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GECKO is a genetic algorithm to classify
and explore high throughput sequencing data

Aubin Thomas'®, Sylvain Barriere'®, Lucile Broseus', Julie Brooke!, Claudio Lorenzi', Jean-Philippe Villemin',
Gregory Beurier 2, Robert Sabatier3, Christelle Reynes3, Alban Mancheron®® & William Ritchie!

Comparative analysis of high throughput sequencing data between multiple conditions often
involves mapping of sequencing reads to a reference and downstream bioinformatics ana-
lyses. Both of these steps may introduce heavy bias and potential data loss. This is especially
true in studies where patient transcriptomes or genomes may vary from their references,
such as in cancer. Here we describe a novel approach and associated software that makes
use of advances in genetic algorithms and feature selection to comprehensively explore
massive volumes of sequencing data to classify and discover new sequences of interest
without a mapping step and without intensive use of specialized bioinformatics pipelines.
We demonstrate that our approach called GECKO for GEnetic Classification using k-mer
Optimization is effective at classifying and extracting meaningful sequences from multiple
types of sequencing approaches including mRNA, microRNA, and DNA methylome data.
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tudies of variation in gene expression, initially through

probe-based technology and more recently high throughput

sequencing (HTS), have considerably advanced knowledge
of disease etiology and classification!-3. The recent promotion
of HTS across a wide spectrum of diseases has generated a
wealth of data that measure gene expression and transcript
diversity but also explore its putative genetic and epigenetic
regulators. Still, despite more than a decade of development,
computational analysis and integration of these data presents
a major challenge. Each type of HTS experiment is compart-
mentalized to a set of computational pipelines and statistical
approaches that often require a full-time bioinformatics
specialist. In addition, most of these pipelines rely on a reference
genome or transcriptome and thus cannot inherently account for
the diversity in non-reference transcripts or individual varia-
tions*. To remove the requirement of a reference, recent meth-
odologies use k-mer representation; they directly compare the
counts of nucleotide sequences of length k between samples®.
These approaches have been successful at detecting novel tran-
scripts but only on a very small subset of RNA sequencing
data* and would be impossible to implement for the classification
of large patient cohorts using the entire transcriptome. In the
field of metagenomics, numerous algorithms have been developed
to discover unique k-mers or k-mer signatures to classify
organisms®’. However, these were developed for organisms with
smaller genomes that do not have billions of different k-mers.
In addition, they were designed for inter-species studies where
unique k-mers can be attributed to the genomes of different
taxonomic identities.

Exploring a large set of k-mers to classify samples can be
framed as a global optimization problem for which many
recent approaches have been published and compared®. Amongst
these is a class of nature-inspired algorithms termed Genetic
Algorithm which are based on the processes of mutation,
crossing over and natural selection. These have appealing
properties that could apply to the exploration of a large set of
k-mers. They have low memory requirements because they
explore only part of the data at each stage and they can
produce multiple solutions that fit well with biological inter-
pretation of data. However, despite these properties, genetic
algorithms are rarely used to optimize problems with relatively
small sample sizes and such a large number of parameters, in
this case billions of k-mers.

We have created a novel approach and associated software
called GECKO for genetic classification using k-mer optimization
that is especially designed for HTS data. GECKO is based
on k-mer decomposition coupled with an adaptive genetic algo-
rithm that explores HTS data from two or more input conditions.
This algorithm searches for groups of k-mers that, combined
together are highly informative; they are able to classify the
input categories with high accuracy. Because GECKO uses k-mer
counts, it can theoretically be applied to any type of HTS
experiment and does not rely on a reference genome or tran-
scriptome. Here, we successfully apply GECKO to a variety
of biological problems and sequencing data. These include
microRNA (miRNA) sequencing to classify normal blood cells,
mRNA sequencing to classify subtypes of breast cancer and
to predict response to chemotherapy, and bisulfite sequencing
(BS-seq) on normal versus chronic lymphocytic leukemia (CLL)
samples. Regardless of the type of data, GECKO finds small,
accurate signatures that classify these samples and could thus
be used as diagnostic and prognostic markers. In addition,
by visualizing how the genetic algorithm evolves to find solutions,
GECKO can be used to explore novel sequences or groups of
functionally related sequences associated with normal biology
and disease.

Results
GECKO is designed around two main steps; these are a k-mer
matrix preparation step and an adaptive genetic algorithm
(Fig. 1).

The k-mer matrix preparation, uses an input sequencing file
(bam or .fastq) to create a matrix of k-mer counts; that is
the number of times a sequence of length k appears in each
sample (k=30 by default). This matrix is filtered for k-mers
with low counts and non-informative or redundant k-mers (see
the section “Methods”). Then, during the second step an adaptive
genetic algorithm will explore the matrix to discover combina-
tions of k-mers that can accurately classify input samples. The
adaptive genetic algorithm starts by creating thousands of digital
individuals; these are groups of randomly selected k-mers. The set
of individuals is called a population. This population will then
go through phases of mutation, where individuals replace one
of their k-mers with another randomly selected k-mer; a phase
of crossing-over where individuals exchange a portion of their
k-mers with each other and selection, where individuals that do
not classify the input samples well enough will be removed from
the population and replaced. Mutation allows GECKO to explore
local solutions similar to the individual to be mutated; crossing-
over, allows GECKO to explore a broader set of solutions and
reduces the chances of getting stuck in a local minimum (see the
section “Methods”). Each cycle of mutation, crossing-over, and
selection is called a generation. By default, GECKO will iterate
through 20,000 generations or stop when the number of new
solutions discovered throughout generations slows down (see
stopping criteria in the section “Methods”). This algorithm is
called adaptive because the mutation and crossing-over rates
depend on how well individuals in the population perform.
Individuals that perform well have lower rates to prevent them
from changing drastically and thus enabling them to converge
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Fig. 1 Overview of the GECKO algorithm. Input fastq or bam files from two
or more conditions are transformed into a matrix of k-mer counts across all
samples. The k-mers for which the counts are below a noise threshold or
that do not vary across samples are removed (red dots on the right of the k-
mer matrix). The adaptive genetic algorithm randomly selects groups of k-
mers from the k-mer matrix to form individuals. These individuals will go
through rounds of mutation, crossing-over and selection to discover
individuals capable of classifying the input samples with high accuracy
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faster to a solution; individuals that do not perform well will
have higher rates to enable wider exploration of solutions.

In the analyses presented in this study and by default in the
software, GECKO’s performance is systematically tested on 1/6th
of the data that is randomly selected and set aside before running
the algorithm (see the section “Methods”). This test set allows us
to evaluate the accuracy and overfitting for each run; it measures
whether the algorithm fits too closely to the training set and thus
will not correctly predict future input samples. GECKO is thus
run on the remaining 5/6th of the data with cross-validation at
each generation of the algorithm.

Classifying miRNA sequencing data of blood cells. We first
tested GECKO’s performance on a miRNA expression data of
seven types of blood cells sorted from 43 healthy patients for a
total of 413 samples®. We ran GECKO on this dataset using 20-
mers (k-mer size of 20; miRNAs generally vary in size from 20 to
23) to find a set of k-mers that could correctly classify the seven
blood-cell types.

After 6000 generations (15h on 15 cores; see Supplementary
Table 1 for parameters and Supplementary Fig. 1 for runtimes
and memory usage) GECKO discovered an individual composed
of only three k-mers (ACCCGTAGAACCGACCTTGC, CCCCA
GGTGTGATTCTGATA, AGTGCATGACAGAACTTGGG) that
could distinguish the groups with 0.96 accuracy (Fig. 2a, b and
Supplementary Data 1 and 2).

In the initial study, the authors described a signature of 136
cell-type-specific miRNAs. These 136 miRNAs could classify
the groups with 0.97 accuracy. Thus, we found a much smaller
signature that could classify the seven blood-cell types with
similar accuracy without the use of a miRNA-dedicated
bioinformatics pipeline.

We then aligned the three k-mers discovered by GECKO to a
database of known miRNAs!?. Two of these mapped perfectly
to miRNAs 152-3p and 99b-5p, which were annotated in the
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original study as specific to NK cells and T helper cells,
respectively. The third mapped to miRNA 361-3p which was
not found to be specific to any of the seven cell types and was
thus ignored in the initial study. Separately, the first two k-mers
could classify one cell-type each and the third would have been
overlooked. Together these three k-mers classify all seven groups
with high accuracy because of their contrasting expression
between each cell types (Fig. 2c).

Classifying breast cancer subtypes using mRNA sequencing
data. Breast cancer is a heterogeneous disease in regards to
response to treatment and its transcriptional background.
Defining the subtypes luminal A (LumA), luminal B (LumB),
HER2-enriched (HER2) and basal-like are crucial for prognosis
and predicting outcome of breast cancer. These subtypes were
initially defined through unsupervised clustering of gene expres-
sion and are currently identified using a standard qPCR assay
of 50 genes called the PAM50!1:12, To assess whether GECKO
could identify k-mers that classify breast cancer subtypes, we used
a dataset of 1087 mRNA-Seq breast cancer samples from the
Cancer Genome Atlas Pan-Gyn cohort!3 (patients per class: Basal
175, Her2 73, LumA 513, LumB 185). We ran GECKO for 20,000
generations (75h on 15 cores; see Supplementary Table 1 for
parameters and Supplementary Fig. 1 for runtimes and memory
usage) and extracted the highest scoring individual at its term
(Supplementary Table 2). We then tested how well these k-mers
classified the four cancer subtypes compared to PAM50 expres-
sion values calculated as transcript per million (TPM). Both the k-
mer counts and PAM50 TPMs were trained using a linear support
vector machine (see the section “Methods”) with identical
training data and evaluated on the same test set. The 10 k-mers
had higher accuracy rates compared to the PAM50 on all four
classes (Fig. 3 and Table 1).

We then further inspected the 10 k-mers discovered by
GECKO by mapping them to the human genome. We found
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Fig. 2 GECKO can accurately classify miRNA data from seven types of blood cells using three k-mers. a GECKO output showing the separation of the seven
blood-cell types at each generation (G) of GECKO analysis using t-SNE visualization applied to k-mer counts. b GECKO output showing the accuracy of
separation for the training and test set across 6000 generations. ¢ variance stabilized counts of the three miRNAs that correspond to the three k-mers
discovered by GECKO across the seven blood-cell types (n = 43 biologically independent donors)
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that four of the k-mers mapped to genes from the PAMS50 list
(FOXC1, ESRI1, KRT14, KRT17). Three others mapped to genes
NISCH, TPX2, and ATF3, the first of which is linked to breast
cancer aggressiveness!'? and the two latter both affect cell viability
in breast cancer cells!4!15, The three last k-mers mapped to three
genes KLHL6, KANSL2, and PHF10 shown to be involved in
tumorigenesis but not in breast cancer'®-18. Of the 10 k-mers,
3 map to coding regions and 7 map to 3’ untranslated regions for
which multiple isoforms exist. k-mer counting can thus integrate
alternative transcription to classify mRNA-Seq samples.

Classifying response to chemotherapy of triple negative breast
cancer on small sample sizes of mRNA-Seq. We then tested
GECKO on a dataset with more heterogeneous cell populations
and smaller sample sizes. We used a cohort of triple-negative
breast cancer patients, an aggressive, heterogeneous subtype of
breast cancer with poor outcomes. This cohort taken from the
Breast Cancer Genome Guided Therapy (BEAUTY) study!®20

10 K-mers @ Basal PAM50 ;
Her2
LumB ! . -.; v
“ LumA .'n\ih
J [ L5 v
X . K

Fig. 3 GECKO discovers 10 30-mers that classify breast cancer subtypes.
Comparison of breast cancer subtype classification using the frequency of
k-mers discovered by GECKO and the transcript per million values of the
PAMSO0 gene. Panels show the t-SNE separation of the four classes

was divided into 19 patients that had a complete response to
chemotherapy and 20 patients that did not. In such cases of small
sample size and high heterogeneity, we recommend using
GECKO’s voting mode (Fig. 4a).

This mode compensates for bias that may be introduced when
splitting a small number of samples between training and test
datasets and may thus accentuate batch effects. The voting
mode will run 10 instances of the genetic algorithm for 10,000
generations. At their term, it will select k-mers from the top
individuals across the 10 instances and run a final genetic
algorithm on this subset of k-mers for another 10,000 generations.
Running multiple genetic algorithms and aggregating their results
prevents overfitting on a specific split of the data between the
training and test set. In addition, the voting mode introduces
Gaussian noise by default into the data to further prevent
overfitting. This option is recommended for experiments with
<30 samples per condition.

Using the voting mode (83 h using 15 cores; see Supplementary
Table 1 for parameters and Supplementary Fig. 1 for runtimes
and memory usage), we found an individual that was able to
classify patients with 0.93 accuracy (Fig. 4b) with only five k-mers
of length 30 (Supplementary Table 3). As expected three of these
k-mers mapped to genes that had clear roles in resistance to
chemotherapy; JAK3 is involved in chemotherapy resistance in
triple-negative breast cancerS, BOPI reduces chemotherapy
resistance?! and VTCNTI is associated with poor clinical outcomes
in numerous cancers including breast cancer2.

Classifying BS-seq data. We then wanted to see if GECKO could
accurately classify samples using epigenetic sequencing data, such
as BS-seq generated to investigate DNA methylation. BS-seq
requires extensive bioinformatics processing to discover changes

transcript per million values of the PAM50 gene set

Classification with GECKO k-mers

Table 1 Confusion matrices of breast cancer subtype classification using the frequency of k-mers discovered by GECKO and the

Classification with PAM50 TPM values

Predicted class Basal 97.7 2.2 0 0 Predicted class Basal 86 5.2 5.5 33
Her2 2 87.5 6.2 4.2 Her2 15.3 60.6 3.6 20.6
LumA 1.5 1.5 92.3 4.6 LumA 15.3 2.2 88.1 8.6
LumB 0 34 18.8 77.8 LumB 59 15.4 36.5 422

Basal Her2 LumA LumB Basal Her2 LumA LumB
True class True class
a Eiaii b
=4 EREGE Complete response
W‘H Complete response test
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Fig. 4 GECKO voting mode for small sample sizes. a GECKO's voting mode will run 10 separate genetic algorithms with added Gaussian noise. The best
solutions of these runs will be fed into a final genetic algorithm to produce a final solution. b GECKO output showing the t-SNE separation of patients with
complete response to chemotherapy from those that did not using five k-mers from the winning individual. Triangles correspond to the test dataset that

was excluded from GECKO training can thus be used to estimate overfitting
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in methylation and thus, a method that could directly classify BS-
seq samples could be of great interest. To test GECKO on BS-seq
we downloaded raw sequencing files from a study on methylome
diversity in 104 primary CLLs samples compared with 26 normal
B cell samples?3. Although global hypomethylation has been well
described in cancer, these alterations are highly variable between
CLL samples?? and thus present a challenge for classification.

We ran GECKO for 20,000 generations (39 h; see Supplemen-
tary Table 1 for parameters and Supplementary Fig. 1 for
runtimes and memory usage) and found a winning individual
that was able to classify normal from CLL samples with an
accuracy of 1 using 20 k-mers (Fig. 5a; Supplementary Table 4).
In addition to this final classification, GECKO plots the evolution
of winning organisms across the 20,000 generations (Fig. 5b).
This graph can be used to identify individual k-mers that are
essential for classification and thus worth investigating. Here we
found three k-mers that were most frequently used by winning
individuals for classification (Supplementary Table 5).

We verified the methylation status of the loci where these k-
mer sequences were mapped using the Bismark software?* and
found that all three of them displayed dramatic changes in DNA
methylation between normal and CLL samples (Fig. 5c). Inter-
estingly the two k-mers that were finally selected after 20,000
generations, K107977 and K90528 overlapped binding sites for
CTCF and GATA3, both of which are affected by DNA
methylation status2>26, K107977 overlaps a CTCF-binding site
for the ATP6V1G1 gene?’, which codes for a proton pump
responsible for acidification of the cell, a hallmark of cancer
promotion. K90528 overlaps a GATA3-binding site for the
SULF2 gene that has already been identified as a diagnostic and
prognostic marker in multiple cancers?8-30,

Discussion

HTS data analysis often requires extensive data transformations
through tailored bioinformatics pipelines to organize the
sequences in a manner that is coherent with our understanding of
biology. Mapping to a reference, using ad hoc statistical thresh-
olds and grouping sequences by functional elements, such as
transcripts are common steps in most bioinformatics pipelines.
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We designed GECKO with the aim of creating a classifier that
could explore HTS data without a reference genome or tran-
scriptome and without the need of bioinformatics pipelines
dedicated to a specific library preparation or technology. The
approach we describe here can in theory explore any type of
sequencing data. Because GECKO considers groups of k-mers for
classification, it can make use of co-dependencies between
sequences to find smaller and more accurate classifiers. Thus,
GECKO is capable of better classification than the commonly
used approach that consists of selecting genes for which the
expression is statistically significant between conditions to build a
classifier (Supplementary Fig. 2). In the miRNA analysis of blood
cells for example, one of the k-mers that participated in making
an excellent classifier was not statistically significant by itself and
would have been overlooked.

Using k-mer counts removes the requirement of a mapping step
and makes GECKO applicable to numerous types of sequencing
experiments. In addition, we found that using k-mers instead of
other metrics, such as fragments per kilobase million (FPKM) or
read counts resulted in higher predictive power even when run
with the same genetic algorithm (Supplementary Fig. 3). This can
be explained by the fact that k-mers can measure changes in
transcription, isoform abundance, and sequence simultaneously.
When applied to bisulfite converted data, each epigenetic change
can potentially lead to the appearance of a novel k-mer in samples
where the modification is present. These sample-specific k-mers
allow GECKO to make very efficient classifications and to pin-
point the exact location of the modification.

Unlike regression analysis our approach provides multiple
solutions (Supplementary Fig. 4). For research purposes this
allows us to investigate why different groups of solutions work
well together, explore co-dependencies between sequences and
functional pathways that allow a good separation of input sam-
ples. In a clinical setting, providing multiple good solutions allows
more flexibility for selecting diagnostic or prognostic targets.
Importantly, the k-mers used for classification are not biased
towards higher expressed genes (Supplementary Fig. 5) and
mostly map to unique locations in the genome or transcriptome
(Supplementary Fig. 6). Thus, GECKO can make use of unique
transcriptional elements across a large spectrum of expression.
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Fig. 5 GECKO can accurately classify normal and CLL patients using k-mers from bisulfite sequencing data. a GECKO output showing the t-SNE separation
of CLL and normal samples using 20 k-mers from the winning individual. b GECKO output of K-mer exploration across 20,000 generations; k-mers that are
frequently found in winning organisms are displayed as horizontal lines across generations; dots represent k-mers that were selected in one generation but
eliminated in the following generation often due to a decrease in fitness of the model. ¢ IGV screenshots showing the methylation status of normal and CLL
samples of regions corresponding to three most frequently used k-mers in winning organisms determined by the Bismark software
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GECKO’s ability to work across multiple types of data without
the need of dedicated bioinformatics tools could make it
invaluable for cross-platform large-scale analyses but also for
individual researchers and clinicians who would be able to
compare HTS data between cohorts of patients with no bioin-
formatics training. It is worth noting that the longest and com-
putationally intensive part of our procedure is obtaining the k-
mer matrix. This step need be performed only once per dataset
however and providing a k-mer matrix for online datasets along
with sequencing files could result in widespread use of non-biased
approaches such as GECKO. In addition, k-mer-based approa-
ches, such as GECKO have the advantage of being portable; k-mer
sequences will not change with new versions of the genome.

Methods

Data preparation. The k-mer decomposition into a matrix of k-mer counts is
performed using Jellyfish 231. This step can be preceded by a filtering of sequencing
adaptors by Trim Galore (bioinformatics.babraham.ac.uk/projects/trim_galore/) if
the user selects this option in GECKO. GECKO will then eliminate k-mers for
which the count is below a noise threshold, k-mers that are uninformative for the
given study and k-mers that are redundant (i.e. that share the same information as
another k-mer).

The noise threshold is determined empirically from the input samples and is
calculated for each separate run of GECKO. To do this, we count the number of
times a k-mer count appears in one sample with null values in all other
samples from the same group for the same k-mer. Starting at a k-mer count of 1, we
search how many times the value 1 appears for a k-mer in one sample with 0 in
every other sample for the same k-mer. We then iterate this process for k-mer
counts 2, 3, etc. When this frequency drops dramatically as determined by the
slope of frequency counts (determined by calculating the derivative at each point),
we consider that we are above background and set the threshold as the k-mer
count just before the greatest inflection of the slope (Supplementary Fig. 7).

To determine uninformative k-mers, that is k-mers that do not vary across
input samples, we first discretize the k-mer counts using a chi-square statistic
that determines the minimum number of discrete intervals with minimum loss
of class attribute interdependence2. This algorithm is unsupervised and
determines the existence and number of separate levels in continuous data. If
there are no clear categories, the discretization will output a vector of 1’s.
Following this discretization, if there is not a minimum of 10% of samples with a
different level, then this k-mer is considered uninformative. By default, this
minimum number is set at 10% of the size of the input condition with the least
replicates. For example, if the condition with the least replicates has 30 samples,
then at least three samples must have a different discretized level to the other
samples.

To eliminate redundant k-mers we use symmetric uncertainty (SU) between
pairs of k-mers. Instead of comparing each k-mer to all other k-mers, we first split
the k-mers into buckets of equal size and perform pairwise comparisons within a
bucket. To determine which k-mers will be bucketed together, we calculate the sum
of their counts across samples. k-mers with a similar sum across samples are put
together; k-mers within a bucket have a higher chance of being redundant than if
they were randomly bucketed. When all k-mers within buckets have been
compared and redundant k-mers filtered, this process of bucketing by sum and
filtering is repeated. This process of bucketing the k-mers by sum lead to 10 times
faster filtering process on smaller samples and larger gains with larger matrices.

The SU between two k-mers A and B is given by the formula:

SU(A, B) = 2x ((H(A) + H(B) — H(A, B)) + (H(A) + H(B))]

where H(A) and H(B) are the entropies of the two k- mers along the samples and H
(A, B) is the entropy of the combined k-mer counts A and B along the samples.
The Entropy is given by the formula:

H(A) = — i Mi/N*log2(Mi/N)

where G is the total number of k-mer frequencies given by the discretization step,
Mi is the number of samples at the given discretization level N is the total number
of samples. In our analysis, we empirically set the limit of SU at 0.7, above which
two k-mers were considered as redundant.

GECKO keeps a record of all k-mers eliminated due to redundancy along with
the ID of the k-mer that caused it to be eliminated. Thus, when the genetic
algorithm finds a solution, GECKO can provide all the redundant k-mers that
would have provided a similar solution.

All code for the data preparation was implemented in C++.

The adaptive genetic algorithm. The algorithm begins by splitting the input data
into a training and test set. The test set is created by randomly selecting a number
of samples from each input category. By default the number of samples selected is

1/6th of the category with the smallest amount of samples. The test set is

used to establish a final test score that will have no impact on the genetic algo-
rithm’s evolution but allows us to estimate how well GECKO performs on a
given dataset.

Training: At each generation of the AG, all individuals are scored based on their
ability to classify the input samples using a machine learning algorithm. In this
study, the algorithm used was a Linear Support Vector Classification (LinSVC).
This method combines excellent results on smalls datasets and unbalanced groups
with a good generalization potential, for a small computational resource cost.
LinSVC is implemented in GECKO via the Scikit-learn package33. GECKO can also
be used with a random forest model or neural networks, however these have higher
computational costs and require dedicated hardware to be implemented within
reasonable time-frames.

To calculate the fitness score of an individual at each generation we
randomly split up the training set into two. 2/3 of the training set becomes the
inner training set and the remaining 1/3 becomes the inner test set. We contrast
the inner test set, which is used to score individuals at each generation of the
adaptive genetic algorithm with the test set which is not used to train the adaptive
genetic algorithm but instead is used to estimate the performance of our model.
The inner split on the training data is random and is performed five times. The
score of each individual is an average of these five iterations trained on the inner
training sets and tested on the inner test sets. This rotation of the training data
avoids sample batch effect biases at each generation.

Natural selection: After testing the fitness of each individual of our population
we delete individuals with lower fitness scores. By default, this is 30% of the
population. We call this process natural selection.

We sort the individuals by ascending rank and then apply the following
probabilistic rule:

P —value = aX +

where X is the individual rank and the following conditions are satisfied:

N
Z P —value =1
n
N/2
N P —value N
P—value 2 P — value

where a, 8 are scalar values, N is the size of the population, and
N N/2
P — value ™ P — value
and rank N/2 to be deleted.

Mutation and crossing over rates: GECKO makes use of three different types of
Genetic Algorithm. These adapt the mutation and cross-over probabilities
depending on the homogeneity and the performances of the population in order to
converge faster and more accurately.

The three algorithms are:

are, respectively, the probability for the individual rank N

A simple adaptative genetic algorithm3%, This algorithm has a fixed factor for
individuals for which the fitness is inferior to the average and a decreasing
linear function for the better performing half of individuals.

Another improved adaptive genetic algorithm3” that, similar to the simple
adaptive genetic algorithm, has a crossover probability fixed above the average
fitness, but uses exponential instead of the linear function for fitness values
below the average.

An improved adaptive genetic algorithm3® that models the probabilities with
two linear functions, with a breakpoint for the individuals that have a fitness
equal to the average fitness.

We recommend using the last model as it shows better exploration and higher
convergence rates for the kind of data used for GECKO. This approach aims to
maintain the population’s diversity while protecting good individuals from
modifications. The mutation and cross-over probabilities are decreased when the
individual’s fitness is high compared to the average and increased if it is low.
Similarly, the probabilities are decreased when the population is heterogeneous and
increased when the population is homogeneous to favor exploration of novel
solutions. These probabilities are modeled by two linear functions depending on
whether the individual is above the average fitness of the population or below it and
is given by the formula below.

ky (fug—f ) +ha (1,
1 (foe f)ffm(f ) fop
A PR
2 Umax 3 avg
e S A

Here f is the individual’s fitness, fii, is the fitness of the population’s worst
individual, f.,g is the population’s average fitness and fyay is the fitness of the
population’s best individual. k1 is the rate applied when f= fuin, k2 when f= f,ys,
and k3 when f= fax.

Stopping criteria: By default, GECKO will run for an input number of
generations. The user may however choose to make use of a stopping criteria that
will stop the algorithm prematurely. The stopping criteria is checked after at least
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5000 generations of the genetic algorithm. At this moment, the number of
occurrences of each k-mer in the population is calculated across bins of 500
generations from the start of the algorithm to the current generation. The top 1% of
most frequent k-mers in each bin are selected. We then estimate the difference in k-
mer composition between the current bin and all previous ones using a Hamming
distance. This distance measures the quantity of highest scoring k-mers that are
changing across generations. When the slope of Hamming distance across
generations drops below 1%, the stopping criteria is triggered.

Adding Gaussian noise: The user may add Gaussian noise to the model to
prevent overfitting. The characteristics of this noise are determined for each k-mer
separately. They are a mean of 0 and a standard deviation equal to the standard
deviation of the k-mer in the training set. The user can modify the level of noise by
changing noisefactor which multiplies the standard deviation by the input value.
This noise is generated at each training of machine-learning model and for each
individual.

tSNE visualization: t-SNE plots are generated using scikit-learn with the default
parameters but initialization with PCA. This initialization option allows for better
reproducibility of t-SNE graphs. Below is the corresponding command-line:
manifold. TSNE (n_components = 2, init = ‘pca’, random_state = 0, perplexity =
30.0, early_exaggeration = 12.0, learning_rate = 200.0, n_iter = 1000,
n_iter_without_progress = 300).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from NCBI Gene Expression
Omnibus under the accession numbers GSE100467 and GSE58889; the Cancer Genome
Atlas under the Pan-Gyn cohort name; the database of Genotypes and Phenotypes under
the accession numbers phs000435.v2.p1 and phs001050.v1.pl but restrictions apply to
the availability of these data, which were used under license for the current study, and so
are not publicly available. Data are however available by submitting a request to these
repositories.

Code availability
GECKO is available at https://github.com/RitchieLabIGH/GECKO under the CeCILL
license.
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