforward
application of FCA to variability modelling is based on a valid configuration set, given in the form of a
formal context (Def. 1).

Definition 1 (Formal context). A formal context is a 3-tuple K = (O,A,R) where O and A are two
finite sets, and R ⊆ O × A is a binary relation. Elements of O are called objects and elements of A are
called attributes. A pair (o, a) of R means “the object o owns the attribute a”.

An example of a formal context encoding variability information for the mail client example is given
in Table 2. The formal objects are all the valid configurations (lines), while the formal attributes are the
features (columns). A concept groups a maximal set of configurations sharing a maximal set of features
(Def. 2).

Table 2: Set of valid configurations of the FM of Figure 1 about mail clients (MC)

MC mail client interface webmail application filtering server local macro
conf 1 × × ×
conf 2 × × ×
conf 3 × × × × ×
conf 4 × × × × × × ×
conf 5 × × × × × ×
conf 6 × × × × × ×

Definition 2 (Concept). Let K = (O,A,R) be a formal context. A concept is a pair (E, I) such that
E ⊆ O and I ⊆ A. E = {o ∈ O | ∀a ∈ I, (o, a) ∈ R} is the concept extent and I = {a ∈ A | ∀o ∈ E, (o, a) ∈
R} is the concept intent. We denote by CK the set of all concepts of K.

The concepts are provided with a specialisation order (Def. 3), based on extent and intent inclusion.

Definition 3 (Concept Specialisation). Let K be a formal context, and let C1 = (E1, I1) and C2 =
(E2, I2) be two formal concepts of CK . C1 is a specialisation of C2, denoted by C1 ≤K C2, if and only if
E1 ⊆ E2 (and equivalently I2 ⊆ I1). C1 is called a sub-concept of C2 and C2 is called a super-concept of
C1.

The concept set CK of the formal context K provided with ≤K is a partially ordered set, which in
addition has the property to be a lattice, called the concept lattice (Def. 4, 5 and 6).

Definition 4 (Partially ordered set, (least) upper bound, (greatest) lower bound). A partially or-
dered set (poset) is a set of elements E provided with a partial order ≤ on its elements (≤ ⊆ E × E is
reflexive, antisymmetric and transitive).
An element u is an upper bound of S ⊆ E, if for all s ∈ S, s ≤ u.
An upper bound lub of S is called the least upper bound (or supremum) of S, if for all u upper bound of S,
lub ≤ u. For two elements a and b, we denote by a ∨ b the least upper bound of a and b.
An element l is a lower bound of S ⊆ E, if for each s ∈ S, l ≤ s.
A lower bound glb of S is called the greatest lower bound (or infimum) of S, if for all l lower bound of S,
l ≤ glb.

5

Definition 5 (Lattice). A lattice (E,≤) is a partially ordered set (poset) where each 2-element subset of
E owns a least upper bound and a greatest lower bound for ≤.

Definition 6 (Concept lattice). Let CK be the concept set of the formal context K. The concept lattice
of K is the concept set CK provided with the partial order ≤K , and is denoted by (CK ,≤K).

Concept_MC_10

Concept_MC_9

webmail (w)

conf_1

Concept_MC_0

Concept_MC_1

conf_6

Concept_MC_2

conf_4

Concept_MC_5

application (a)

conf_2

Concept_MC_7

Concept_MC_8

Concept_MC_6

Concept_MC_4

server (s)

conf_3

Concept_MC_3

conf_5

mail_client (mc)

local (l)
macro (m)

filtering (f)

interface (i)

Figure 2: Concept lattice for the formal context of Table 2, built with RCAExplore1

Fig. 2 presents the concept lattice associated with the formal context of Table 2. A concept is represented
by a 3-compartment box. The upper part contains a concept identifier. Configurations (concept extent)
appear in the lower part of the concepts and features appear in the middle part of the concepts (concept
intent). In the representation, intents and extents of concepts are simplified by making attributes (features)
and objects (configurations) appear only once in the concept lattice. The concepts in which appear features
and/or configurations are called “introducer-concepts” (Def. 7 and 8).

Definition 7 (Object-Concept). A concept which introduces a configuration is called an Object-Concept
(because configurations are the objects in FCA terms). It is the lowest concept where this configuration
appears.

Definition 8 (Attribute-Concept). A concept which introduces a feature is called an Attribute-Concept
(because features are the attributes in FCA terms). It is the greatest (highest) concept where this feature
appears.

By construction, in a concept lattice, configurations are inherited from bottom to top, and features are
inherited from top to bottom.

1http://dataqual.engees.unistra.fr/logiciels/rcaExplore

6

In some situations, rather than using the concept lattice, one can use sub-orders as the AC-poset or the
AOC-poset (Def. 9 and 10):

Definition 9 (AC-poset). Given CK the set of all concepts of a formal context K, the AC-poset (for
Attribute-Concepts partially ordered set) is the sub-order of (CK ,≤K) restricted to the Attribute-Concepts.

Definition 10 (AOC-poset). Given CK the set of all concepts of a formal context K, the AOC-poset (for
Attribute-Object-Concepts partially ordered set) is the sub-order of (CK ,≤K) restricted to the Attribute-
Concepts and the Object-Concepts.

The concept lattice can have up to 2min(|O|,|A|) concepts in the worst case (when it corresponds to the
powerset of the smallest set among O and A), while the concept number of an AC-poset (resp. AOC-poset)
is bounded by |A| (resp. |A|+ |O|).

The concept lattice representation includes the FM, in the sense that if there is an edge indicating F2

sub-feature of F1 in the feature tree, these features are respectively introduced in two comparable concepts
C2 ≤K C1 (C1 introduces F1; C2 introduces F2). Furthermore, the cross-tree constraints are verified by
the logical relationships that can be extracted from the concept lattice (i.e., implications between features,
mutual exclusions).

A concept lattice organises configurations and features in a single structure, which has a canonical form:
only one concept lattice can be associated with a formal context, and thus from a set of configurations. The
valid configurations of a feature model can be read from the lattice, since they correspond to the intent of
an Object-Concept.

The concept lattice has many qualities regarding the variability representation and relationships between
configurations, between features, as well as between configurations and features. These kinds of information
can be useful for several SPLE activities as representing how features may interact or guide the user into
selecting a final configuration. A concept lattice may highlight [7, 11, 13]:

• top features that are present in all configurations (e.g. mail client, interface);

• mutually exclusive features: two or more features appearing in distinct concepts whose infimum is the
bottom (e.g., application and server);

• feature co-occurrence: features that are introduced in the same concept (e.g., local and macro);

• feature implication: a feature introduced in a concept implies another one if the latter is introduced
in a super-concept (e.g., server implies webmail);

• how a configuration is closed to or specialises another one, or is a merge of other configurations (e.g.,
conf 3 is a specialisation of conf 1, conf 4 is the fusion of conf 5 and conf 3);

• features that are specific to a configuration, or shared by many.

• if the union of the configuration sets (extents) of a set of concepts is equal to the configuration set
(extent) of one of their common super-concepts, this may be a group.

The concept lattice is also an interesting structure to support exploratory search through conceptual
navigation [24, 25]. It is an information retrieval task which assists the users in progressively investigating
and discovering the available configurations by navigating (or browsing) into the dataspace by moving from
one concept to another according to the features they select. Given a navigation step, the user is placed in a
precise concept of the concept lattice structuring the variability. This concept represents the research state
and depicts the currently selected features. From this concept, the users have to choose between adding or
removing features, which corresponds to several navigation choices that will guide them to other concepts.
Also, it is noteworthy that FCA is a theoretical support for association rule extraction, a domain that has
not been explored yet in SPLE, as far as we know. Association rules are in our case relationships between
features that hold for a certain part of the configuration set: they are not true for all the configurations,

7

but strong rules (i.e., that hold for a major part of the configuration set) can be worth to consider from
a variability point of view, as for instance to identify the most prevalent feature choices in the configurations.

Besides, lattice theory defines irreducible elements. An element is called join-irreducible if it cannot be
represented as the supremum of strictly lower elements.

Definition 11 (Join-irreducible element). Let (E,≤) be a lattice, an element e ∈ E is a join-irreducible
element if, for all a, b ∈ E, x = a ∨ b implies x = a or x = b

The join-irreducible elements are easily identifiable in a lattice because they have only one predecessor in
the lattice transitive reduction. In a concept lattice, they necessarily introduce an object. In our framework,
they are useful for identifying irreducible configurations (in a polynomial time), that are used for defining
canonical representations of a context or a rule basis. All join-irreducible elements are present in the formal
context, so they all correspond to valid configurations. Note however that some (reducible) configurations
may be introduced in elements that are not join-irreducible.

2.4. FCA in Software Product Line Engineering

Formal Concept Analysis has many applications in software engineering community, as developed in the
survey of Tilley et al. [26] in 2005. In the specific domain of software product line engineering, it has been
used either in reverse engineering, or in forward engineering.

Forward engineering. Concept lattice can be a tool in the framework of forward engineering in SPLE.
Authors of [27] describe the connections between a feature model and a representation of the context in
context-aware applications. The context representation is based on an extension of FCA, namely Relational
Concept Analysis [28], and it shows how services are connected to their description. The approach uses
OWL-DL to encode the feature model, as well as rules in Semantic Web Rule Language (SWRL), to be able
to reason about and to adapt configurations

Reverse engineering. Formal Concept Analysis has been used in reverse engineering activities to organise
products, features, scenarios, or to synthesise information on the product line. In [7], the authors classify the
usage of variable features in existing products of a product line through FCA. The analysis of the concept
lattice reveals information on features that are present in all the products, none of the products, on groups
of features that are always present together, and so on. Such information can be used to drive modifications
on the variability management. In the same range of idea, the authors of [29] explore concept lattices as
a way to represent variability in products, and revisit existing approaches to handle variability through
making explicit hidden FCA aspects existing in them. The authors of [30] go a step further in the analysis
of the usage of FCA, by studying Relational Concept Analysis (RCA) as a way to analyse variability in
interconnected product lines in which a feature of a product line (like a screen for a computer product line)
can be a product of another product line (the screen product line).

Different artefacts are classified in [31]: the authors organise scenarios of a product line by functional
requirements, and by quality attributes. They identify groups of functional requirements that contribute
to a quality attribute, detect interferences between requirements and quality attributes, and analyse the
impact of a change in the product line w.r.t functional requirement fulfillment.

Several proposals investigate with FCA the relationships between features and source code of existing
software products. References [32, 33] aim at locating features in source code: existing products described
by source code are classified through FCA, and an analysis of the resulting concepts can detect groups
of source code elements that may be candidates to reveal a feature. Following the same track of research,
traceability links from source code to features are mined in reference [34]. In reference [35], the authors mine
source code in order to identify pieces of code corresponding to a feature implementation. They analyse
through FCA with pieces of source code, scenarios executing those pieces of source code, and features.

FCA is also used in several approaches to study the feature organisation in FMs. Concept structures
(concept lattices, AOC-posets, AC-posets) are used to detect constraints in FMs, and propose a decompo-
sition of features into sub-features. References [36, 12, 37] start from configurations and produce logical

8

relationships between the features of an FM, as well as cross-tree constraints. Ryssel et al. [11] extract
implication rules among features, and covering properties (e.g. sets of features covering all the products).
Compared to the approach we will develop in this paper, Ryssel et al. start from a formal context and aim to
build an FM and a set of implications rules that express the constraints that the FM does not contain; while
the approach we will pursue here consists in starting with an FM and providing an alternative representation
with an implicative system.

In [38, 8], FCA is used to provide foundations to an approach that builds an intermediary, canonical,
fully graphical representation, the Equivalent Class Feature Diagram (ECFD), starting from an FM or from
a configuration set, or both. The ECFD can be used either for FM re-design, configuration and feature
analysis [38], or FM composition (union and intersection [8]). The approach that we explored in [8] uses
a transformation chain which starts from an FM, then builds the configuration set (which is equivalent to
having a formal context) with existing tools, as FAMILIAR [39], and lastly builds the corresponding concept
lattice or AC-poset. When we applied it in practice to the FMs repository SPLOT2 [40], we noticed that
FAMILIAR hardly computes more than 10.000 configurations. There are different ways to address this
scaling problem (that is not encountered when the configuration set is known), including decomposing the
FMs, or being able to obtain the concepts without going through the generation of the whole configuration
set. This motivated the present work.

3. Comparing Formalisms for Variability Representation

To be able to position FCA conceptual structures among the existing variability representations, in this
section we 1) discuss different properties useful to compare variability representations and 2) present the
existing formalisms to represent variability in terms of features. We end this section with a comparison of
these representations.

3.1. Criteria to Compare the Formalisms

Variability representations describe different kinds of information, and have various properties that can
be useful in different situations. For instance, the compact and graphical representation given by an FM
is interesting to make an overview of a product line, whereas the textual and tabular representation given
by DMs is less suitable for this task. The choice of a variability representation strongly depends on the
properties of the model and the operation or task to be realised.

These properties are usually related to the semantics of the representation. A feature-oriented variability
representation always has a configuration semantics that associates to any variability representation the set
of its valid configurations. For instance, the FM of Figure 1 depicts 6 valid configurations, which are given
in Table 2. A variability representation is considered extensional if it explicitly depicts the set of valid
configurations, and intensional if it is expressed through constraints between features. Concision is an
interesting property indicating if the representation suffers from scalability issues due to the growth of its
configuration semantics. For example, the formal context of Table 2 is an extensional representation, whereas
the FM is an intensional representation of variability. FMs are concise, while configuration sets are not. A
variability representation may also be associated with a logical semantics expressing with propositional logic
the constraints defined over the set of features. Models of the propositional formula thus correspond to the
valid configurations. The property indicating if a representation can express any configuration set can
then be formulated through logical completeness. Comparison of graphical variability model expressiveness
based on their logical semantics is addressed in previous work [41], and we only indicate here the result of
this previous analysis. We can thus identify formalisms which are able to preserve FM configurations

semantics after a transformation from an FM notation. A variability representation may convey an on-
tological semantics providing knowledge about the domain of the product line. For instance, in an FM,
the edges of the feature tree and the groups correspond to domain knowledge, e.g. the group {webmail,

2http://www.splot-research.org/

9

application} indicates a semantic refinement of interface; the edge (mail client, interface) indicates that in-
terface is a sub-part of the mail client. Co-occurring features may represent mandatory relationships or
double require constraints: this is an example of two ontological relationships represented by the same
logical semantics. Another example are binary implications between features, which may represent either
refinement relationships or requirement relationships. Canonicity is another interesting property.
Given a set of configurations that are to be represented, and considering a chosen formalism, there are
often different ways of writing a representation of a given set of configurations following this formalism. For
example different feature models (i.e., with different ontological semantics) can have the same configuration
semantics. We also document which kinds of entities are involved in the relationships of the variability
representation (between features (F×F), between configurations (conf × conf) or between features and
configurations (F × conf)) and if the representation is textual of graphical.

Note that a previous comparison of graphical variability models [41] already gathers properties such as
intensional/extensional representation, canonicity or logical completeness. In this paper, we recall these
results and extend them by taking into account new properties (different ontological semantics, textual
and graphical representations, concision) and new variability representations, notably textual ones and
implicative systems obtained with the method proposed in the following sections. We also discuss the usage
of the different variability representations in the literature.

3.2. A review of alternative representations

FCA conceptual structures allow to highlight variability by organising a set of features in graph-like
representations. To be able to situate these structures among existing variability representations, we study
other feature-oriented representations which have been used in the literature to express software product
line variability. Some are graphical, some are textual, some are intensional or extensional. But they all
have in common the fact that they represent a set of configurations, a configuration in this case being a
set of features. Therefore, they can all be seen as alternative representations of a configuration set. For
each representation, we give a definition, an illustration based on the mail client SPL represented in the FM
of Fig. 1 (where the configurations are listed in the formal context of Table 2), and discuss its canonicity,
concision, configuration/logical semantics and ontological semantics.

A binary decision tree (BDT) represents the truth table of a propositional formula in a binary tree
graph. If the propositional formula is in n variables, then a path from the root to a leaf is of size n + 1.
A path from the root to one leaf represents a variable assignment, or in our case, a configuration. A node
has two outgoing edges: a low edge (assigning the variable to 0) and a high edge (assigning the variable
to 1). The leaves are labelled by either 1 or 0 depending on the assignment value: a valid configuration is
indicated by a leaf labelled by 1, and an invalid configuration by a leaf labelled by 0. BDTs are extensional
representations of a configuration sets which suffer from redundancies due to the repetition of the variables
representing the features. This representation does not have any ontological information and does not
describe any relationships between features or configurations. However they can represent any configuration
set. Condensed BDT representations can be obtained through node sharing to avoid redundancies: the
resulting representation is a directed acyclic graph called a binary decision diagram (BDD) [4, 42]. The
term BDD usually refers to ROBDD (for reduced ordered binary decision diagram), which is unique for
a given configuration set. They have the same properties than BDTs except that they are intensional
representations. The ROBDD corresponding to the configuration set of Table 2 is depicted in Figure 3.

ROBDDs are usually not used as end-user representations. Even though it depicts all valid feature
combinations while limiting node redundancy, this representation remains large and convoluted. ROBDDs
are rather used as internal representations of variability to support automated analysis as it allows us to
perform some operations (as counting the number of valid configurations, for instance) more efficiently
than with propositional formulas and SAT solvers [43]. They have been notably used to compute binary
implications and prime implicants (used to detect feature groups) during FD synthesis [4, 44, 45].

Another graph-like representation is the binary implication graph [4], which only depicts binary
implications between features. This is an intensional representation, where each vertex corresponds to a
different variable (feature), and each implication is represented by a directed (binary) edge. These binary

10

i

w

a

a

f

f

s

s

s

l

l

l

m

m

0

1

0/low

1/high

mc

Figure 3: ROBDD corresponding to the configuration set of Table 2

implications correspond the child-parent relationships, the cross-tree constraints and the mandatory rela-
tionships: thus, feature groups are not expressed in this representation. For a given propositional formula,
several implication graphs can be constructed, but two induced structures are unique: the transitive closure
and the transitive reduction of the graph. The transitive reduction of the implication graph corresponding
to our example about mail clients is presented in Figure 4 (left-hand side). Its configuration semantics is
not always the same as the original feature model, because an implication graph can eventually depict more
configurations, as it expresses less constraints than the original feature model or propositional formula.

Binary implication graphs were first used in the context of variability modelling by Czarnecki and
Wasowski [4] as a propositional formula visualisation in their work on FM extraction from propositional
formulas. This representation has been used in other papers to synthesise FMs from a set of specified con-
straints [46, 47, 44, 48, 45]. Their popularity is due to the fact that the feature tree composing a feature
model is a spanning tree of the implication graph, therefore building the implication graph is usually the
first step of dedicated algorithms for FM synthesis.

Implication hypergraphs [4] extend the notation of binary implication graphs. A hypergraph is a
graph generalisation which may have hyperacs, i.e., arcs connecting more than two vertices. The hyper-
graph vertices correspond to variables (features) and boolean constants. Each binary implication (cross-tree
constraint, child-parent or mandatory relationship) is represented by a directed binary arc, while other
constraints (feature groups and mutex) are represented by hyperarcs. If several vertices are connected to
another vertex by an hyperarc, it represents a feature group. If two vertices are connected to the vertex
representing the constant 0, then they are mutually exclusive. Features involved in a feature group and
mutually exclusive represent a xor-group. Figure 4 (right-hand side) represents the implication hypergraph
associated with the mail clients. As the implication set for a given formula is not necessarily unique (except
if it is a canonical basis), neither is the obtained hypergraph. This intensional representation depicts exactly
the same configuration set as the original propositional formula. It also keeps a part of the ontological
semantics, as feature groups patterns can be extracted from the hyperarcs.

Despite their mentioned qualities, directed hypergraphs have been presented in [4] as a way to graphically
represent a propositional formula for FM extraction, but have not been used further for variability modelling.

A feature graph [45] is a diagram-like representation which seeks to describe all feature models which
depict a same set of configurations (we recall that for a given set of configurations, several different feature
models can be built). A feature graph is composed of a set of vertices (F) corresponding to features and
conjunction of features (co-occurring features), and a set of directed edges representing binary implications
(E ⊆ F × F), which form a connected directed acyclic graph (DAG). In addition to E, a feature graph
possesses a set of undirected edges Ex (with Ex∩E = ∅) expressing mutually exclusive features. Finally, Go,
Gx, and Gm are three sets of subsets of E, which indicate respectively edges involved in or-groups, xor-groups
and mutex-groups. All edges present in a group ofGo, Gx orGm have the same parent. Because configuration

11

mail_client

interface

filtering macro

webmail application

server local

mail_client

interface

filtering macro

webmail application

server local0

Figure 4: Binary implication graph (left-hand side) and implication hypergraph (right-hand side) of mail clients

semantics do not formulate mandatory relationships between features, they are not expressed in feature
graphs either, and thus explain why a vertex of the DAG can either be a single feature, or a conjunction
of features. As for FMs, a feature graph is not necessarily unique for a given set of configurations, but the
transitive reduction and the transitive closure of the feature graph are canonical. These representations
express variability in a compact way.

Equivalence Class Feature Diagrams (ECFDs) [38] are also graphical and compact representations
(close to the classical feature model notation) of the logical semantics that can be extracted from a set of
configurations. Co-occurring features are introduced in the same box. Arrows between boxes indicate logical
implications between features. Mutex are represented by a line marked with a cross between the mutually
exclusive features. Feature groups are represented by their respective propositional connectives connecting
the features involved in the groups and the parent-feature of the group. They depict the same information as
in feature graphs, as well as un-rooted groups of features that never appear together at the same time [38].
These groups are not mutex groups (i.e., each pair of features are in mutual exclusion), and mutex groups
are not represented in ECFDs. Originally, they seek to represent more intuitively logical relationships that
can be read in a concept lattice structuring a set of configurations, and thus are canonical by construction.
In the case of our example, the feature graph and ECFD are equivalent: left-hand side of Figure 5 shows
the feature graph notation of Table 2, and right-hand side shows the ECFD notation. In the general case,
the ECFD and the feature graph are not feature trees.

applicationwebmail

server local
macro

mail_client
 interface

filtering

applicationwebmail

server local
&& macro

mail_client
&& interface

filtering

v

Figure 5: Feature graph (left-hand side) and ECFD (right-hand side)

These variability representations depict the variability information that can be extracted automatically
from a configuration set. To obtain an FM from these representations, it is thus necessary to rely on user
decisions. Therefore feature graphs and ECFD include all ontological user decision that have to be made by

12

a designer to synthesize an FM. They are used as “temporary variability representations” in some reverse
engineering FM methodologies, and particularly in semi-automated ones [45, 13].

Constraints defined by previous variability representations can be expressed with propositional logic. It
is possible to define a propositional formula over a set of propositional variables F to express constraints
defined using propositional connectives (∧,∨,→,↔ and ¬) [49, 4]. The set of models of the obtained
propositional formula then corresponds to the set of valid configurations. Automated analysis (e.g., counting
the number of valid configurations, extracting the unused features, verifying the validity of a configuration)
can then be performed using SAT-solvers, generally on the Conjunctive or Disjunctive Normal Forms (CNF
or DNF). Figure 6 shows a propositional formula equivalent to the FM of Figure 1. The combinations of
features respecting the propositional formula of Figure 6 correspond to the 6 configurations listed in Table 2.

root: (> ⇒ cm)
hierarchy: (i⇒ cm) ∧ (w ⇒ i) ∧ (a⇒ i) ∧

(f ⇒ cm) ∧ (s⇒ f) ∧ (l⇒ f) ∧
(m⇒ cm) ∧

xor-groups: (i⇒ (w ⊕ a)) ∧
or-groups: (f ⇒ (s ∨ l)) ∧

mandatory: (cm⇒ i) ∧
cross-tree constraints: (m⇔ l) ∧ (s⇒ ¬a)

Figure 6: Propositional formula corresponding to the FM of Figure 1, having for models the ones listed in Table 2

A Constraint Satisfaction Problem (CSP) is a 3-tuple (V,D,C), where V is a set of variables, D a
set of domains (one for each variable), and C a set of constraints over V . An assignment of values which
satisfies all constraints of C represents a solution of the CSP. CSPs have been used to model and reason
on SPL, with V representing the set of features, D representing {true, false} domains and C modelling
the constraints between features [5, 50]. A CSP solution is thus a valid configuration of the SPL. There
are several ways to model a set of configurations with a CSP; Fig. 7 presents one of them, following the
transformation rules of [50]. As for propositional formulas, CSPs are intensional and textual representations
of the SPL.

In [50], the authors propose to compute the number of valid configurations and to list them, to apply
filters to retrieve valid configurations satisfying given constraints, and to retrieve valid configurations close
to a given feature set. In [51], authors propose to use CSPs to detect dead-features (i.e., unused features
which do not appear in any configuration) and core-features (i.e., features present in all valid configurations).
Constraints also are used for modelling purpose [52].

- V = {cm, i, a, w, f, s, l, m}
- ∀d ∈ D, d = {true, false}
- C = {cm = true, cm = i, i⇔ (a⊕ w), f ⇔ (s ∨ l), m = l, s⇒ ¬a}

Figure 7: Constraint Satisfaction Problem

3.3. Feature-oriented representation comparison

The upper part of Table 3 compares the different formalisms used in SPLE domain with respect to
properties discussed in Section 3.1.

In SPLE domain, most of the representations consider an intensional and graphical point of view with
only feature organisation (F ×F). This is due to the fact that the number of potentially valid configurations
exponentially grows with the number of features. Thus, to ensure a variability representation with a reason-
able size and understandable by practitioners, the majority of formalisms possesses these three properties.
The set of configurations and the BDT are the only exceptions concerning intensional feature organisation,
as they enumerate the configurations and indicate which features they contain. Also, propositional formulas

13

Table 3: Properties of the different feature-oriented representation formalisms
Rep. prop. conf. sem. onto. sem.

Domain Representation C
a
n
o
n
ic

a
l

T
e
x
tu

a
l

G
ra

p
h
ic

a
l

F
×

F

F
×

c
o
n
f

c
o
n
f
×

c
o
n
f

a
n
y

c
o
n
f.

se
m

.

p
re

se
rv

e
F

M
c
o
n
f.

se
m

.

e
x
te

n
si

o
n
a
l

in
te

n
si

o
n
a
l

c
o
n
c
is

io
n

e
x
p
re

ss
fe

a
tu

re
g
ro

u
p
s

re
q
u
ir

e
s

v
s

re
fi
n
e
m

e
n
t

d
o
u
b
le

re
q
u
ir

e
s

v
s

m
a
n
d
.

SPLE Configuration set x x x x
SPLE Feature model x x x x x x x x
SPLE Binary decision tree x x x x x
SPLE ROBDD x x x x x
SPLE Binary implication graph (BIG) x x x x
SPLE BIG transitive closure/reduction x x x x x
SPLE Hypergraph x x x x x x x x
SPLE Feature graph x x x x x x x
SPLE ECFD x x x x x x x
SPLE Propositional formula x x x x x x x
SPLE CNF/DNF x x x x x x x
SPLE CSP x x x x x x x

FCA Formal context x x x x x
FCA Concept lattice x x x x x x x x x
FCA Labelled feature closed set lattice x x x x x x x x x x
FCA Implicative system x x x x
FCA Labelled implicative system x x x x x x

and CSPs are the only ones that textually represent intensional feature organisation (apart from serialization
formats of tools); as we have seen before, these formalisms are principally used for automated analysis of
variability and not for an intuitive overview representation.

FM is the only representation which clearly expresses ontological information, but it is not canonical,
since many relevant FMs can be built from a same configuration set. Implication hypergraphs, feature
graphs and ECFD preserve the notion of feature groups, but refinement and mandatory information of
features are lost, e.g., it is not possible to know from a logical implication between two features if the first
feature refines the second one, or if they are semantically independent features but the first requires the
second. In fact, these representations display the logical semantics of equivalent feature models, i.e., all
feature models depicting the same set of configurations but having different ontological semantics. Thus,
they are a way to represent equivalence classes of feature models.

In FCA domain, formal contexts allow to list the configuration set of a software product line in a
configurations × features table. This representation is fully textual and extensional. The configuration
semantics of the concept lattice is the same as the one of the FM. The logical semantics is the same too.
However, the ontological semantics is incomplete as in the structure, we cannot distinguish ontological
relationships: for example, when a feature F2 is in a sub-concept of a concept that introduces another
feature F1, we cannot know whether F2 implies F1 (macro implies local) or F2 refines F1 (local is a kind of
filtering). However, the application of FCA on a formal context permits to construct the ECFD, a canonical
graph-like structure that highlights almost all logical relationships between features (e.g., implications,
feature-groups) and relationships between configurations (e.g., specialisation/generalisation). FCA and its
associated conceptual structures offer an original mixed representation of features and configurations that
may bring to the SPLE domain a complement to the existing representations, by showing relations between
features and configurations, as well as between configurations. The cases of labelled feature closed set lattice,
implicative systems and labelled applicative systems are detailed in the next section.

The combinatorial explosion of the number of configurations may be responsible of some scaling issues,
as it is necessary to list them all to build a formal context. In what follows, we propose a way to avoid scaling
issues related to enumerating configurations in formal contexts. This will enable the usage of variability
operations based on formal concept analysis structures, which are usually restricted to small feature models.

14

4. Addressing scaling issues

When using FCA, scaling issues may occur at two levels: when computing the formal context, and
when computing the concept lattice. Concept lattices are well-known for their exponential growth and the
difficulty one can have to exploit them when their size is too important. One of the existing solutions to limit
the structure size is to make an on-demand generation of the concept lattice, using step-by-step algorithms
such as the immediate successor algorithm [53] to generate only the needed concepts, as for instance in data
exploration activities [25]. On-demand generation of a concept lattice sub-hierarchies such as AOC-poset
[9] is another solution to avoid scaling issues related to the size of conceptual structures.

In this section, we address scaling issues related to the size of formal contexts (input datasets), especially
when it is not possible to list all possible objects (i.e., in our case, to list the valid configurations of an SPL).
We investigate implicative systems as an alternative intensional variability representation which does not
necessitate to enumerate all possible configurations. This choice is motivated by the fact that implicative
systems can be defined on the feature set only. Moreover, several algorithms enable to switch from a
representation to another (formal context, concept lattice, implicative system basis) in a canonical way, as
they are based on bijections between these objects through a closure operator [54].

4.1. Preliminaries

We first introduce the needed definitions and useful results that underlie our proposal: closure operator,
closed element, closure system, implicative system and their connection to concept lattices [6, 55, 56].

A closure operator is a mapping over an ordered finite set (X,≤), which is extensive, increasing and
idempotent.

Definition 12 (Closure operator and closed element). A closure operator over a set (X,≤) is a map-
ping φ : X 7→ X such that, for all x, y ∈ X:

• x ≤ φ(x) (extensive)

• if x ≤ y, then φ(x) ≤ φ(y) (increasing)

• φ(φ(x)) = x (idempotent)

An element x such that φ(x) = x is called a closed element.

Here, we will consider, for a finite set E, closure operators over (2E ,⊆).
Two different definitions can be found in the literature for closure systems. Here we will define a closure

system (also called a Moore family) as a set of subsets of a finite set E, which is closed by intersection, and
contains the set E. Alternatively, a closure system can be defined by a pair (E, φ), where E is a set and φ
a closure operator.

Definition 13 (Closure system (Moore family), closed set). F is a closure system over a finite set
E if and only if:

• F ⊆ 2E

• E ∈ F

• for all S1, S2 ∈ F , we have S1 ∩ S2 ∈ F

An element of F is called an F-closed set (or simply a closed set, when there is no ambiguity).

If F is a closure system, the partially ordered set (F ,⊆) is a lattice. Given a closure operator φ over
(2E ,⊆), the associated closure system is F = {φ(S) | S ⊆ E}. Reversely, given a closure system F over a
finite set E, the associated closure operator is φF : 2E 7→ 2E , where, for S1 ∈ E, φ(S1) =

⋂
{S2|S1⊆S2}

S2.

Now, we connect closure systems and closure operators to concept lattices. Given a formal context
K = (O,A,R), we consider the mappings α (which associates the shared attributes to a set of objects) and
ω (which associates the common objects to a set of attributes) such that, for SO ⊆ O and SA ⊆ A:

15

• α(SO) = {a ∈ A | ∀ o ∈ SO : (o, a) ∈ R}

• ω(SA) = {o ∈ O | ∀ a ∈ SA : (o, a) ∈ R}

.
Then, the context can be defined by (O,A, α, ω). (α, ω) is a Galois connection [57] and α ◦ ω and ω ◦ α

are closure operators. In [6], α and ω are both denoted by (.)′, which substantially alleviates the notations.
Their compositions are denoted by (.)′′. The sets SA”, for SA ⊆ A, form a closure system for the attribute
set A. They also are the concept intents of the concept lattice of K. Symmetrically, the sets SO”, for
SO ⊆ O, form a closure system for the object set O. They also are the concept extents of the concept lattice
of K. By construction, the attribute closed set lattice ({SA” | SA ⊆ A},⊆) is isomorphic to the concept
lattice of K.

Definition 14 (Implicative systems). Let E be a finite set, an implicative system Σ over E is a set of
pairs (P,C) ∈ 2E × 2E . A pair (P,C) is called an implication, P is the premise and C is the conclusion. An
implication will be denoted by P → C.

To an implicative system, one can associate a closure system FΣ as the set {S ⊆ E | ∀P, P ⊆ S and P →
C ∈ Σ implies C ⊆ S}, and a closure operator φΣ : 2E 7→ 2E where φΣ(S) is the smallest subset SΣ ⊆ E
such that S ⊆ SΣ and for every P ⊆ SΣ and P → C ∈ Σ, we also have C ⊆ SΣ.
Several implicative systems can be associated with the same closure system, and some have specific proper-
ties. For example, an implicative system is minimal if no implication can be removed without changing the
associated closure system.

Finally, we connect implicative systems and formal contexts. Implicative systems can be defined over the
set of attributes (features) or the set of objects (configurations), however, we focus on the ones defined over
features, as features are fewer than configurations. Given a formal context K = (O,A,R) and PA, CA ⊆ A,
the implication PA → CA over A is said valid for the formal context K if and only if P ′A ⊆ C ′A (i.e., if all the
objects from K having all the attributes in PA also have all the attributes in CA). Let ΣA be the implicative
system constituted of the set of all implications over A that are valid for K, then ∀SA ⊆ A, φΣA

(SA) = S′′A.
The attribute closed set lattice ({φΣA

(SA) | SA ⊆ A},⊆) is isomorphic to the concept lattice of K, and each
φΣA

(SA) for SA ⊆ A corresponds to a formal concept’s intent of K.

4.2. From feature model dependencies to implicative systems

In what follows, we propose a method to avoid scaling issues related to the FCA input formats (i.e.,
the ones representing a closure operator) that are necessary to build FCA conceptual structures for SPLE
purpose. As we have seen before, using formal contexts, that are an extensional representation of variability,
as closure operators, is not appropriate in these conditions. In the previous section, we have seen that one
can use an implicative system instead of a formal context, and obtain a closed set lattice isomorphic to the
concept lattice. Implicative systems over the set of features are more appropriate than formal contexts: they
are intensional representation of SPL variability, expressing interactions between features. However, in the
associated feature closed set lattice, the feature organisation is preserved, but the objects (i.e., configurations)
do not appear anymore.

As we study the case where the set of configurations cannot be enumerated, we have to start from
an intensional representation of the SPL variability. Feature models being the de facto standard, they
will constitute our inputs. Let KF = (OF , AF , R) be the formal context associated with the set of valid
configurations of a feature model F , and ΣAF

the set of all implications over AF that are valid for KF .
The feature closed set lattice of ΣAF

is isomorphic to the concept lattice of KF , and represents the formal
concept’s intents of KF . In what follows, we call ΣAF

a corresponding implicative system of the feature
model F . More precisely, as the implicative system we consider seeks to represent variability information,
we will refer to it as the corresponding variability implicative system of the feature model, so as not to be
confused with other equivalent implicative systems. Now, our goal can be summarised by the following
question:

16

RQ1: Given a feature model F, how to obtain the corresponding variability implicative system ΣAF

without having to build the formal context KF ?
To enable the transformation from an FM to its corresponding variability implicative system, we study

more formally the semantics of FM relationships with regards to the configurations they produce in the
formal context. More specifically, given a feature model and its corresponding formal context, we study
the impact on the formal context of the addition of a feature to the FM. It allows us to deduce which
implications over features correspond to each type of FM relationship, and how these relationships modify
the existing configurations. The matching between FM relationships, formal contexts and implications is
summed up in Table 4. To express FM relationships according to formal contexts, let us consider the formal
context KF as a set of configurations CF ⊆ 2AF .

• Root feature The root feature is a particular case that traditionally represents the name of the
modeled product line, and thus it is present in all configurations: let r ∈ AF be the root feature of F ,
∀c ∈ CF , we have r ∈ c. This is expressed by the implication ∅ → r, requiring the presence of r in all
configurations.

• Feature hierarchy Refinement relationships defined by the feature tree express the fact that a child
feature can be in a configuration only if its parent feature is already part of the configuration. Adding
a new feature y as a child of an existing feature x adds a new column y in the associated formal context.
Then, all configurations of KF possessing y will necessarily possess x: ∀c ∈ CF | y ∈ c, we have x ∈ c.
Adding this feature makes the implication y → x valid in the formal context. This relationship and
its associated implication are implicitly present in the 4 following relationships.

• Optional relationship Optional relationships actually express the absence of dependencies between
a feature and its child. This means that if x is in a configuration, its child feature y may be in the
configuration, or not: ∀c ∈ CF | x ∈ c, we have (y ∈ c ∨ y 6∈ c). Connecting the new feature y by an
optional relationship to x duplicates all configurations having x in the formal context, and adds y to
these new configurations. It does not generate any implication other than the one corresponding to
the hierarchy (i.e., y → x).

• Mandatory relationship Mandatory relationships indicate that if a parent feature is in a configu-
ration, its child feature also has to be. Connecting the new feature y by a mandatory relationship to
a feature x means that all configurations of the associated formal context having x now also have y:
∀c ∈ CF | x ∈ c, we have y ∈ c. The number of configurations does not change, but the implication
x→ y is now valid for KF .

• Or-group An or-group behaves as a set of optional relationships with an obligation to select at least
one sub-feature of the group (i.e., the parent feature cannot appear without at least one of its child
features in any configuration). Let {f1, ..., fn} ⊆ AF be the sub-features involved in the group added
to feature x: ∀T ∈ 2{f1,...,fn} | T 6= ∅, ∃c ∈ CF | x ∈ c and T ⊆ c. Connecting the new features
{f1, ..., fn} by an or-group to x duplicates each configuration having x to make them appear 2n−1 times
in the updated formal context. ∀T ∈ 2{f1,...,fn}, T is added to one of the duplicated configurations.
As for optional relationships, this kind of constraints does not produce any new valid implication in
the formal context.

• Xor-group Finally, xor-groups require that, if the parent feature is present in a configuration, exactly
one feature involved in the group has to be present. In other words, two of the involved sub-features
cannot appear together in any configuration: ∀fi ∈ {f1, ..., fn}, ∃c ∈ CF | {x, fi} ⊆ c we have
@fj ∈ {f1, ..., fn} | fj 6= fi, and fj ∈ c. Connecting the new features {f1, ..., fn} by a xor-group to
x duplicates each configuration having x to make it appear n times in the updated formal context.
∀fi ∈ {f1, ..., fn}, fi is added to one of the duplicated configurations. Any pair (fi, fj) such that
fi, fj ∈ {f1, ..., fn} and fi 6= fj does not appear in any configuration, and every pair (fi, fj) generates
an implication fi, fj → ⊥. Therefore, as AF 6∈ CF (because if there exists at least a xor-group, a
configuration of the SPL cannot have all the features of AF), it is denoted by fi, fj → AF .

17

• Cross-tree constraints We can also determine implications for cross-tree constraints, i.e. requires
and exclude constraints. Let f1, f2 ∈ AF two features of F . f1 requires f2 can naturally be translated
by the implication f1 → f2. This constraint states that if f1 is in a configuration, f2 has to be in
the configuration as well: ∀c ∈ CF | f1 ∈ c, we have f2 ∈ c. Adding this constraint removes all the
configurations having f1 but not f2 from the associated formal context. The constraint f1 excludes f2

states that if a configuration has f1, it cannot have f2, and conversely. It can be translated by
f1 f2 → AF , as in xor-groups, to express the fact that f1 and f2 cannot appear together in the same
configuration: ∀c ∈ CF , {f1, f2} 6⊆ c. Adding this constraint to an FM removes from the formal
context all configurations in which f1 and f2 appear together.

This analysis allowed to highlight this property:

Property 1. When adding a new feature (resp. a feature group) to an FM, it adds new dependencies
which only involve the added feature (resp. a feature group) and its parent: it does not change the previous
dependencies expressed in the FM.

Table 4: Graphical FM dependencies and their corresponding implications
Root Hier. Opt. Mand. Or-group Xor-group

d
e
p

e
n
d
e
n
c
ie

s

r

x

y

x

y

x

y

x

f1 fn...

x

f1 f2 fn...

c
o
n
fi
g
u
ra

ti
o
n
s

∀c ∈ CF ,
we have
r ∈ c

∀c ∈ CF |
y ∈ c, we
have x ∈ c

∀c ∈ CF |
x ∈ c, we
have y ∈
c or y 6∈ c

∀c ∈ CF |
x ∈ c, we
have y ∈ c

∀T ∈ 2{f1,...,fn} |
T 6= ∅, ∃c ∈
CF s.t. x ∈ c and
T ⊆ c

∀fi ∈ {f1, ..., fn},
∃c ∈ CF | {x, fi} ⊆
c we have @fj ∈
{f1, ..., fn} | fj 6= fi,
and fj ∈ c

im
p
l.

∅ → r y → x None x→ y None
∀fi, fj ∈ {f1, ..., fn} |
fi 6= fj we have
fi, fj → AF

Therefore, one can transform any FM into its corresponding variability implicative system by performing
a graph search on the feature tree and using Table 4. Note that part of the information about feature-groups
is lost during the transformation: x → f1 ∨ ... ∨ fn (for or-groups) and x → f1 ⊕ ... ⊕ fn (for xor-groups)
cannot be expressed in implicative systems. We will discuss this aspect later. If one constructs the FM step
by step (i.e., starting with only the root feature, then adding each feature or group of features one after
another), he/she can create the implications corresponding to each added feature (resp. feature group) as
stated in Table 4: no implication is missing, nor needs to be changed afterward.

Algorithm 1 shows how to construct the variability implicative system corresponding to an FM. It follows
the construction steps of an FM: it starts from the root and goes through all the FM relationships, adding
for each one of them the corresponding implications into the output variability implicative system. As we
have seen before, the order to process the relationships is not important, as adding a feature to an FM does
not impact previously established relationships.

As an example to illustrate our method, we use a variant of an FM about e-commerce taken from [13]. It
is presented in Fig. 8 (left-hand side) with the formal context associated with its set of valid configurations
(right-hand side). This FM states that all e-commerce applications have a catalog. An e-commerce catalog
is either a displayed in a grid or in a list. Payment methods are optional, but if some are implemented,
then it is at least one of the following: credit card, check or paypal. A basket management feature is also
proposed optionally. If the application has a basket management, then it also has at least one payment
method, and conversely.

We applied our algorithm on the FM of Fig. 8 and obtained the variability implicative system presented
in Fig. 9.

18

Data: F a feature model
Result: IS the corresponding variability implicative system
begin

Add {∅→ root(F)} in IS // root case in Table 4

FEAT ←− GetFeat(F) // FEAT set of features of F

for f ∈ FEAT do
Sh ←− children(f)
for s ∈ Sh do

Add {s→ f} in IS // hierarchy case in Table 4

end
Sm ←− mandatoryChildren(f) // get children of f connected by a mandatory relationship

for s ∈ Sm do
Add {f → s} in IS // mandatory case in Table 4

end
Sx ←− xorGroups(f) // get xor-groups having f for parent-feature

for S ∈ Sx do
for P ∈ pairsOf(S) do

Add {P → FEAT} in IS // xor-group case in Table 4

end

end
Si ←− requiresCTCs(FM) // requires CTCs

for (f1, f2) ∈ Si do
Add {f1 → f2} in IS

end
Se ←− excludeCTCs(FM) // exclude CTCs

for {f1, f2} ∈ Se do
Add {{f1, f2} → FEAT} in IS

end

end

end
Algorithm 1: Extracting the corresponding variability implicative system from an FM

19

e_commerce (Ec)

catalog (Ca) payment_method (Pm) basket (B)

grid (G) list (L) credit_card (Cc) check (Ch) paypal (P)

payment method↔ basket

Ec Ca G L Pm Cc Ch P B
1 × × ×
2 × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × × × ×
6 × × × × × × ×
7 × × × × × × ×
8 × × × × × × ×
9 × × × × × × × ×
10 × × × × × ×
11 × × × × × ×
12 × × × × × ×
13 × × × × × × ×
14 × × × × × × ×
15 × × × × × × ×
16 × × × × × × × ×

Figure 8: FM about e-commerce [13] (left-hand side), and its set of valid configurations (right-hand side)

root: ∅→ Ec
hierarchy: Ca→ Ec ; G→ Ca ; L→ Ca ; Pm→ Ec

Cc→ Pm ; Ch→ Pm ; P → Pm; B → Ec
mandatory: Ec→ Ca

xor-group: G,L→ Ec,Ca,G,L, Pm,Cc,Ch, P,B
cross-tree: Pm→ B ; B → Pm

Figure 9: Implicative system corresponding to the feature model of Fig. 8

4.3. Identifying the configurations in feature closed set lattices

We have seen that we can build a feature closed set lattice from a variability implicative system directly
extracted from an FM, to avoid scaling issues related to enumerating the FM configurations in a formal
context. The obtained feature closed set lattice is isomorphic to the concept lattice associated to the FM
configurations. However, it does not capture the configurations, which are necessary to perform tasks as
exploratory search or variability reorganisation. This leads us to a second research question:

RQ2: How to identify the FM valid configurations in the feature closed set lattice?
First, let us recall that in a concept lattice representing an FM, an object introduced in the extent of a

concept represents a valid configuration, which corresponds to the combination of features in the concept’s
intent. Because each configuration in an FM is unique, each concept of the corresponding concept lattice
can introduce at most one configuration. Thus, each concept’s intent represents either a valid configuration
or an invalid one3.

Now, let us examine the feature closed sets obtained from an implicative system corresponding to an
FM. We have seen previously that in the isomorphic feature closed set lattice, each closed set corresponds to
a concept’s intent from the context: therefore, each valid configuration of the FM matches a feature closed
set. But, some feature closed sets do not represent an FM valid configuration (the ones that correspond
to concepts of the concept lattice that do not introduce a configuration). To be able to retrieve knowledge
about configurations as in concept lattices, identifying which closed set corresponds to a valid configuration
in the feature closed set lattice is necessary.

We recall that, from an FM point of view, a valid configuration is a combination of features respecting
all the FM dependencies. Therefore, a feature closed set represents a valid configuration if it respects all
the FM dependencies. But, only some of the FM dependencies naturally appear in the structure of the
lattice. All implications between features are highlighted in the lattice, and thus feature hierarchy, requires

3Not in the sense where there are incompatible features: these intents represent incomplete configurations, i.e., they can
become valid by adding features. The bottom concept is an exception as it is the only one that may represent incompatible
features, in the case where no configuration has all features.

20

cross-tree constraints and mandatory relationships are respected by all feature closed sets of the lattice.
Mutually exclusive features also can be retrieved by computing the lower bound of two concepts.

As optional relationships express the absence of dependencies, they do not create any difficulty. Or-
groups and xor-groups, however, are more problematic; in fact, some feature closed sets do not respect the
feature-groups semantics. For instance, let us consider the or-group in Fig. 8 (left-hand side), composed of
credit card, check, and paypal, which are three sub-features of payment method. {Ec,Ca,G, Pm,Cc} and
{Ec,Ca,G, Pm,P} are two valid combinations of features of this group. But, because our closure system
is closed under intersection, {Ec,Ca,G, Pm,Cc} ∩ {Ec,Ca,G, Pm,P} = {Ec,Ca,G, Pm} is also a feature
closed set of the closure system, but it does not respect the dependencies induced by the or-group (which
consists in containing at least Cc, Ch or P). The same reasoning can be applied with xor-groups.

To identify if a feature closed set respects the dependencies induced by or-groups and xor-groups, we
choose to make labels appear in the feature closed sets. These labels will play the role of constraints over
features: if a feature closed set contains a label, and if it respects the constraint indicated by the label, then
it is a valid configuration. Thus, a post-treatment will be needed to verify the constraints represented by
the labels in order to identify the valid configurations. There are two kinds of labels to introduce: one to
indicate or-groups related constraints, and one to indicate xor-groups related constraints.

• Xor-group label This kind of label has to appear in each feature closed set having a feature being
the parent of a xor-group. It has to indicate the sub-features involved in the xor-group, that we
choose to represent as follows: given a xor-group xor(p, {f1, ..., fn}) with p being the parent feature
and {f1, ..., fn} being the sub-features involved in the group, the corresponding label is (f1 ⊕ ...⊕ fn)
and has to appear in all feature closed sets having p. For instance, the label corresponding to the
xor-group of FM from Fig. 8 is (G⊕L), and has to appear in all feature closed sets having the feature
Ca. The constraint represented by this kind of label means “any feature closed set having the label
(f1⊕ ...⊕ fn) has to possess exactly one feature of {f1, ..., fn}”. If it is not the case, the feature closed
set is not a valid configuration of the SPL.

• Or-group label This kind of label has to appear in each feature closed set having a feature being
the parent of an or-group. It has to indicate the sub-features involved in the or-group, that we
choose to represent as follows: given an or-group or(p, {f1, ..., fn}) with p being the parent feature and
{f1, ..., fn} being the sub-features involved in the group, the corresponding label is (f1 ∨ ... ∨ fn) and
has to appear in all feature closed sets having p. For instance, the label corresponding to the or-group
of FM from Fig. 8 is (Cc ∨ Ch ∨ P), and has to appear in all feature closed sets having the feature
Pm. The constraint represented by this kind of label means “any feature closed set having the label
(f1 ∨ ... ∨ fn) has to possess at least one feature of {f1, ..., fn}”.

The number of different labels necessary to label the feature closed set lattice is equal to the number of
different feature-groups. A feature closed set which respects all the constraints depicted by its labels thus
corresponds to a valid configuration.

To make these labels appear in the feature closed sets, we represent them in the labelled variability
implicative system, as label-features. A label appears in all feature closed sets having a feature f by adding
to the original variability implicative system an implication between the feature f and the corresponding
label-feature. We also add an implication from the label-feature to f to make them always appear together
in the labelled feature closed sets: in this way, the added label-feature does not change the lattice structure.

Fig. 10 presents the implications added to the variability implicative system of Fig. 9 in order to take
into account labels (G⊕ L) and (Cc ∨ Ch ∨ P).

labels: Pm→ (Cc ∨ Ch ∨ P) ; (Cc ∨ Ch ∨ P)→ Pm
Ca→ (G⊕ L); (G⊕ L)→ Ca

Figure 10: Adding label-feature in the implicative system of Fig. 9

Fig. 11 represents the feature closed set lattice associated with the labelled variability implicative system
of Fig. 9 plus Fig. 10: feature closed sets which respect all the constraints defined by their labels are colored

21

CS_27

Ec
Ca

CS_25

G

CS_0

CS_1CS_2

CS_24

L

CS_20

CS_26

Pm
B

CS_19

CS_18

CS_23

Cc

CS_12

CS_9

CS_17 CS_15

CS_22

Ch

CS_5

CS_11

CS_3 CS_4CS_6

CS_10CS_13 CS_14

CS_21

P

CS_8CS_7

CS_16

(Cc Ch P)W W

(G L)N

Figure 11: Feature closed set lattice built with the implicative system of Fig. 9, labelled with implications of Fig. 10

in gray, and correspond to the 16 configurations of the formal context of Fig. 8. For example, CS 12 possesses
features {Ec,Ca, L,Cc, Pm,B} and the two label-features (G⊕L) and (Cc∨Ch∨ P). This feature closed
set possesses feature L and not feature G, and thus respects the constraint of the label-feature (G ⊕ L).
Moreover, it possesses feature Cc, and thus also respects the constraint of the label-feature (Cc ∨ Ch ∨ P).
The constraints corresponding to all its labels are respected: CS 12 is thus a valid configuration of the
software product line.

Light gray feature closed sets represent join-irreducible elements, i.e., feature closed sets having only
one predecessor in the lattice (See Section. 2.3). Each join-irreducible feature closed set corresponds to a
configuration, thus, it is not necessary to use the label-features in this case. However, all configurations do
not correspond to a join-irreducible feature closed set; they are represented in Fig. 11 by dark gray elements.
Using the information given by join-irreducible feature closed sets thus reduces the effort of configuration
identification.

To conclude, the labelled variability implicative system is equivalent to a closure operator, which permits
to construct a lattice from an FM without enumerating all its configurations; the obtained feature closed
set lattice is a canonical representation, isomorphic to the concept lattice of a formal context, in which one
can retrieve exactly the same information about features and configurations, with a post-treatment.

22

5. Experimentations

In this section, we conduct an empirical experiment to get an order of magnitude of the size of the two
FCA inputs studied in this paper, when they are built from feature models: the formal context based on
the set of valid configurations, and the labelled variability implicative system obtained with the method
presented in the previous section. Here, we only focus on the size of two possible inputs of FCA algorithms,
and we do not study the size of the outputs (i.e., the conceptual structures), because we are targeting
on-demand generation algorithms for the conceptual structures in complex cases. In what follows, we define
the size of a formal context by its number of objects (i.e. valid configurations) and the size of an implicative
system by its number of implications.

The size of the variability implicative system (V.IS) corresponding to a feature model can be predicted by
analysing the feature model dependencies: Fig. 12 (1) shows how to calculate the number of its implications
(”#” stands for ”number of”). In order to label a variability implicative system with the approach presented
in Section 4.3, we have seen that one has to add two implications for each feature-group, i.e. two implications
for each label-feature. Fig. 12 (2) shows how to calculate the size of a labelled variability implicative system.

|V.IS| = 1 (root)
+ #child-parent relationships
+ #mandatory relationships
+ #pairs of features in each xor-group
+ #cross-tree constraints

|Labelled V.IS| = |V.IS| + (2 × #feature-groups)

Figure 12: Number of implications in the variability implicative system and the labelled variability implicative system corre-
sponding to an FM

Our experiment is based on feature models that we have collected on SPLOT. The SPLOT project [40]
(for Software Product Line Online Tools) is a website which offers the possibility to create, edit, share and
analyse feature models online. It provides a repository of 900+ feature models4, along with severals tools for
automated analysis, as debugging and counting valid configurations. All feature models found on SPLOT
repository are not necessarily representative of a software product line: this is due to the fact that the
repository is sustained by the community which can create any type of feature models. Therefore, we have
selected 20 representative feature models which (1) correspond to a software product line and (2) possess at
least one valid configuration: they are listed in Table 5.

Table 5 displays 20 selected feature models against some of their characteristics. For each feature model,
we first report their number of features, optional and mandatory relationships, feature groups and cross-tree
constraints: this type of information was directly extracted from SPLOT repository. Then, we indicate
the number of configurations depicted by these FMs, which permits to know the size of the corresponding
formal context. The number of configurations has been computed using the BDD engine provided by
SPLOT. Finally, we display information related to their corresponding variability implicative systems: the
number of necessary label-features (i.e. #feature groups = #or-groups + #xor-groups), the number of
implications of their corresponding variability implicative systems, and the number of implications of their
corresponding labelled variability implicative systems. Even with average size feature models possessing
between 30 and 50 features, we can see in Table 5 that the number of valid configurations is tremendous
compared to the number of implications obtained with our method. For example, the feature model about
Java EE 6 possesses 45 features and depicts 1.05 × 109 different configurations, while it only produces 78
implications.

We compare the evolution of the size of these two formalisms in the scatter plot of Fig. 13, using
data from Table 5. We display the size of formal contexts and labelled variability implicative systems (Y
axis, logarithmic scale) depending on the number of features in the feature models (X axis, linear scale).

4Last accessed in September 2017

23

Table 5: Characteristics of 20 representative FMs from SPLOT

Feature Model #
fe

a
tu

re
s

#
op

t.
re

l.

#
m

a
n

d
.

re
l.

#
or

-g
ro

u
p

s

#
x
o
r-

gr
o
u

p
s

#
C

T
C

s

#
co

n
f.

#
la

b
el

s

|V
.I

S
|

|L
a
b

el
le

d
V

.I
S
|

eshop 10 2 3 1 1 2 9 2 16 20
Mobile Games 16 10 1 1 0 1 3645 1 18 20

Web Game 16 5 6 1 1 2 84 2 24 28
Smart Home 22 5 3 5 0 2 8480 5 27 37

MobileApps Multiplatform 29 12 5 1 1 8 355688 2 45 49
Automotive system 31 3 8 1 7 9 1344 8 61 77
Robot Calibration 33 0 10 1 7 11 648 8 71 87

Online-book-shopping 36 2 21 0 5 3 90 5 59 69
Software Stack 37 2 1 3 8 6 17073 11 67 89

Linux 41 25 6 1 2 7 1.99E7 3 60 66
Obstacle identification 42 0 8 1 9 13 19152 10 111 131

Java EE 6 45 11 0 7 4 3 1.05E9 11 56 78
e-commerce 56 7 5 11 1 5 8.25E11 12 69 93

E-science application 61 7 1 5 11 2 4.72E8 16 105 137
ClassicShell 65 16 3 0 14 11 3.59E8 14 152 180

DATABASE TOOLS 70 20 3 6 1 2 9.84E16 7 90 104
Car Selection 72 10 14 3 16 21 3E8 19 141 79

Billing 88 45 11 1 1 59 3.87E12 2 161 165
BankingSoftware 176 77 46 6 10 4 5.26E31 16 266 298

Electronic Shopping 290 82 75 40 0 21 4.52E49 40 386 386

Theoretically, the size of the formal context in our case grows exponentially with the number of features (as
it represents the number of valid configurations of an FM), and the size of the labelled variability implicative
system is polynomial (each FM relationship produces an implication, except for xor-groups that produce
n× (n− 1)/2 implications. We can see on Figure 13 that the number of configurations, and thus the size of
the formal context, exponentially increases with the number of features on the selected datasets. However,
this is not the case with the size of the labelled variability implicative systems, which almost linearly grows
with the number of features on the selected datasets.

To conclude, our method extracts from feature models labelled implicative systems which do not suffer of
exponential growth, contrary to formal contexts which require the list of all valid configurations. Knowing
that actual step-by-step algorithms have to access a closure operator for each concept they construct, labelled
implicative systems remain relatively practicable compared to formal contexts, and represent an interesting
alternative for lattice generation.

6. Conclusion

In this paper, we investigated formal concept analysis and its associated conceptual structures to organise
and represent software product line variability. We showed that FCA permits to structure a set of software
configurations depending on the features they share in canonical graph-like representations, that naturally
highlight information about variability. Besides, we compared concept lattices with the different formalisms
found in the literature that are used to depict variability in terms of features. Especially, we studied their
different semantics, their canonicity, their concision, and the type of variability information they can express.
We showed that concept lattices present some originality, as for instance configurations× configurations

24

Figure 13: Evolution of the size of formal contexts (l) and labelled implicative systems (u) built from features models depending
on the number of features

relationships and configurations × features relationships. We deem that they could be used to perform
novel kinds of approaches in the domain of software product line engineering.

A way to construct a concept lattice from an FM is to list all the FM valid configurations in a formal
context. To avoid scaling issues related to the enumeration of FM configurations needed for FCA inputs,
we proposed a method to extract a set of feature implications directly from the set of compact relationships
expressed in an FM. The obtained implicative system permits to build a lattice structure, called a feature
closed set lattice, that is isomorphic to the concept lattice associated with the FM, but that only contains the
SPL features. Then, we proposed a second method that consists in introducing feature-labels inspired from
FM relationships in the implicative system to help identify the set of valid configurations. Therefore, we
obtained the same information as in concept lattices but without having to build a formal context, without
suffering from the combinatorial explosion of the number of SPL configurations. Step-by-step algorithms can
then be applied on the labelled implicative system to construct parts of the final structure, thus avoiding
scaling issues related to FCA output. We empirically determined that labelled implicative systems have
a size which grows linearly with the number of features, contrarily to formal contexts whose size grows
exponentially with the number of features.

In the future, we will study algorithms for on-demand generation of FCA structures, and their application
to closure operators as labelled implicative systems. We will also expand our study to multiple software
product lines; we will study relational concept analysis to connect several software product lines represented
by concept lattices, and analyse their properties when used for more complex representations, for instance
in the context of system-of-systems or ultra-large scale systems.

References

[1] K. Pohl, G. Böckle, F. J. van der Linden, Software Product Line Engineering: Foundations, Principles, and Techniques,
Springer Science & Business Media, 2005.

[2] K. C. Kang, J. Lee, P. Donohoe, Feature-oriented product line engineering, IEEE software 19 (4) (2002) 58–65.
[3] S. Apel, D. S. Batory, C. Kästner, G. Saake, Feature-Oriented Software Product Lines - Concepts and Implementation,

Springer, 2013.
[4] K. Czarnecki, A. Wasowski, Feature Diagrams and Logics: There and Back Again, in: Proceedings of the 11th International

Conference on Software Product Lines (SPLC’07), 2007, pp. 23–34.
[5] D. Benavides, P. Trinidad, A. R. Cortés, Using Constraint Programming to Reason on Feature Models, in: Proceedings

of the 17th International Conference on Software Engineering and Knowledge Engineering (SEKE’05), 2005, pp. 677–682.
[6] B. Ganter, R. Wille, Formal concept analysis - mathematical foundations, Springer, 1999.
[7] F. Loesch, E. Ploedereder, Restructuring Variability in Software Product Lines using Concept Analysis of Product Con-

figurations, in: Proceedings of the 11th European Conference on Software Maintenance and Reengineering (CSMR’07),
2007, pp. 159–170.

25

[8] J. Carbonnel, M. Huchard, A. Miralles, C. Nebut, Feature Model Composition Assisted by Formal Concept Analysis, in:
Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE’17),
2017, pp. 27–37.

[9] A. Bazin, J. Carbonnel, G. Kahn, On-demand generation of aoc-posets: Reducing the complexity of conceptual navigation,
in: Proceedings of the 23rd International Symposium on Foundations of Intelligent Systems (ISMIS’17), 2017, pp. 611–621.

[10] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal, Computing iceberg concept lattices with Titanic, Data
Knowledge Engineering (DKE) 42 (2) (2002) 189–222.

[11] U. Ryssel, J. Ploennigs, K. Kabitzsch, Extraction of feature models from formal contexts, in: Proceedings of the 15th
International Conference on Software Product Lines (SPLC’11), 2011, p. 4.

[12] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier, Reverse Engineering Feature Models from Software
Configurations using Formal Concept Analysis, in: Proceedings of the 11th International Conference on Concept Lattices
and Their Applications (CLA’14), 2014, pp. 95–106.

[13] J. Carbonnel, M. Huchard, C. Nebut, Modelling equivalence classes of feature models with concept lattices to assist their
extraction from product descriptions, Journal of Systems and Software 152 (2019) 1 – 23.

[14] J. Carbonnel, K. Bertet, M. Huchard, C. Nebut, FCA for Software Product Lines Representation: Mixing Product and
Characteristic Relationships in a Unique Canonical Representation, in: Proceedings of the 13th International Conference
on Concept Lattices and Their Applications (CLA’16), 2016, pp. 109–122.

[15] K. Czarnecki, C. H. P. Kim, K. T. Kalleberg, Feature models are views on ontologies, in: Proceedings of the 10th
International Software Product Line Conference (SPLC’06), 2006, pp. 41–51.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-Oriented Domain Analysis (FODA): Feasibility
Study.

[17] M. Acher, P. Collet, P. Lahire, R. B. France, Composing feature models, in: Revised Selected Papers of the 2nd Interna-
tional Conference on Software Language Engineering (SLE’09), Vol. 5969 of LNCS, Springer, 2010, pp. 62–81.

[18] M. Acher, P. Collet, P. Lahire, R. B. France, Comparing approaches to implement feature model composition, in: Pro-
ceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA’10), 2010, pp. 3–19.

[19] A. Jansen, R. Smedinga, J. van Gurp, J. Bosch, First class feature abstractions for product derivation, IEE Proceedings
- Software 151 (4) (2004) 187–198.

[20] J. Van Gurp, J. Bosch, M. Svahnberg, On the notion of variability in software product lines, in: Proceedings of the 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA’01), 2001, pp. 45–54.

[21] K. Schmid, I. John, A customizable approach to full lifecycle variability management, Science of Computer Programming
53 (3) (2004) 259–284.

[22] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, A. Wasowski, Cool Features and Tough Decisions: A Comparison of
Variability Modeling Approaches, in: Proceedings of the 6th International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS’12), ACM, 2012, pp. 173–182.

[23] J. Poelmans, P. Elzinga, S. Viaene, G. Dedene, Formal concept analysis in knowledge discovery: a survey, in: Proceedings
of the 8th International Conference on Conceptual Structures (ICCS’10), Vol. 6208 of Lecture Notes in Computer Science,
Springer, 2010, pp. 139–153.

[24] R. Godin, E. Saunders, J. Gecsei, Lattice model of browsable data spaces, Information Sciences 40 (2) (1986) 89–116.
[25] S. Ferré, Reconciling expressivity and usability in information access : from file systems to the semantic web, Habilitation

à diriger des recherches en informatique, Université de Rennes 1 (2014).
[26] T. Tilley, R. Cole, P. Becker, P. W. Eklund, A Survey of Formal Concept Analysis Support for Software Engineering

Activities, in: Formal Concept Analysis, Foundations and Applications, Vol. 3626 of Lecture Notes in Computer Science,
Springer, 2005, pp. 250–271.

[27] A. M. Amja, A. Obaid, H. Mili, P. Valtchev, Linking Relational Concept Analysis and Variability Model within Con-
text Modeling of Context-Aware Applications, in: Proceedings of the 2nd IEEE International Symposium on Systems
Engineering (ISSE’16), 2016, pp. 413–420.

[28] M. R. Hacene, M. Huchard, A. Napoli, P. Valtchev, Relational concept analysis: mining concept lattices from multi-
relational data, Annals of Mathematics and Artificial Intelligence 67 (1) (2013) 81–108.

[29] R. Al-Msie ’deen, A.-D. Seriai, M. Huchard, C. Urtado, S. Vauttier, A. Al-Khlifat, Concept lattices: A representation space
to structure software variability, in: Proceedings of the 5th International Conference on Information and Communication
Systems (ICICS’14), 2014, pp. 1–6.

[30] J. Carbonnel, M. Huchard, A. Gutierrez, Variability Representation in Product Lines using Concept Lattices: Feasibility
Study with Descriptions from Wikipedia’s Product Comparison Matrices, in: Proceedings of the 1st International Work-
shop on Formal Concept Analysis and Applications (FCA&A’15) co-located with the 13th International Conference on
Formal Concept Analysis (ICFCA’15), 2015, pp. 93–108.

[31] N. Niu, S. M. Easterbrook, Concept analysis for product line requirements, in: Proceedings of the 8th International
Conference on Aspect-Oriented Software Development (AOSD’09), 2009, pp. 137–148.

[32] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, H. E. Salman, Mining Features from the Object-Oriented
Source Code of a Collection of Software Variants Using Formal Concept Analysis and Latent Semantic Indexing, in:
Proceedings of the 25th Conference on Software Engineering and Knowledge Engineering (SEKE’13), 2013, pp. 244–249.

[33] Y. Xue, Z. Xing, S. Jarzabek, Feature location in a collection of product variants, in: Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE’12), 2012, pp. 145–154.

[34] H. E. Salman, A. Seriai, C. Dony, Feature-to-code traceability in a collection of software variants: Combining formal
concept analysis and information retrieval, in: Proceedings of the 14th Conference on Information Reuse and Integration
(IRI’13), 2013, pp. 209–216.

26

[35] T. Eisenbarth, R. Koschke, D. Simon, Locating Features in Source Code, IEEE Transactions on Software Engineering
29 (3) (2003) 210–224.

[36] Y. Yang, X. Peng, W. Zhao, Domain Feature Model Recovery from Multiple Applications Using Data Access Semantics
and Formal Concept Analysis, in: Proceedings of the 16th Working Conference on Reverse Engineering (WCRE’09), 2009,
pp. 215–224.

[37] A. Shatnawi, A.-D. Seriai, H. Sahraoui, Recovering Architectural Variability of a Family of Product Variants, in: Pro-
ceedings of the 14th International Conference on Software Reuse (ICSR’15), 2015, pp. 17–33.

[38] J. Carbonnel, M. Huchard, C. Nebut, Analyzing Variability in Product Families through Canonical Feature Diagrams, in:
Proceedings of the 29th International Conference on Software Engineering & Knowledge Engineering (SEKE’17), 2017,
pp. 185–190.

[39] M. Acher, P. Collet, P. Lahire, R. B. France, FAMILIAR: A domain-specific language for large scale management of
feature models, Science of Computer Programming 78 (6) (2013) 657–681.

[40] M. Mendonça, M. Branco, D. D. Cowan, S.P.L.O.T.: software product lines online tools, in: Companion to the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’09),
2009, pp. 761–762.

[41] J. Carbonnel, D. Delahaye, M. Huchard, C. Nebut, Graph-based variability modelling: Towards a classification of existing
formalisms, in: Proceedings of the 17th International Conference on Conceptual Structures (ICCS’19), 2019, pp. 1–14.

[42] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers 35 (8)
(1986) 677–691.

[43] D. Benavides, S. Segura, P. Trinidad, A. Ruiz-Cortés, A first step towards a framework for the automated analysis of
feature models, Proc. Managing Variability for Software Product Lines: Working With Variability Mechanisms (2006)
39–47.

[44] M. Acher, B. Baudry, P. Heymans, A. Cleve, J. Hainaut, Support for reverse engineering and maintaining feature models,
in: Proceedings of the 7th Internaional Workshop on Variability Modelling of Software-intensive Systems (VaMoS’13),
2013, pp. 20:1–20:8.

[45] S. She, U. Ryssel, N. Andersen, A. Wasowski, K. Czarnecki, Efficient synthesis of feature models, Information & Software
Technology 56 (9) (2014) 1122–1143.

[46] S. She, R. Lotufo, T. Berger, A. Wasowski, K. Czarnecki, Reverse engineering feature models, in: Proceedings of the 33rd
International Conference on Software Engineering, (ICSE’11), 2011, pp. 461–470.

[47] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, P. Lahire, On extracting feature models from
product descriptions, in: Proceedings of the 6th International Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS’12), 2012, pp. 45–54.

[48] J. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, P. Heymans, Feature model extraction from large collections
of informal product descriptions, in: Proceedings of the 9th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’13), 2013, pp. 290–300.

[49] D. S. Batory, Feature Models, Grammars, and Propositional Formulas, in: Proceedings of the 9th International Conference
on Software Product Lines (SPLC’05), 2005, pp. 7–20.

[50] D. Benavides, P. T. Mart́ın-Arroyo, A. R. Cortés, Automated Reasoning on Feature Models, in: Proceedings of the 17th
International Conference of Advanced Information Systems Engineering (CAISE’05), 2005, pp. 491–503.

[51] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. Toro, Automated error analysis for the agilization of feature
modeling, Journal of Systems and Software 81 (6) (2008) 883 – 896.

[52] R. Mazo, C. Salinesi, D. Diaz, O. Djebbi, A. Lora-Michiels, Constraints: The heart of domain and application engineering
in the product lines engineering strategy, IJISMD 3 (2) (2012) 33–68.

[53] J. P. Bordat, Calcul pratique du treillis de Galois d’une correspondance, Mathématiques et Sciences Humaines 96 (1986)
31–47.

[54] K. Bertet, C. Demko, J.-F. Viaud, C. Gurin, Lattices, closures systems and implication bases: A survey of structural
aspects and algorithms, Theoretical Computer Science.

[55] K. Bertet, Structure de treillis. Contributions structurelles et algorithmiques. Quelques usages pour des données images,
Habilitation à diriger des recherches en informatique, Université de la Rochelle, 196 pages (June 2011).

[56] B. Davey, H. Priestley, Introduction to Lattices and Order, second edition, Cambridge University Press, 2002.
[57] M. Barbut, B. Monjardet, Ordre et Classification, Hachette, 1970.

27

