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Abstract— Sensory feedback is the fundamental driving force 

behind motor control and learning. However, the technology for 

low-cost and efficient sensory feedback remains a big challenge 

during stroke rehabilitation, and for prosthetic designs. Here we 

show that a low-cost accelerometer mounted on the finger can 

provide accurate decoding of many daily life materials during 

touch. We first designed a customized touch analysis system that 

allowed us to present different materials for touch by human 

participants, while controlling for the contact force and touch 

speed. Then, we collected data from six participants, who 

touched seven daily life materials-plastic, cork, wool, aluminum, 

paper, denim, cotton. We use linear sparse logistic regression and 

show that the materials can be classified from accelerometer 

recordings with an accuracy of 88% across materials and 

participants within 7 seconds of touch. 

I. INTRODUCTION 

Sensory feedback is crucial for human motor control and 
learning [1]. Sensory feedback also modulates the usage of 
limbs, both in the healthy [2], and especially in stroke patients 
[3]. Finally, tactile sensory feedback is well known to be 
crucial for gripping tasks [4, 5].For these above reasons, 
researchers have strived to include sensory feedback 
modalities in rehabilitation of stroke [5, 6] and in the design of 
prosthesis [4]. One would assume that stimulating sensory 
nerves directly can provide rich and ‘natural’ sensory 
information, but this procedure is invasive and yet to be 
perfected [7]. Similarly, external (non-invasive) sensory 
feedback systems, for example [5, 8], that proposed to provide 
a transcutaneous electrical stimulation modulated by the 
amount of grip force are to be developed for feedback of 
texture and material properties [9]. Overall, a sensory feedback 
system that can provide information about texture as  well as 
force to users with sensory deficits, and amputees is still absent. 
Our aim is to develop a low-cost and portable external (non-
invasive) sensory feedback system which can address this issue 
by detecting material texture and contact force when an object 
is touched, and then providing a corresponding feedback to the 
user on an unaffected limb. In this study, we concentrate on the 
first part of our aim- that of develop a low-cost sensory  
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detection (decoding) system that can recognize materials 
encountered in daily life. 

Contact with any surface is associated with movement 
which is expected to lead to small vibrations of the finger. 
Previous studies have shown that these vibrations can be useful 
to detect roughness of touched materials [15,16].Using a 
stethoscope, Delhay et al. have showed that vibrations 
generated as a result of interaction of a finger with a rough 
surface is transmitted even uptill the wrist [10]. We therefore 
hypothesized that an accelerometer mounted on a finger may 
serve as a suitable transducer to decode surface texture, and 
hence material. State of art accelerometers are small, light and 
cheap to buy. A previous study by Fagiani et al. 2011 has 
shown that accelerometers can detect differences in movement 
speed and roughness [xxx]. However, it was unclear whether 
the vibrations induced by a touched object, as detected by a 
finger mounted accelerometer, are rich enough to decode 
various textures. To anticipate the result of our study, we show 
that accelerometer detected vibrations can be rich enough to 
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Figure 1.  a) Our custom made touch analysis setup includes a 

rotating drum on which we can mount upto 5 materials at one 

time. The drum includes a load  force sensor and a temperature 
sensor. (b) Our experiment required participants to touch seven 

different materials with (see right panel of Fig. 1B) presented at 

different speeds. The participants maintained a predefined load 
force by utilizing the force feedback presented on the screen in 

front of them. 

 



  

differentiate many daily life materials independent of the speed 
and load characteristics of the touch- we decode seven 
materials in this study. 

To investigate whether and how a touched surface can be 
decoded using accelerometer signals, we first developed a 
customized touch analysis setup that allows us to present 
different materials to be touched by human participants, at 
predefined contact forces, and speeds. With this device we 
recorded accelerometer data when participants touched seven 
daily life materials (specifically cotton, plastic, cork, wool, 
aluminum, paper, denim) with their finger, with two different 
contact forces, and three contact speeds. We also analyzed the 
case when the participants touched the materials with a rubber 
tipped plastic pen (with the accelerometer on the pen in this 
case) as a first simulation of touch with a prosthetic finger. We 
then analyzed the accelerometer signals using sparse logistic 
regression (SLR) [9]. To anticipate our results, we show that 
the seven materials can be identified with an accuracy of over 
80% within 5 seconds of the start of the touch using an 
accelerometer affixed to a real finger, and with 100% accuracy 
for five of the seven materials with an accelerometer on a 
simulated prosthetic finger. 

II. METHODS 

A. Experimental setup 

Our custom made touch analysis system is shown in Fig. 
1a. The texture is presented to the participants on a rotating 
drum which we can set up to five surfaces at one time (Fig. 1a). 
The rotation speed of the drum is controlled by a DC motor (A-
max 22, 110164, Maxon, gearbox from Planetary Gearhead, 
GP22C, 143980, Maxon). A single axis single point type load 
cell (PW6C, UNIPULSE) on the drum base allows us to 
measure the normal load force on the drum. A temperature 
sensor (MLT422/A Skin Temperature Probe, Thermistor Pod, 
AD Instruments) allows us to measure surface temperature of 
the surface of test materials. Data from this sensor is not 
presented in the current study. 

Six healthy participants (all men, mean age: 22.6 ± 0.5 
years, all right-handed) were asked to touch each of seven test 
materials (plastic, cork, wool, aluminum, paper, denim and 

cotton, 15 mm width) rotating at a constant speed (30, 60, or 
120 rpm) for 10 s while maintaining a constant load force (0.49, 
1.96 N). See Fig. 1b. The participants maintained the load force 
aided by a visual feedback from the force sensor (passed 
through a digital converter from Power Lab 16/35, AD 
Instruments), and displayed on the force feedback monitor in 
front of them (Lab Chart, AD Instruments) in real time. The 
participants touched the presented material/s with their index 
finger. Each participant touched every test material at all the 
(three) speeds and (two) contact loads. Therefore each 
participant worked in 3 (speeds)X 2 (loads) X 7 (materials) =42 
trials in total. 

An accelerometer (six axes = x, y, z, roll, pitch, yaw, MP-
M6-06/2000C, Micro-Stone Corporation) was attached to the 
right index finger (on the second phalange) to measure 
vibration information of the fingertip (Fig.1a, inset).  The data 
sampling from the accelerometer and load cell were all 
performed at 200 Hz. 

The same procedure as above was used for the simulated 
prosthetic finger (the plastic pen). The acceleration sensor was 
attached to the top of the pen, above the rubber cover (see Fig. 
1a, inset) while it as held by an experimenter, who touched on 
the test materials with it while maintaining the required load 
force. 

B. Data preprocessing for texture decoders 

The acceleration signal from each axis was high-pass 
filtered above 1 Hz. We used both frequency and time features 
of the acceleration. We considered 150 ms time bins and 
extracted the median power every 10 Hz between 0 to 100 Hz 
as frequency features. We calculated the root mean square 
(RMS) acceleration every 150 ms as the first amplitude feature. 
Finally, we took the average first order difference signal every 
150 ms as the second amplitude feature. As our accelerometer 
gives a 6-dimensional signal, this gave us 10* 6 =60 frequency 
features and 2*6 =12 amplitude features, that is 72 features in 
total every 150 ms. 

In our study, we chose to use a sparse logistic regression 
(SLR) decoder [11] due to the good performance observed with 
this decoder in other works by the authors [12, 13]. We 
constructed a one-vs-rest decoder for each material, so as to 
have seven material decoders in total. Each material decoder 
classified a data bin as belonging to that material or not. For 
example, the ‘plastic vs other’ decoder performs a binary 
decoding to decide whether a data bin in a trial comes from 
during touching of plastic or not, the ‘cotton vs other’ performs 
a binary decoding to decide whether a data bin in a trial comes 
from during touching of cotton or not, and so on. 

As mentioned earlier, each trial consisted of a touch of 10 
seconds by the participants. We were interested in looking at 
the decoding performance with time, i.e to see how the 
decoding accuracy changes with the length of touch, and 
therefore adopted the following procedure to test the decoding 
performance. 

We trained the decoder for every individual with the last 3 
seconds of accelerometer data from the 42 trials. As we 
analyzed the data in 150 ms bins, this procedure resulted in 
42X20=840 training data points from each participant, which 
was used to train the seven material decoders for the 

 
Figure 2.  The figure shows the sample accelerometer readings from 

one representative participant recorded from when he touched the 

seven materials in different trials. 



  

participant. The trained decoders were tested over 42 
validations, using the  



  

 

 
Figure 3.  Performance of decoders: We utilized seven binary decoders, each to classify a data point as one of our test material (or not). a) shows the 

results of the classification by the seven decoders across all our participants (red data) and with the accelerometer mounted pen (yellow data). We 
observe that across participants and trials, all materials were classified correctly in the majority of the trials. b) shows the same data separated by 

the speed and load during the material touches. 



  

 

first seven seconds of (untrained) data from each trial. The 
testing was done six times, using data between 1 and 2 seconds 
after the start of touch (i.e six 150 ms bins), between 1 and 3 
seconds after start of touch (13 150ms bins), between 1 and 4 
seconds after start of touch (20 bins), between 1 and 5 seconds 
after start of touch (26 bins), between 1 and 6 seconds after 
start of touch (33 bins) and between 1 and 7 seconds after start 
of touch (40 bins). We left out the first 1 second of data to avoid 
the transient behavior at the start of touch. 

This procedure enabled us to understand how the amount 
of data (the is the length of touch) influenced the decoding 
results, while ensuring that the test and training data are distinct 
through our experiment. 

C. Integrating the seven decoder results for Texture 

decoding 

The data bins from each validation was classified by each 

of the seven decoders as being the material (corresponding to 

the decoder) or not. To make the final decision on the 

material being touched, we took a winner take all approach. 

That is, the touched sample was classified as the material 

into which most of the data bins in the trial were classified 

as. 

III. RESULTS 

A. Load force did not change with material  

We started by ensuring that the fingertip load force during 
our task was not modulated by the material touched, which 
could have in turn helped in the material decoding. We 
calculated the mean value of the fingertip force at each setting 
force (0.49, 1.96 N) for each material across subjects and 
conducted two-way ANOVA, across the speed and materials, 
to analyze the effect of texture on fingertip force. The ANOVA 
showed that there was no effect of material and speed on the 
load force either at the load setting of 0.49 N (effect of speed: 
F(6, 60) = 1.71, p = 0.15, effect of material: F(2, 60) = 0.005, 
p = 0.99, interaction: F(12, 60) = 0.96, p = 0.49) or 1.96 N 
(effect of speed: F(6, 60) = 0.75, p = 0.69, effect of material: 
F(2, 60) = 0.63, p = 0.55, interaction: F(12, 60) = 0.96, p = 
0.49) .   

B. Performance of the seven decoders across participants 

Fig. 2 shows the sample accelerometer recordings in three 
axes from one participant when he touched the different test 
materials in different trials. The average and standard deviation 
of the material decoding performance across the six 
participants is shown in Fig 3a in red for the decoding 
performed with different amounts of data. The yellow bar 
shows the same result when the material was touched with the 
accelerometer mounted pen. As explained earlier, the data is 
shown as a 2D histogram. Figure 3b shows the same data 
separated into the different load forces and speeds. 

The diagonal heavy plots in Fig. 3 shows that across 
participants, if we consider 2 seconds or more of data, the 
materials were perfectly identified by the seven decoders in 
majority of the trials. The identification rates remain almost 
similar after the first 3 seconds. Hence, in order to preserve 
visibility, we show the data from only four test periods, using 
the first 2, 4, 6 and 7 seconds of data in Fig. 3. Furthermore, 

 
Figure 4.  Trial wise performance. We adopted a winner take all 

approach to classify indiavidual touch trials. The figure shows 

the classification accuracy of each material across trials when the 
touches were performed by particpant fingers (upper panel) and 

by the pen (lower panel). The accuracy is plotted when using the 

first 2  (from first 1 to first 2) seconds, 3 (1 to 3) seconds, 4 (1 to 
4) seconds, 5 (1 to 5) seconds, 6 (1 to 6) seconds, and 7 (1 to 7) 

seconds of data after the start of touch. The data points in the 

upper panel represent across particpant medians, the box edges 
represent the 25 and 75the percentile, while the whiskers 

represent the data ranges acros particpants. 

 
Figure 5.  Confusion matrix of the clasification using the first 7 

seconds of touch data. The figure has been plotted by combining 

the results for the particpant touches and the pen touches.  



  

Fig. 3b shows that the perfect identification occurred at every 
speed and load. Note that we do not input the touch speed and 
touch load to the decoders, which indicates that the decoders 
are able to recognize speed and load independent features of 
the materials in the accelerometer signals.    

C. Trial wise Material Classification 

Looking at Fig. 3, we decided to adopt a simple winner take 
all approach to decode the material in every trial. Fig. 4 plots 
the material classification result over individual trials across 
participants (upper panel), and with the pen (lower panel).  The 
participant data is shown as box plots, with the median 
highlighted by markers corresponding to each material. Note 
that, as we classify between seven materials, the chance level 
in our experiment is 100/7=14.3 %.  

First, we observe that within just 2 seconds of touch, the 
accelerometer signals can be used to sufficiently classify our 
seven materials above chance. When the touches are by the 
participant fingers, the classification accuracy quickly rises 
with time. By 6 seconds after touch, all the materials, except 
cotton, could be classified with over 80% accuracy, with five 
of the seven materials classified with over 90% accuracy. By 
seven seconds, except for denim (83.3%), and cotton (75.0%), 
all materials were classified with 100% median accuracy.  

The performance is arguably better when the touch is made 
by the pen. Denim, cotton and wool were classified with an 
accuracy of 100% within 2 seconds of touch with the pen. Five 
of the seven materials could be classified with 100% accuracy 
within 5 seconds of touch with the pen. The remaining 
materials (plastic and cork) were classified with an accuracy of 
83%.  Overall cotton and denim were most difficult to classify 
when touched by a finger, while plastic and cork were most 
difficult to identify when touched with the pen.  

Fig. 5 shows the confusion matrix when using data from 

seven seconds of touch (in Fig. 4). The figure has been plotted 

by combining the results from both the human fingers and pen. 

The figure shows that cotton and plastic were sometimes mis 

identified as wool or aluminum, while cork and denim were 

misidentified as each other. Overall, we see that the materials 

were classified with an accuracy of 88.1% across our 

experiment. If we omit cotton, this accuracy increases to 

91.3% across the remaining six materials. Note that we are 

using just a low-cost accelerometer for the decoding- these 

results show that the signals from an accelerometer mounted 

on the finger, or a pen (our simulated prosthetic finger) can be 

used to decode the touched material with high accuracy. 

IV. DISCUSSION 

In this study we tested whether an accelerometer mounted 
on a finger is sufficient for the identification of a touched 
material from the vibrations the touch induces. We observed 
that common materials, including plastic, cork, wool, 
aluminum, paper, denim, cotton can be decoded with about 
88% accuracy using acceleration features alone.XXX remove 
reference 14.  

Our method relies on the detection of vibrations induced by 
a touch on the finger. Therefore, a limitation of our method is 
that it is useful only when the touches are dynamic, that is when 

the finger is not static. However, considering the fact that 
accelerometers are increasingly cheaper to buy and smaller in 
size, we believe that, in spite of the requirement of movement, 
decoding of materials using accelerometers to be an attractive 
possibility for stroke rehabilitation and prosthetics 
technologies. 

The good decoding performance with the accelerometer 
mounted on the pen (our simulated prosthetic finger) was in 
fact a pleasant surprise for us. We expected the decoding 
performance to be affected a lot be the absence of the 
compliance and finger prints (characteristic of a human finger) 
on the pen. However, we find that while some materials 
(specifically, plastic and cork) were better identified during 
touch by a human finger, other materials (specifically cotton 
and denim) were better identified when the touched by the pen. 
Further research is required to understand which finger 
material and shape is best for the identification of material 
using accelerometer recordings. The results of this research 
will be crucial for the design of prosthetics in the future. 

A recent study suggested that combining force, vibration 
and surface temperature features can enable high decoding 
accuracy [17]. Taking a minimalistic approach, in this study, 
we have concentrated on acceleration features alone, again due 
to our motivation to develop in expensive and light decoder and 
due to the fact that while touch force and surface temperatures 
can be estimated when a prosthetic finger touches a surface, 
these are difficult to estimate in rehabilitation scenarios where 
the touches are made by a human hand (finger). Interestingly, 
we could achieve a good classification rate (that was better, and 
with more materials that [17]) just with the accelerometer 
signals. However, our texture analysis setup allows for the 
measurement of surface temperature, and we are now 
exploring whether and how the addition of surface temperature 
features to the decoder can further improve decoding 
performance. 

Finally, we are also analyzing how the current 
accelerometer based on decoding can be improved with other 
decoding algorithms. Specifically, we are looking into two 
issues. First, (as mentioned above) in the current analysis we 
consider the accelerometer signals alone, without considering 
the touch speed and load force. We are now analyzing how 
decoding can improve if the touch speed and load force are 
available for the decoder to train on. Second, in the current 
study we used a very basic, winner take all approach to classify 
materials in trials. We are now considering other ways to 
integrate the results from our material decoders using popular 
Bayesian approaches like those used for haptic and visual 
classifications [18, 19]. 

In conclusion, in this our study we utilized an 
accelerometer fixed on the finger of participants and a 
simulated prosthetic finger, to show that acceleration features 
can provide very accurate identification of materials being 
touched by the finger across different speeds and touch loads. 
While there is still challenges to improve the results presented 
here, these results highlight the promising possibility of using 
accelerometers as low cost and light weight material/texture 
transducers. 
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