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Abstract

During sea missions, underwater vehicles are often exposed to changes in the

parameters of their control systems and subject to external disturbances due to

the influences of ocean currents. These issues make the design of a robust con-

troller quite a challenging task. This paper focuses on the design of a nonlinear

PID controller, based on a set of saturation functions for trajectory tracking on

an underwater vehicle. The main feature of the proposed control law is that

it preserves the advantages of robust control and remains easy to fine-tune in

real applications. Using the Lyapunov concept, we prove the asymptotic sta-

bility of the closed-loop tracking system. The effectiveness and robustness of

our proposed controller for trajectory tracking in depth and yaw dynamics is

demonstrated through real-time experiments.

Keywords: Underwater vehicle, non-linear PID control, trajectory tracking,

real-time experiments.
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1. Introduction

There are two main classes of Unmanned Underwater Vehicles (UUVs):

Remotely Operated Vehicles (ROVs), and Autonomous Underwater Vehicles
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(AUVs). Both require advanced controllers, as their dynamics are highly non

linear and they have to deal with unpredictable external disturbances, such as5

the ones generated by ocean currents or by the tether [1]. In the case of AUVs,

all of the degrees of freedom (DoF) are controlled, while in the case of ROVs a

part of the DoF are piloted by a human (shared control). Both classes require

controllers and this paper will refer to Underwater Vehicles in general.

Proportional-Derivative (PD) and Proportional Integral Derivative (PID)10

controllers are the most commonly used techniques to control the position and

orientation of commercial underwater vehicles, this is due to their design sim-

plicity and their good performance, especially when some system parameters

are unknown [2, 3, 4]. However, it is well-known that when the plant’s dynam-

ics is highly nonlinear, time-varying, or with significant time delays the PID15

controls performance is often degraded. The impact of these drawbacks can be

reduced by using adaptive, saturated or nonlinear PD/PID strategies. Inspired

by this problem, several advanced PD/PID control schemes for underwater vehi-

cles have been proposed in previous literature and some of them are summarized

below.20

It is acknowledged that the PID control tuning process to obtain the best

controller behavior can be time-consuming. Consequently, intelligent tuning and

self-adjusting control parameter methodologies have been developed in recent

years. In [5], a genetic algorithm was used to tune the gains of a fractional

order PID for setpoint regulation in depth and steering subsystems of an AUV.25

Following the same lines, a PID control was tuned using the Particle Swarm

Optimization (PSO) method for setpoint regulation and trajectory tracking in

diving and steering subsystems [6]. A Fuzzy Logic Controller (FLC) was used

with the PID algorithm to tune its gains adaptively. For example, in [7], a

decoupled Adaptive Fuzzy PID Controller (AFPIDC) for trajectory tracking in30

heading and depth of an AUV was proposed. In this work, the adaption law

is composed of two elements, the initial constant control gains, given by the

designer, and the time-varying incremental gains which depend on the tracking

error and its ratio. The incremental gain is adjusted by fuzzy rules derived from
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the expert’s knowledge. Based on simulation results, the performance of the35

AFPIDC is superior to nominal PID design during tracking trajectory tests.

Similar methodologies, using fuzzy logic to improve the PID controller for path

following or to demonstrate its robustness with respect to external disturbances

can be found in [8, 9]. Finally, inverse optimal PID control applied to a self-

tuning controller for an AUV, modeled as a nonlinear autoregressive moving40

average model with exogenous inputs was proposed in [10].

The Active Disturbance Rejection Controller (ADRC) can estimate the in-

fluence of the external disturbances such as ocean currents or wave effects over

an AUV. On the one hand, in paper [1], an adaptive DOB control (ADOB)

for set point regulation and trajectory tracking problems on the 6 degrees of45

freedom of ODIN AUV was proposed. In this work, the proposed controller

was designed for a known nominal model, where the external disturbances and

modeling errors were estimated through the DOB method. Then, a regressor-

free adaptive control law was adopted to provide robustness to the DOB control

towards uncertainties in the system model. The effectiveness of the proposed50

methodology was shown through real-time experiments on the x-y-z dynamics,

while the AUV’s orientation was kept stable (i.e., φ = θ = ψ = 0). From these

results, we can observe that the ADOB algorithm improves the performance of

the PID controller considerably under constant external disturbances and pa-

rameter uncertainties. On the other hand, in [11], the DOB method was applied55

to the PID control of an AUV based on the frequency analysis approach. In [12],

a diving ADRC has been proposed to deal with the high nonlinearity, strong

coupling and time-varying features in the AUV system.

It is worth noting that, during sea missions, an AUV can be disturbed by

ocean currents or subject to unknown objects sticking to the submarine body60

which suddenly changes its physical parameters. To overcome this problem,

adaptive controllers can be used as a suitable solution to control AUVs. The

main feature of an adaptive controller lies in its ability to update the control

gains based on the changes in vehicle dynamics and external disturbances. As

an example of this methodology, an adaptive PD controller for setpoint regula-65

3



tion was proposed in [13]. The designed controller needed only the knowledge

of the vector of gravitational and buoyancy forces. The control law consists

of a PD plus buoyancy compensation (PD+) with an adaptive term that es-

timates and compensates parameter uncertainties and external disturbances.

The behavior of the adaptive controller was validated through simulations and70

real-time experiments for setpoint regulation in (x, y, z, ψ) dynamics. Based on

the obtained experimental results, it can be observed that the adaptive control

has a better performance in depth dynamics than the PD, but the behavior of

both methodologies is almost the same for (x, y, ψ) dynamics. Also, following

the same methodology, an adaptive PD controller for a region reaching con-75

troller was proposed in [14]. We can compare this to [13], which is based on a

saturated PD control instead of a linear PD law. Although the effectiveness of

the proposed controller was only shown in simulations.

In practical applications, it can be observed that a standard PID control de-

sign can be improved by bounding its signal [15]. Consequently, several nonlin-80

ear bounded PID controllers have been proposed. For instance, in [16], a model

reference adaptive (MRAC) PID control structure with an anti-windup (AW)

compensator for pitch trajectory tracking of the REMUS AUV was proposed.

It was demonstrated that adding the AW compensator improves the nominal

adaptive control. The AW term is obtained by solving a linear Ricatti equation.85

Simulation results show the improvements of the proposed controller over the

nominal MRAC in terms of external disturbances rejection and saturation of

the AUV’s actuators. Another version taking into account the saturation of the

AUV’s actuators, resulting in a µ modified adaptive controller was proposed in

[17]. Also, a dual-loop variable-structure PID (VSPID) controller with AW term90

for controlling the surge and sway dynamics of an AUV is proposed in [18]. Ex-

perimental results show that the VSPID with AW reduces the overshoot as well

as the settling time compared to the nominal VSPID. Finally, inspired by the

works of [19] and [20], a nonlinear PD and PD+ controllers for trajectory track-

ing on depth and yaw dynamics of an AUV has been proposed in [15]. In this95

work, the authors introduced a whole set of nonlinear functions to improve the
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PD controller. Real-time experiments on the L2ROV vehicle demonstrate the

effectiveness and robustness of the proposed control law. Indeed, an improved

performance of the proposed controller for trajectory tracking in yaw dynamics

is demonstrated. However, the performance of the controller for depth trajectory100

tracking is reduced when the system’s parameters are subject to uncertainties.

In summary, on the one hand, fuzzy approaches [7] and intelligent algorithms

such as PSO and AG (see [5],[6]), which are used to tune the PID control, can

be useful to obtain good performance from the controller. On the other hand,

the disturbance estimation made by ADRC can provide robustness to the PID,105

as seen in the experiments shown in references [1], [11] ,[12]. However, based

on the experimental results of these works, the robustness improvement of this

methodology towards parameter uncertainties or external disturbances is not

clear. Furthermore, the main ADRC drawback is the tedious task of tuning

numerous parameters. Concerning the adaptive controllers [13],[14], their main110

advantages are the self-adjustment of gains and the fact that only partial in-

formation about the vehicle’s mathematical model is required. However, the

low rate of gains adjustment and the overestimation of feedback gains remains

a drawback to this method. Continuing, the MRAC with the AW term can

improve PID performance, as shown in the simulation results of study [16].115

Nevertheless, the proposed methodology requires computing the Ricatti equa-

tion online, which could be difficult. Finally, the introduction of saturation

functions in the gains of the PD controller improves its performance, as one

can see in the experimental results of work [15]. However, this methodology is

not robust enough to encompass large and persistent parameter uncertainties.120

Taking into account this drawback, in this paper, a nonlinear PID controller is

proposed to overcome the shortcoming of the previous algorithm introduced in

[15]. The main contributions of the actual work are summarized as follows:

(i) A whole range of nonlinear functions to improve the PID controller are

proposed.125

(ii) The stability analysis of the proposed controller is formalized based on
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Lyapunov design.

(iii) External disturbance rejection and robustness towards parameter uncer-

tainties are demonstrated through real-time experiments.

(iv) Compared to previous work [15], the speed in the time-varying yaw tra-130

jectory is increased twice during experiments.

This paper is organized as follows: a description of the dynamic model of

the underwater vehicle is given in Section 2. The proposed control technique is

described in Section 3. Real-time experimental results for trajectory tracking

of two DoF of the submarine are presented and, discussed in Section 4. Fi-135

nally, some concluding remarks, and future work on the proposed controller are

presented in Section 5.

2. Dynamic Model

The dynamic model of underwater vehicles has been described in several

references (see [3, 21, 22] for examples).140

The dynamics of an underwater vehicle involves two frames of reference:

the body-fixed frame and the earth-fixed frame (as illustrated in Figure 1).

Considering the generalized inertial forces, hydrodynamic effects, gravity and

buoyancy contributions as well as the forces of actuators (i.e., thrusters), the

dynamic model of an underwater vehicle in matrix form, using the SNAME145

(Society of Naval Architects and Marine Engineers) notation [23] and the rep-

resentation introduced by [3], can be written as follows:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ + we(t) (1)

η̇ = J(η)ν

where ν = [u, v, w, p, q, r]T is the vector of velocity in the body-fixed frame and

η = [x, y, z, φ, θ, ψ]T represents the vector of position and orientation in the

earth-fixed frame. J(η) ∈ R6×6 is the transformation matrix between the iner-150

tial frame and the body-fixed frame. M ∈ R6×6 is the inertia matrix where the
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Figure 1: The underwater vehicle with the inertial-fixed frame (OI , xI , yI , zI) and the body-

fixed frame (Ob, xb, yb, zb).

effects of added mass are considered, C(ν) ∈ R6×6 is the Coriolis-centripetal ma-

trix, D(ν) ∈ R6×6 representing the hydrodynamic damping matrix also includ-

ing the effects of added-mass, g(η) ∈ R6 is the vector of gravitational/buoyancy

forces and moments. Finally, τ ∈ R6 is the control input vector acting on the un-155

derwater vehicle and we(t) ∈ R6 represents the vector of external disturbances.

The above formulation for underwater vehicle dynamics is expressed in the

body-fixed frame and can be transformed to the earth-fixed frame based on the

kinematic transformations of the state variables and the model parameters as

follows:160

Mη(η) = J−T (η)MJ−1(η)

Cη(ν, η) = J−T (η)
[
C(ν)−MJ−1(η)J̇(η)

]
J−1(η)

Dη(ν, η) = J−T (η)D(ν)J−1(η)

gη(η) = J−T (η)g(η)

τη(η) = J−T (η)τ

Based on these equations, the dynamics (1) can therefore be rewritten in the
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earth-fixed frame as:

Mη(η)η̈ + Cη(ν, η)η̇ +Dη(ν, η)η̇ + gη(η) = τη(η) + wη(t) (2)

For a deeper description of the model, the reader may refer to [3, 24].

3. Proposed Nonlinear PID Controller

In this section, a nonlinear PID controller based on saturation functions with

variable parameters is introduced. The design of the controller is focused on

both setpoint regulation, as well as trajectory tracking. The stability analysis

of the resulting closed-loop system for both cases is explained in detail. Let

us consider the underwater vehicle mathematical model (2), and the following

control law

τ = JT
[
Mη(η)η̈d + Cη(ν, η)η̇d +Dη(ν, η)η̇d + g(η)− τPID

]
(3)

where the PID controller is defined as follows:

τPID = Kpe(t)+Ki

∫ t

0

e(s)ds+Kd
de(t)

dt
(4)

The feedback gains are defined as Kp = diag(kp1, kp2, · · · , kp6) > 0, Ki =165

diag(ki1, ki2, · · · , ki6) > 0, and Kd = diag(kd1, kd2, · · · , kd6) > 0, where kpj , kij

and kdj are positive constants for all j = 1, · · · , 6. The error is expressed as

e(t) = [e1(t), e2(t), · · · , e6(t)]T = η(t) − ηd(t), with ηd(t) the desired trajectory

vector.

In order to improve the performance of the closed-loop system, we propose

introducing a saturation function σb̄(h) defined as:

σb̄(h) =


b̄ if h > b̄

h if |h| ≤ b̄

−b̄ if h < −b̄

(5)

where b̄ is a positive constant, and h represents a linear function. In this paper,

the terms to which this saturation will be applied are the tracking error, its
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integral, and its time derivative. Then, if we consider this saturation with the

previous control law, we obtain the following nonlinear PID (NLPID) controller:

τNLPID = σb̄p

[
Kpe(t)

]
+ σb̄i

[
Ki

∫ t

0

e(s)ds

]
+ σb̄d

[
Kd

de(t)

dt

]
(6)

where

σb̄p [Kpe(t)] =


up1 0 · · · 0

0 up2 · · · 0
...

...
. . .

...

0 0 · · · up6

 (7)

σb̄i

[
Ki

∫ t

0

e(s)ds

]
=


ui1 0 · · · 0

0 ui2 · · · 0
...

...
. . .

...

0 0 · · · ui6

 (8)

σb̄d

[
Kd

de(t)

dt

]
=


ud1 0 · · · 0

0 ud2 · · · 0
...

...
. . .

...

0 0 · · · ud6

 (9)

with upj = σb̄pj

[
kpjej(t)

]
, uij = σb̄ij

[
kij
∫ t

0
ej(s)ds

]
, and udj = σb̄dj

[
kdj

dej(t)
dt

]
170

for all j = 1, · · · , 6.

Without loss of generality, let us now consider the scalar case:

τNLPID1 = σb̄p1

[
kp1e1(t)

]
+ σb̄i1

[
ki1

∫ t

0

e1(s)ds

]
+ σb̄d1

[
kd1

de1(t)

dt

]
(10)

The above equation can be rewritten in a compact form as follows:

τNLPID1 =

3∑
n=1

un (11)

where un = σb̄n(knhn) represents the saturation function, with b̄1 = b̄p1, b̄2 =

b̄i1, b̄3 = b̄d1, and the controller feedback gains k1 = kp1, k2 = ki1, k3 = kd1.

The error term, its integral and its time derivative are represented by h1, h2 ,
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and h3, respectively. Then, from equation (5), un can be rewritten as:

un =


b̄n if knhn > b̄n

knhn if |knhn| ≤ b̄n
−b̄n if kn < −b̄n

(12)

In the above equation, we can observe that the linear function knhn is saturated

by |hn| = b̄n/kn. Let us define dn as:

dn = b̄n/kn (13)

Then, (12) can be rewritten as follows:

un =

 sgn(hn)b̄n if |hn| > dn

b̄nd̄
−1
n hn if |hn| ≤ dn

(14)

where tuning parameters of the controller are bn and dn, for n = 1, 2, 3. More-

over, considering that:

sgn(hn)b̄n = hnsgn(hn)b̄nh̄
−1
n (15)

which can be simplified as:

sgn(hn)b̄n = |hn|b̄nh̄−1
n (16)

and considering that |hn|h−1
n = |hn|−1hn, equation (14) can be rewritten as

follows:

un =

 b̄n|hn|−1hn if |hn| > dn

b̄nd̄
−1
n hn if |hn| ≤ dn

(17)

Consequently, the control law (10) can be rewritten as follows:

τNLPID1 = u1 + u2 + u3 = kp1(·)e1(t) + ki1(·)
∫ t

0

e1(s)ds+ kd1(·)ė1(t) (18)

10



with

kp1(·) =

 b̄p1|e(t)|−1 if |e1(t)| > dp1

b̄p1d̄
−1
p1 if |e1(t)| ≤ dp1

(19)

ki1(·) =

 b̄i1|
∫ t

0
e1(s)|−1ds if |

∫ t
0
e1(s)|ds > di1

b̄i1d̄
−1
i1 if |

∫ t
0
e1(s)|ds ≤ di1

(20)

kd1(·) =

 b̄d1|ė1(t)|−1 if |ė1(t)| > dd1

b̄d1d̄
−1
d1 if |ė1(t)| ≤ dd1

(21)

The advantage of this formulation is that the forces and torques are bounded

by the saturation parameters b̄p1, b̄i1 and b̄d1. Consequently, the saturation

of the control input is guaranteed. However, some cases may require slightly

larger forces and torques to correct the system errors, that is why we propose

to change the saturation value b̄n in equation (18) as follows:

b̄n =

 bn|hn|µn if |hn| > dn

bn|dn|µn if |hn| ≤ dn
(22)

bn being a positive constant, and µn ∈ [0, 1]. Now, introducing equations (22)

into (17), leads to:

un =

 b̄n|hn|µn |hn|−1hn if |hn| > dn

b̄n|dn|µn d̄−1
n hn if |hn| ≤ dn

(23)

Note that the shape of the function un depends on the selected parameter value

µn as illustrated in Figure 2. Consequently, the nonlinear PID control law based

on saturation functions with variable parameters can be expressed as:

τNLPIDj = kpj(·)ej(t) + kij(·)
∫ t

0

ej(s)ds+ kdj(·)ėj(t) (24)
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Figure 2: Illustration of the saturation function un for different values of the parameter µn.

with:

kpj(·) =

 b̄pj |ej(t)|(µpj−1) if |ej(t)| > dpj

b̄pj d̄
(µpj−1)
pj if |ej(t)| ≤ dpj

(25)

kij(·) =

 b̄ij |
∫ t

0
ej(s)|(µij−1)ds if |

∫ t
0
ej(s)|ds > dij

b̄ij d̄
(µij−1)
ij if |

∫ t
0
ej(s)|ds ≤ dij

(26)

kdj(·) =

 b̄dj |ėj(t)|(µdj−1) if |ėj(t)| > ddj

b̄dj d̄
(µdj−1)
dj if |ėj(t)| ≤ ddj

(27)

∀µpj , µij , µdj ∈ [0, 1]
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3.1. Stability Analysis

Let us consider the nonlinear PID controller given as (24) and define the

gain matrices as follows:

K ′p(·) =Kp(·)−
1

α
Ki(·) (28)

K ′i(·) =
1

α
Ki(·) (29)

ζ =

∫ t

0

[αe(s) + ė(s)]ds (30)

with Kp(·) = diag(kp1(·), kp2(·), kp3(·), kp4(·), kp5(·), kp6(·)) > 0 and Ki(·) =

diag(ki1(·), ki2(·), ki3(·), ki4(·), ki5(·), ki6(·)) > 0.

The complete control law (3) taking into account the nonlinear PID (24),

can be rewritten in the following form:

τ = JT (η)
[
Mη(η)η̈d + Cη(ν, η)η̇d +Dη(ν, η)η̇d + g(η)−K ′p(·)e−Kd(·)ė−K ′i(·)ζ

]
(31)

with Kd(·) = diag(kd1(·), kd2(·), kd3(·), kd4(·), kd5(·), kd6(·)) > 0.175

Injecting the PID control (31) into dynamic system (2), leads to the following

closed loop system:

ë = Mη(η)−1
[
− Cη(ν, η)ė−Dη(ν, η)ė−K ′p(·)e−K ′i(·)ζ −Kd(·)ė

]
(32)

which can be rewritten in an augmented state form as follows:

d

dt


e

ė

ζ

 =


ė

Mη(η)−1
[
− Cη(ν, η)ė−Dη(ν, η)ė−K ′p(·)e−K ′i(·)ζ −Kd(·)ė

]
αe+ ė


(33)

Remark 1. Note that the origin of the state space model is a unique equilibrium

point.
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Remark 2. The main challenge is to find a Lyapunov candidate function that180

will allow us to take into account the auxiliary state variable ζ as it appears

in Eq. (33). As we will see below, this is not a trivial extension of the PD

controller case, see [14].

Consider the following Lyapunov Candidate Function:

V (e, ė, ζ) =
1

2
ėTMη(η)ė+ αeTMη(η)ė+

α

2
eTDηe

+

∫ e

0

ξTK ′p(ξ)dξ +

∫ ζ

0

ξTK ′i(ξ)dξ + α

∫ e

0

ξTKd(ξ)dξ (34)

which can be rewritten as follows:

V (e, ė, ζ) =
1

2

[
ė+ αe

]T
Mη(η)

[
ė+ αe

]
+
α

2
eT
[
Dη − αMη(η)

]
e+

+

∫ e

0

ξTK ′p(ξ)dξ +

∫ ζ

0

ξTK ′i(ξ)dξ + α

∫ e

0

ξTKd(ξ)dξ (35)

To prove that the Lyapunov candidate function is a positive definite and radially

unbounded, let us consider the following:∫ e

0

ξTKp(ξ)dξ =

∫ e1

0

ξ1kp1(ξ1)dξ1 +

∫ e2

0

ξ2kp2(ξ2)dξ2+

+

∫ e3

0

ξ3kp3(ξ3)dξ3 + · · ·+
∫ en

0

ξnkpn(ξn)dξn

where the inequality

ejkpj(·) ≥ αj(|ej |) (36)

is satisfied with class-K functions

αj(|ej |) =


bj |ej |µpjej
a+|ej | if |ej | > dj

bj |dj |µpjej
a+dj

if |ej | ≤ dj
(37)

with bpj > bj , a > 0 and dpj < dj . Then, according to Lemma 2 from [8], we

can deduce that: ∫ e

0

ξTKp(ξ)dξ > 0 ∀ e 6= 0 ∈ Rn (38)

and ∫ e

0

ξTKp(ξ)dξ → ∞ as ‖e‖ → ∞ (39)
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Note that by following the same arguments, we can conclude that the next

conditions are accomplished:∫ ζ

0

ξTKi(ξ)dξ > 0 ∀ ζ 6= 0 ∈ Rn (40)∫ e

0

ξTKd(ξ)dξ > 0 ∀ e 6= 0 ∈ Rn (41)

and ∫ ζ

0

ξTKi(ξ)dξ → ∞ as ‖ζ‖ → ∞ (42)∫ e

0

ξTKd(ξ)dξ → ∞ as ‖e‖ → ∞ (43)

The term 1/2[ė+αe]TMη(η)[ė+αe] is positive definite because the matrix Mη(η)

is positive definite. Finally, the matrix Dη − αMη(η) is positive definite since:

Dηi∑n
j=1 maxη|Mηij(η)|

> α (44)

where Mηij(η) stands for the element of matrix Mη(η) placed at row i and

column j. Therefore, the Lyapunov function candidate V (e, ė, ζ) is positive185

definite and radially unbounded.

The time derivative of the Lyapunov candidate function, step by step, is

given as:

V̇ (e, ė, ζ) =ėTMη ë+
1

2
ėT Ṁη ė+ αėTMη ė+ αeT Ṁη ė+ αeTMη ë

+ αeTKd(·)ė+ eTK ′p(·)ė+ ζTK ′i(·)ζ̇ + αeTDη ė

=
1

2
ėT
[
Ṁη − 2Cη

]
ė− ėTDη ė− ėTKd(·)ė+ αėTMη ė+ αeT Ṁη ė

− αeTCη ė− αeTK ′p(·)e

From the assumption that the vehicle is moving at low speed, we can assume

that Ṁη = 0, Cη(ν, η) is skew symmetric and D(ν, η) > 0, then:

V̇ (e, ė) = −ėT
[
Kd(·) +Dη − αMη

]
ė− αeTK ′p(·)e (45)

From (45) it is possible to observe that the term on the right hand side is

negative because α > 0 and K ′p(·) > 0. The first term Kd(·) + Dη − αMη will

15



be positive if condition (44) is satisfied. Finally, we can conclude that V̇ is

negative semidefinite and based on the LaSalle invariance principle it is possible190

to ensure asymptotic stability.

4. Real-Time Experimental Results

To demonstrate the feasibility and efficiency of our proposed control solution,

we applied the control algorithm to Leonard (Figure 3), an underwater vehicle

developed at the LIRMM (CNRS/University of Montpellier, France). Leonard195

is a tethered underwater vehicle that measures 75× 55× 45 cm and weighs 28

kg. The propulsion system of this vehicle consists of six thrusters to obtain a

fully actuated system.

The underwater robot is controlled by a laptop computer, with CPU Intel

Core i7-3520M 2.9 GHz, 8GB of RAM memory. The computer runs under200

Windows 7 operating system and the control software is developed using Visual

C++ 2010. The computer receives the data from the robot’s sensors (depth,

IMU), computes the control laws and sends input signals to the propellers.

These actuators are controlled by Syren 25 Motor Drivers. The main features

of this vehicle are summarized in Table 1. It is worth noting that this vehicle205

has two operation modes, we can use it as a ROV for sea exploration missions

or we can program tasks to be performed autonomously. In our paper, we focus

in the latter case. All the trajectory tracking tests were performed as an AUV.

The control algorithm was experimentally tested in the 4×4×1.2 m pool of the

LIRMM. Although, the proposed control law given by (24) is designed for the210

whole system of six degrees of freedom, the real-time experiments conducted

in this work concern only depth and yaw. The main objective of the designed

control law is to robustly track a desired reference trajectory in depth and yaw

in presence of parameter uncertainties and/or external disturbances. Real-time

experiments can be seen at https://www.youtube.com/watch?v=lkiYr0v7H7c.215
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Table 1: Main Features of the underwater vehicle

Mass 28 kg

Buoyancy 9 N

Dimensions 75× 55× 45 cm

Maximal depth 100 m

Thrusters 6 Seabotix BTD150

Power 48V - 600 W

Attitude Sensor Sparkfun Arduimu V3

Invensense MPU-6000 MEMS 3-axis gyro

and accelerometer

3-axis I2C magnetometer HMC-5883L

Atmega328 microprocessor

Camera Pacific Co. VPC-895A

CCD1/3 PAL-25-fps

Depth sensor Pressure Sensor MS5803-14BA

Sampling period 40 ms

Surface computer Dell Latitude E6230- Intel Core i7 -2.9 GHz

Windows 7 Professional 64 bits

Microsoft Visual C++ 2010

Tether length 150 m

4.1. Proposed Experimental Scenarios

To test the robustness of the proposed control scheme, four different scenarios

have been performed, namely:

(i) Scenario 1: Nominal case.

In this scenario the underwater vehicle follows a predefined desired tra-220

jectory in depth and yaw in the absence of external disturbances. During

this test, the controller’s feedback gains are adjusted to obtain the best

tracking. These gains remain unchanged during the rest of the experi-

ments.
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Table 2: Control gains used in real-time experiments

Depth bp3 = 20 dp3 = 0.05 up3 = 0.1

bi3 = 15 di3 = 0.25 ui3 = 0.2

bd3 = 13 dd3 = 0.25 ud3 = 0.2

Yaw bp6 = 4.5 dp6 = 0.015 up6 = 0.2

bi6 = 1 di6 = 0.015 ui6 = 0.2

bd6 = 0.2 dd6 = 0.15 ud6 = 0.2

(ii) Scenario 2: Robustness towards parametric uncertainties225

In this test the buoyancy and damping of the vehicle are modified to test

the effectiveness of the controller and its robustness towards parametric

uncertainties.

(iii) Scenario 3: External disturbances rejection.

This test is inspired by a more realistic scenario, where the vehicle has230

the task of loading an object and when it reaches a certain depth, it drops

that object. In this test we can observe a sudden change in the vehicle’s

weight and we can see how it affects the controller’s performance.

(iv) Scenario 4: Comparison with other controllers.

In this test, the performance of the NLPID controller is compared with235

the classical PD controller and the NLPD control in parametric robustness

tests.

4.2. Tuning the nonlinear PID controller

The gains of the proposed controller have been tuned heuristically and fol-

lowing sequentially the steps below:240

• dpj is chosen, taking into account that the interval [−dpj , dpj ] is the linear

region of the proposed controller.

• Considering bdj = bij = 0 and µpj = 0 ; bpj is increased until the closed-

loop system oscillates.
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• dij is chosen equal or bigger than dpj , and µij = 0 .245

• Then bij is increased until the system oscillations decrease.

• ddj is chosen bigger than dpj , and µdj = 0 .

• bdj is increased until the system oscillations decrease.

• µpj , µdj and µij are adjusted to improve the system behavior, considering

µpj ≤ µdj and µpj ≤ µij .250

Finally, the control gains used through out the whole set of real-time experi-

ments are summarized in Table 2.

4.3. Scenario 1: Control in nominal conditions

The upper plot of Figure 5 shows the depth and yaw controller performance

of the robot during the first scenario. In this experiment, the vehicle follows255

a predefined trajectory in depth going from the surface to a maximal depth of

30 cm, where the vehicle remains stable in that position for 20 seconds and

finally emerges to 20 cm and hovers until the trial ends. For the yaw motion,

the vehicle turns from its initial position of 60 degrees in 6 seconds. Then, it

remains stable in that position for 20 seconds. Finally, the robot goes to -60260

degrees and stays there until the test ends. It can be observed that the controller

has a short lapse of time to converge to the reference trajectory with a slight

tracking error, as seen in the error plot in the middle of Figure 5. This can be

confirmed through numerical data from the Root Mean Square Error (RMSE),

which is shown in Table 3. It is worth noting that oscillations (of an amplitude265

smaller than 1 cm) that are perceived in the depth trajectory tracking, could

be a consequence of the depth sensor’s accuracy. Finally, the evolution of the

control inputs is displayed at the bottom of Figure 5.

4.4. Scenario 2: Robustness towards parameter’s uncertainties

In order to evaluate the robustness of the proposed controller against para-270

metric uncertainties, we changed the buoyancy of the vehicle by attaching buoys
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on both sides of the vehicle, thus increasing the floatability by 200%. To modify

the damping of the submarine, we attached a large rigid plastic sheet (45× 10

cm) on one side of the submarine, thus increasing the rotational damping along

z-axis by approximately 90% (see illustration in Figure 3).275

The tracking trajectory for depth and yaw motion is shown on the top of

Figure 6. The NLPID takes a short lapse of time to converge to the reference

depth trajectory, it is due to the fact that the vehicle needs more energy to

overcome the added buoyant force. Despite the big persistent disturbance, the

controller is able to maintain a performance as good as in the nominal case.280

However, the yaw tracking trajectory is reduced when the vehicle turns, but

maintains a good steady-state performance. The RMSE for both scenarios is

given in Table 3, it can be noted that the values are very close to the ones

observed in the nominal case. The tracking errors are shown in the middle of

Figure 6. In this figure, we can see the impact of the disturbances, the error285

increases when the vehicle submerges, emerges or turns. Finally, in the bottom

of Figure 6, we can examine the evolution of the control inputs versus time.

For example, for depth following, we can observe that the force increases almost

twice as much when compared to the nominal case. This suggests that there is

a strong compromise between the controller’s ability to reject disturbances and290

the increase in energy that is demanded from the actuators.

4.5. Scenario 3: Robustness towards external disturbances

In some applications, underwater vehicles are equipped with robotic manip-

ulators which allow them to carry or manipulate objects and take them to a

specific location or pick them up from the ocean floor to transport them to the295

surface. This scenario is inspired by this practical case. To simulate this the

robot carries a load, a metallic block of 1 kg has been attached to the submarine

with a 20 cm-long length of rope. In this scenario, the maximal depth of the

reference trajectory has been set to 40 cm. As the maximum depth of the pool

is 50 cm, the robot will be suddenly disturbed when it will reach 30 centime-300

ters, because the metallic block will touch the floor, thus suddenly canceling its
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Figure 3: Leonard underwater vehicle with the two additional buoyant floats and a rigid

plastic sheet, which increase the buoyancy and the damping along the z axis

weight. The disturbance will remain until the robot will move up and reach 30

cm, where the extra weight will act again (Figure 4). This simulates both the

sudden release and the recovery of a load by the robot.

The obtained results for this scenario are depicted in Figure 7. At the top305

of the graph, we can see the influence of the extra weight because it changes

the initial position of the submarine to 30 cm deep. When the test begins, the

robot converges to the desired trajectory in about 5 seconds. Two seconds later,

the weight of the vehicle suddenly changes and the NLPID control compensates

the effects of the disturbance some seconds later thanks to the integral term of310

the controller. When the vehicle moves up, the extra weight acts again on the

submarine and reduces the trajectory tracking. Again, the NLPID controller

compensates this disturbance as we can observe at the end of the graph. The

error plots are displayed in the middle of Figure 7, while the numerical value of

the RMSE is given in Table 3. The evolution of the control input is displayed315

at the bottom of Figure 7.
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(a)

(b)

(c)

weight

Surface

Figure 4: Description of controller robustness towards external disturbances test. A plate

weighing 1 kg is attached to the robot as shown in (a). When the robot reaches 30 cm, the

influence of the weight disappears (b). Finally, when the robot moves towards the surface,

the influence of the weight acts on the robot again (c).
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Table 3: Root Mean Square Error for NLPID controller for trajectory tracking .

Case RMSEz(m) RMSEψ(deg)

Nominal 0.0009 0.0265

Parametric uncertainties 0.0017 0.4269

External disturbances 0.0030 0.0605

4.6. Scenario 4: Comparison to other controllers

To highlight the improvements of our proposed NLPID controller over stan-

dard methods, the NLPID is compared to the well-known PD with buoyancy

compensation and also with the NLPD algorithm proposed in [15]. The PD320

controller was chosen because it is a popular, simple and efficient algorithm to

control the position and attitude of these kind of vehicles. The NLPD proposed

in [15] is chosen for comparison because of its demonstrated robustness and fast

convergence.

Firstly, we test the robustness of the whole set of controllers under para-325

metric uncertainties. Then, we repeat the experiment described in section 4.3,

introducing persistent disturbances in depth and yaw dynamics. The compari-

son between both controllers is displayed in Figure 8.

The trajectory tracking of depth and yaw is shown in the upper part of

Figure 8. From tracking in depth, we can observe that the PD controller is not330

robust enough to compensate the effect of the disturbance. The NLPD shows

improved behavior under perturbations than the PD, but its performance is

insufficient to achieve good tracking when compared with the NLPID which

succeeded in compensating for this disturbance. However, the yaw tracking test

shows that all controllers are able to manage the introduced damping parametric335

disturbance.

In the middle of Figure 8, the plot of errors are depicted and the improvement

of each controller is visually obvious and can be confirmed numerically through

the RMSE in Table 4. Finally, the control inputs are displayed at the bottom

of Figure 8. It is worth noting that at the beginning of the test, the NLPID340
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demands more energy than the other controllers, but this energy reduces quickly

as the NLPID reaches the reference trajectory.

Table 4: Root Mean Square Error comparison for PD, NLPD and NLPID controllers.

Controller RMSEz(m) RMSEψ(deg)

PD 0.0789 0.5500

NLPD 0.0374 0.3371

NLPID 0.0017 0.4269

5. Conclusion

In this paper, a decoupled nonlinear PID (NLPID) control has been devel-

oped for trajectory tracking control of an underwater vehicle. The NLPID con-345

troller has been improved through the introduction of a whole range of nonlinear

functions to replace the constant feedback gains. Then, a Lyapunov design has

been proposed to prove the stability of the closed-loop system. The main advan-

tages of the proposed control law are: 1) it improves robustness with respect to

classical PID controllers by introducing varying nonlinear gains that are adapted350

as functions of the tracking error, 2) it improves NLPD saturated control laws

as it eliminates the undesirable gap when regulating the depth of the vehicle for

example. The proposed controller has been implemented for trajectory tracking

in depth and yaw motions on the Leonard underwater vehicle. The obtained

real-time experimental results demonstrate the effectiveness and robustness of355

our proposed controller towards external disturbances and persistent parametric

uncertainties. Finally, the proposed controller was compared to a nonlinear PD

control. Based on the real-time experimental results, the NLPID shows better

tracking performance and better robustness than the NLPD control proposed in

our previous work. For future work, the NLPID will be compared with more ad-360

vanced controllers, such as Active Disturbance Rejection Controllers (ADCR),

for example.
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Figure 5: Performance of the NLPID controller nominal design. (Upper) Trajectory tracking

in depth and yaw in absence of disturbances. (Middle) Plots of the error signal. (Lower)

Evolution of the control inputs.
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