N

N
N

HAL

open science

Automatic Energy-Efficiency Monitoring of OpenMP
Workloads

Maxime Mirka, Guillaume Devic, Florent Bruguier, Gilles Sassatelli,

Abdoulaye Gamatié

» To cite this version:

Maxime Mirka, Guillaume Devic, Florent Bruguier, Gilles Sassatelli, Abdoulaye Gamatié. Automatic
Energy-Efficiency Monitoring of OpenMP Workloads. ReCoSoC 2019 - 14th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip, Jul 2019, York, United Kingdom. pp.43-
50, 10.1109/ReCo0SoC48741.2019.9034988 . lirmm-02183901

HAL Id: lirmm-02183901
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02183901
Submitted on 15 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-02183901
https://hal.archives-ouvertes.fr

Automatic Energy-Efficiency Monitoring of
OpenMP Workloads

Maxime Mirka, Guillaume Devic, Florent Bruguier, Gilles Sassatelli, and Abdoulaye Gamatié
LIRMM (CNRS and University of Montpellier)
Montpellier, France
name.surname @ lirmm. fr

Abstract—Energy-efficiency has been a major challenge in
compute systems over the last decade. Both embedded and high-
performance computing domains are concerned. Many efforts
have been currently spent to devise solutions that are capable
of providing systems with the best compromises in terms of
performance and power consumption. In this paper, we propose
an approach for on-line energy-efficiency analysis when executing
OpenMP workloads on multicore systems. The novelty of our
approach lies in the ability to monitor energy efficiency at run-
time without prior knowledge of the application profile or code
annotation. The solution relies on two new metrics: the Chunks
per Second (CpS) and Chunks per Joule (CpJ). The former
captures the quantity of work achieved by threads per unit time
(i.e. a performance indicator). The latter indicates the quantity of
work achieved by threads per unit energy, also corresponding to
the performance per watt (i.e. an energy efficiency indicator). As
most programs are made of several phases performing different
computations for which CpS and CpJ cannot be related, it is
crucial to be capable of detecting phase changes such as to
perform intra-phase energy efficiency optimizations. For that
purpose we devise a specific neural network model derived
from the popular auto-encoder largely explored in the machine
learning community, that is capable of understanding application
profile and track phase changes at run-time. We show that these
new metrics allow to perform energy efficiency optimization,
and illustrate our approach on the analysis of the SRAD
application from the Rodinia benchmark. The energy-efficiency
profile analysis of the application is conducted on both an Intel
and ARM platforms, showing its flexibility.

Index Terms—Energy-efficiency, real-time metric monitoring,
multicore systems, program execution phase detection, OpenMP

I. INTRODUCTION

Energy-efficiency has been a major challenge in compute
systems over the last decade in both embedded and high-
performance computing domains. By energy-efficiency, we
mean the best compromise between execution performance
and power consumption. In high-performance computing do-
main (HPC) [2], it is often referred to by using the floating-
point operation per second per watt (FLOPS/W) metric. In
embedded computing domain, the usual metrics are rather
millions of instructions per second per watt (or MIPS/W
in short). In both units the first components refer to the
performance (i.e., FLOPS and MIPS) while the second reflects
the power consumption. Optimizing the energy-efficiency can
be achieved in different manners: either increasing the per-
formance level while preserving the power consumption, or

reducing the power consumption while preserving the per-
formance level, or ideally increasing the performance level
while decreasing in the same time the power consumption.
Existing approaches that aim at optimizing energy-efficiency
rely on various design techniques as already surveyed in
literature [14], [17]. These techniques include dynamic voltage
and frequency scaling, power mode management and microar-
chitectural techniques focusing on both memory system and
cores.

While the above techniques have been proven useful, the
ability to exploit them in an adaptive way is central for
optimized energy-efficiency. In particular, it is important to dy-
namically deal with application-specific energy consumption
profile so as to take adequate decisions as early as possible.
For this purpose, one usually relies on typical performance
of power measurements that are informative-enough. Existing
profiling tools such as PAPI [4] or scorep [12] can be used
to gather the performance and power consumption numbers
of a system. Such information are often obtained a posteriori
i.e. after executing a large portion (if not the whole) of a
given program, therefore, leaving only a little room for early
optimizations. Analytic approaches, based on high-level esti-
mation models for performance and power consumption, could
be used for an earlier dynamic optimization. Unfortunately,
such models are not necessarily reliable approximations for
any execution platforms.

Contribution of this work. In this paper, we investi-
gate a framework that enables real-time energy-efficiency
measurement, correlated with system execution phases when
they exist. Contrary to conventional approaches that either
perform indirect optimization (i.e. on metrics that do not relate
application performance directly) or require prior profiling
(deriving energy efficiency from execution time), this approach
taps into the OpenMP runtime and tracks application progress
thereby enabling to derive energy-efficiency values. Our ap-
proach therefore applies to application programs written in
the OpenMP programming model [8] which is by far the most
popular shared-memory parallel API. It has been implemented
by modifying the libgomp runtime library, that is, the GNU
OpenMP implementation, though similar modifications can be
devised for any OpenMP implementation. It relies on two
new metrics: Chunks per Second (CpS) and Chunks per Joule
(Cp)).

We show that these new metrics are suitable information



allowing one to easily distinguish different programs’ exe-
cution phases. This opens opportunities for phase-dependent
optimizations. A deep learning autoencoder model [11] is used
to enable a systematic on-line detection of programs’ execution
phases. We illustrate our approach on the analysis of the SRAD
application available from the Rodinia benchmark-suite [7].
The energy-efficiency profile analysis of the application is
conducted on both an Intel and ARM platforms, showing its
flexibility: an Intel Xeon server with two Xeon E5-2630 v4
microprocessors (i.e. bi-socket system with 20 cores (10 cores
per socket) ), and an Odroid platform with an heterogeneous
big. LITTLE architecture (4 “big” and 4 “LITTLE” ARM
Cortex-A cores).

Outline. The remainder of this paper is organized as fol-
lows: Section II discusses a few related work; then Section
IIT introduces the basic idea behind the new energy-efficiency
characterization proposed in the current work; Section IV
illustrates the exploitation of the metrics presented in the
previous section to analyze the energy-efficiency profile of
an OpenMP program running on multicore systems; finally,
Section V gives some concluding remarks and draws the
perspective of this paper.

II. RELATED WORK

As mentioned in the previous section, energy-efficiency has
been characterized in literature via different metrics (e.g.,
FLOPS/W and MIPS/W) according to computing domains. In
all cases, these metrics follow the general definition:

tity of Work per Unit Ti
Energy Efficiency = Quantity of Work per Unit Time

Power Consumption

The characterization proposed in the present paper relies on
the same definition. It mainly differs in the way the quantity
of work is considered: we use an OpenMP-related concept,
known as chunks. OpenMP divides loop iterations into chunks
that are distributed to threads for execution.

Several metric measurement techniques have been proposed
over the last decades for characterizing energy-efficiency [1],
[5], [16]. They can be distinguished according to the level of
the compute system where they operate.

Authors of these papers reported a number of energy
consumption data acquisition techniques through hardware
sensors, found in different physical locations within systems.
These techniques have their pros and cons in terms precision
of measurement, temporal resolution, cost of deployment and
intrusiveness. They include measurement circuitry integrated
in hardware components such as a GPU and CPU; instrumen-
tation devices inserted within compute nodes that are capable
of probing at either component or power lane level; and power
meters that can gather the total load outside the nodes power
supply.

Beyond the above hardware-level techniques, software-
based approaches are also used. The Performance API (PAPI)
[4] is a well-known library interface (i.e. a software layer) for
hardware performance counters that facilitates the extraction of
various execution statistics. On the other hand, further profiling

tools include the Tuning and Analysis Utilities (TAU) [18],
Score-P [12], Scalasca [10] and PowMon [19].

Software-level power profiling tools comprise pTop [9],
PowerAPI [13] and Jalen [15]. The former is similar to the top
program of GNU/Linux and provides energy consumption data
from running processes. The PowerAPI application program-
ming interface and Jalen software-level profiling architecture
are enable energy monitoring in real-time. However, they do
not provide any energy-efficiency measurement.

The approach proposed in this paper operates at software
level, via the OpenMP libgomp runtime. Energy-efficiency
data are collected in real-time based on the chunk distribution
between parallel OpenMP threads. Beyond the collection of
the data, an automatic analysis is applied to detect potential
system execution phases, characterized by specific energy-
efficiency levels. Such a detection allows one to identify
typical regions of interest for possible optimizations, e.g., by
selecting some architecture configurations. Phase detection is
automatically achieved here via a deep learning method relying
on an autoencoder.

III. ENERGY-EFFICIENCY CHARACTERIZATION

OpenMP is the most popular parallel programming model
for shared-memory systems. Its API supports C/C++ and
Fortran programming languages among others on almost all
architectures and operating systems, which makes it widely
used.

thread 1

thread 2

thread 1
Master thread

thread 2

sequential .
region thread n
parallel parallel
region region

Fig. 1. OpenMP Fork and join mechanism.

OpenMP programs manage parallelism mostly by using
threads. OpenMP tasking (i.e. using communicating tasks)
has been introduced in OpenMP 3.1 and further developed
in OpenMP 4.0 and beyond but remains marginally used as
of this date, thereby left aside in this work. Threads are the
smallest unit of processing that can be scheduled by an OS. A
set of tools is provided by OpenMP to control parallelization
and synchronizations. It is all based on two fundamental
concepts: Fork and Join. As illustrated in Figure 1, the fork
mechanism is the transition from a sequential region (master
thread) to a parallel region where the program instructions are
executed in parallel among the available team threads. Then,
the opposite transition, from a parallel to a sequential region,
corresponds to the Join mechanism. This is where the team
threads reach a barrier and synchronize, yielding execution to
the master thread.



Its features include parallel loops, in which jobs are parti-
tioned in blocks of instructions, also called chunks. Chunks
are assigned to the parallel threads previously defined during
execution. The scheduling strategy can be either static (i.e.
each thread is assigned same work) or dynamic, in which case
chunks are assigned to threads dynamically depending on their
progress. This latter strategy, though incurring a scheduling
overhead, proves efficient and is further desired in systems
that are asymmetric such as big.Little architectures.

A. Light-weight energy-efficiency metrics

In the following, we rely on this specific feature of OpenMP
to define new light-weight metrics for characterizing both the
performance and energy-efficiency of an application executing
on multicore architectures.

Definition 1 (Chunks per Second - CpS). The number of
chunks executed in one second, where a chunk is a block of
instruction assigned to a thread for execution. It defines a
speed of work, i.e., it is a performance metric.

Definition 2 (Chunks per Joule - Cpl). The number of chunks
executed per Joule, where the Joules designate the quantity of
energy used by the compute system. It is also defined as CpS
per Watt or CpS/W, the number of chunks per second executed
per Watt. It defines a quantity of work per quantity of energy,
i.e., it is an energy efficiency metric.

Example 1. Let us consider the simple OpenMP code depicted
in Figure 2. It consists in changing the value of the ith element
in the the array B, by the addition of the ith element of both
A and B arrays. It is a simple code, going through a memory
space, and doing simple computation on each memory cell.

00 #include <omp.h>
01 // Initialization
02 n = 1le9; nthreads = 10;
03 double =xA, xB;
04 posix_memalign ((voidxx)&A, 64,
nxsizeof (double));
05 posix_memalign ((voidxx)&B, 64,
nxsizeof (double));
06 for (i = 0; i < n; ++i) {
07 A[i] = 0.1;
08 B[i] = 0.0;
09 }
10 // Parallelization
11 omp_set_num_threads (nthreads) ;
12 #pragma omp parallel for
schedule (dynamic, 1) // directive OpenMP
13 for (i=0; i<n; i++){
14 B[i] = A[i] + B[i];
15 }
16 return 0;

Fig. 2. Simple OpenMP C code example.

The calculation is done in a for loop which corresponds
to the workload to be parallelized. To understand how the
parallelization is made possible, let us refer to Figure 1. The
OpenMP directive line 12 initiate a parallel region, where the
chunks are dynamically distributed to the team threads one by
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(a) Configurations with different core counts. Frequency = 1.2GHz.
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(b) Configurations with different core frequencies. #core = 1.

Fig. 3. CpS and CplJ for different system configurations.

one (option "schedule(dynamic, 1)”). The team threads are
set up with the command line 11, here 10 threads are created.

When executing this code on various architecture configu-
rations in terms of core count or operating frequencies, we
obtain variable performance and energy-efficiency outcomes,
through the obtained CpS and CpJ metrics, as shown in
Figure 3. In Figure 3a, performance (i.e. CpS) increases up
to 3 cores and reaches a plateau due to an obvious saturation
of the memory subsystem given the rather memory intensive
nature of the application. Having more than 3 cores further
results in a decrease in energy efficiency as most cores are
idling waiting for data to process whilst consuming power.
When varying the frequency on a single core a monotonic
increase in performance is observed in Figure 3b. Energy
efficiency, however, drops past a certain frequency, possibly
to rising contentions to the main memory.

Note: The chunk metric is defined as a relative metric. Ac-
cording to the OpenMP terminology, one chunk corresponds
to one iteration of a parallel loop. Hence the size of a chunk
varies according to the iteration’s workload. We will cover this
aspect in Section IV with the CpS and CpJ analysis.

B. Metrics extraction

The GNU OpenMP API implementation is embedded in
the libgomp library which is part of GCC. In particular,
the scheduling mechanisms responsible to dispatch chunks to
threads are described in this library which is linked against
the runtime after compilation. Chunk tracing is made at this
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01 Get number of chunk done from the current thread
02 int tid = omp get thread num();// OpenMP directive
03 nb_chunk_done[tid] = Number of chunk done by the £id®® thread.

04 Get time of the capture:
05 act_time = get_time();

06 Update the chunk-counter value:
07 for i in NumberOfThread do
08 nb_chunk_updated += nb_chunk_done[i];

09 Prepare data to write in the Shared Memory:
10 stringToWrite = "nb_chunk updated"” & "act time";

11 Attached shared memory and write data (ipc/shm
directives) :
12 shared_memory = shmat (shmid, NULL, 0))
13 memcpy (shared memory, &StringToWrite,
strlen(StringToWrite)+1);
14 Housekeeping...

Fig. 4. Chunk collection sequence diagram (left) and chunk counter updating methodology (right, pseudo-code).

level. The libgomp library is modified in order to include
the automatic chunk collection mechanism described in the
left part of Figure 4. Thus, at any allocation of a chunk to
a thread, a counter is updated. The chunk counter is saved
in a shared memory region. This shared memory is created
by using the inter-process communication (IPC) API made
available by the operating system. Application binaries linked
with this modified version of GCC/libgomp therefore perform
this automatic instrumentation. It then makes it possible to
monitor CpS and CpJ values during application execution, by
reading out from the shared memory region in another process.

We implemented a library that makes it possible to create
scripts that access CpS and CpJ values and perform arbitrary
processing on those data. By periodically collecting the chunk
number, the CpS rate is directly calculated and the CpJ
derived from accessing the power consumption. The power
consumption information of the Odroid platform is collected
by reading directly the current sensors, while the Intel server
requires the use of the Intel Performance Counter Monitor
(PCM) API and its power utility to get those data. These scripts
can further dynamically control various parameters among
which the frequency and thread assignment of threads to cores
of the system.

The overall concept is illustrated on Figure 4. In particular,
it depicts the periodic reading of the shared memory by
the script, while the scheduler manages, in an asynchronous
fashion, both chunks allocations to threads and shared memory
updates. Only the scheduler can write in the shared memory.
Thus, there is no concurrency between threads to be man-
aged. No memory security mechanisms, like “mutexes”, are
implemented as the probability of the script and the scheduler
accessing the shared memory at the same time is very low.
Indeed, we observed that such a conflict error is negligible and

canceled out during the analysis process, e.g. neural network
training.

These metrics are easily implemented and since it operates
at OpenMP level, it is suitable for any architecture for which
libgomp is available, i.e. most systems. As described previ-
ously, they can also be used at runtime, opening perspectives
for online analysis of compute systems’ efficiency. These
perspectives will be developed in the following sections.

IV. PROGRESSIVE ENERGY-EFFICIENCY ANALYSIS

The ability to track application execution and its efficiency
can be leveraged to select the most beneficial system config-
urations from the energy-efficiency point of view.

Application codes often show several phases that differ in
their behaviors from the perspective of hardware resource
usage, e.g., compute-intensive versus memory-intensive. Let
us take the trendy example of a running application on
the cloud to illustrate this thought. As greatly depicted by
A Bhattacharyya et al. [3], a cloud application usually go
through many types of workloads, from a memory storage
and load period to a computing period. It can also deal with
communication and latency issues. In fact, there are as many
types of phases as there are available features on the appli-
cation. Following in this idea, another common example is a
smartphone’s application software. This family of application
does the interface between the user and the Operating System.
Thus, it goes through various workload period, like making a
call or access pictures, or simply idling (sleep mode).

Therefore, phase shift means change in workload nature.
More particularly, in the case of a parallel workload, this
change means modification of chunk characteristics. Indeed,
the chunk metric is relative to the workload of an iteration.
These changes lead to a variation in the energy consumption,



hence the need to adapt the system configuration to the
current application phase, in order to optimize the energy
consumption.

A. CpS and CpJ Exploitation

We illustrate the need to adapt the system configuration to
the current application’s phase by illustrating the difference
between a compute-intensive and a memory-intensive applica-
tion. Subsequent to the previous chunk definition, the CpS and
CpJ values interpretation follows the next rule: the higher the
CpS and Cpl values, the better the performance and energy-
efficiency.

Example 2. Let us consider the OpenMP code depicted in
Figure 5. This program is designed to have two phases, with
different characteristics.

00 #include <omp.h>
01 // Initialization
02 nthreads = 10;
03 double %A, B, *C, xD;
04 posix_memalign ((voidxx)&A, 64,
nxsizeof (double));
05 posix_memalign ((voidxx)&B, 64,
nxsizeof (double));
06 posix_memalign ((voidxx)&C, 64,
n*sizeof (double)) ;
07 posix_memalign ((voidxx)&D, 64,
n*sizeof (double));
08 for (1 = 0; i < nl; ++1i) {
09 A[i] = 0.1;
10 B[i] = 0.0;
11 }
12 for (1 = 0; 1 < n2; ++i) {
13 C[i] = 0.1;
14 D[i] = 0.0;
15 }
16 omp_set_num_threads (nthreads) ;
17 for (j = 0; J < n; ++3) {
18 // Parallel region
19 #pragma omp parallel for
schedule (dynamic, 1) // directive OpenMP
20 for (i=0; i<nl; 1i++){
21 B[i] = A[i] + BI[i];
22 }
23 // Parallel region
24 #pragma omp parallel for
schedule (dynamic, 1) // directive OpenMP
25 for (i=0; i<n2; 1i++){
26 D[i] = fct(C[i], DI[il);
27 }
28 return 0;
Fig. 5. A Simple OpenMP C program alternating compute-intensive and

memory-bound computing phases.

It consists in one main for-loop, executing two other con-
secutive for-loops. These two intricate for-loops are the two
different phases (i.e. two different types of chunks) of the main
program. The first is a simple addition, corresponding to a
memory intensive region. The second is a compute intensive
region, where fct() is a computationally demanding function.

Figure 6 is a plot of both CpJ and CpS against time,
collected during the execution of this program on a fixed
configuration. Energy consumption is plotted as well. Two
phases can be observed on both the CpS and CpJ plots, with

similar behaviours. Moreover, despite being rather noisy the
power profile can still be assumed constant as no significant
pattern appear. From the plots it is fair to assume the two
phases visible on the plots correspond to those two loops
listed above. These results show both CpJ and CpS metrics
are suitable for phase analysis.

When executing this code on various architecture config-
urations, we obtain the energy-efficiency outcomes shown in
Figure 7.

Figure 7 shows in (a) the performance (CpS) and in (b) the
energy-efficiency (CpJ) of the entire application but also of
each of the two phases for three specific configurations. The
breakdown (in %) of the execution time between the two phases
is depicted in (c). We first define the optimal configuration as
that leading to the best energy-efficiency. As it can be seen
in the figure each phase has a distinct optimal configuration.
Indeed, according to the notation used on Figure 7 configura-
tions 1 and 3 are optimal for respectively phase 1 and phase
2. Moreover, the global best energy efficiency is obtained for
configuration 2, different from the phases optimums. Note that
having the ability to switch between configurations 1 and 3
would obviously lead to a better average, that corresponding
to configuration 2 being obviously a tradeoff.

In this specific example, switching between configuration
1 and 3, regarding the current execution phase, instead of
running the entire application with the configuration 2 would
lead to an increase of up to 15% (considering a perfect system
without switching cost).
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Fig. 6. Synthetic application’s profile run on Intel-Server. From top to bottom:
CpS, energy consumption (Watt), CpJ.

From the above example, we see that CpS and CpJ are
adequate metrics that allow one to conveniently capture the
energy-efficiency of a system during execution, according to
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its phases. Indeed, we observe different CpS and CpJ be-
haviours according to the different phases. It means that phases
(i.e. chunk types) have their own CpS and CpJ characteristics,
leading to the conclusion that these metrics allow to capture
application phases.

While the above phases have been observed a posteriori
after program execution, a runtime system is required for
automating the process i.e. figuring out how many phases exist
in the application, enumerating these and finally identifying
which phase is presently active. This then would make it
possible to identify in a given phase which configuration works
best and select it.

B. Automatic Phase Detection

In the previous section, we observed that both CpS and
CplJ reveals in real time the execution phases of an application.
We also observed that, from an energy-efficiency perspectives,
phases may require different configurations. Hence, detecting
the phases and extracting the best configuration are key for
efficient dynamic control.

Here, we present a solution to detect in real-time application
phases. We achieved this “phase detection” with excellent
results by using a trained autoencoder [11].
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Autoencoders are specific deep neural network topologies
that are increasingly popular. They find application in a
number of areas such as image denoising [20]. They aim at
reducing the dimensionality of the neural network inputs, e.g.
the size of images for the image denoising area mentioned
before. This dimensional compression is performed by a

bottleneck-shaped neural network architecture as illustrated
in Figure 8. Indeed, autoencoders have a symmetric shape,
where the mirror plane is the internal layer, having a smaller
dimension than the input. Hence, two parts can be identified:
the encoder and the decoder. The former defines the part from
the input layer to the internal layer, while the latter is the part
from the internal layer to the output layer. Multiple hidden
layers can be implemented within both parts, making the
overall neural network deeper. Autoencoders are trained such
that the produced output is equal to the input. The compact
representation of the input is then available at the boundary
between the encoder and the decoder. This is represented by
the internal layer as shown in Figure 8.

Here, an autoencoder is trained to reproduce the CpS value
and the system’s configuration data by passing through the
internal layer, where the information about the phase can be
recovered. The autoencoder designed for this phase-detection
problem is illustrated in Figure 9 and described in the next.
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Fig. 9. Designed autoencoder. 1: internal layer, 2: configuration data (¥core,
frequency), 3: concatenation of 1 and 2

Designed autoencoder principle, cf. Figure 9: In order to
make it extract the phase value, a discrete layer (blue box) is
used as the internal layer. The information about the configu-
ration (frequency and number of active cores), represented by
the yellow box, is then given to the decoder input (green box)
by concatenating it to the information contained in the internal
layer. Hence, the autoencoder is constrained to build a discrete
representation of the CpS, based on the configuration infor-



mation. This representation matches the phase information. It
actually results in training an unsupervised classifier. Indeed,
the number of classes corresponding to different phases is not
given a priori to the autoencoder. Each class resulting from
the training of the autoencoder corresponds to an identified
execution phase. The training requires a prior collection stage
to sweep across the various system configurations and collect
corresponding CpS and CpJ values. After training, the model
only requires the CpS value and the configuration to figure
out which phase the program is currently in. Thus, real-time
phase detection is made possible.

C. Application to SRAD

We illustrate the application of our proposed framework to
the SRAD benchmark, from the Rodinia benchmark-suite [7].
It is tested on both an Intel Xeon dual-socket multicore system
and an Odroid XU3 platform based on the Armv7 big.LITTLE
architecture.

For the rest of this section, the compute system’s config-
uration will refer to a pair of features: the number of cores
assigned to the program execution, and the frequency of these
cores. As illustrated in Figure 10, the SRAD benchmark is a
suitable program to start with to test the framework. Indeed,
in this figure both CpS and CpJ of the SRAD benchmark
execution are plotted, for a fixed configuration, and two
execution phases can be observed.
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Fig. 10. SRAD-Application execution sample, CpS and CpJ profiles.

A characterization of the application is run on both compute
systems by exploring all possible configurations, i.e. all possi-
ble frequencies and core counts. Figure 11a and 11b show the
result of the characterization on the Intel dual-socket system.
The configuration range starts with a single core up until 19 as
a core dedicated to the data collection was excluded from the
pool. For each number of cores, a set of frequency is explored,
from 40 to 80% of the maximum frequency, with a 10% step.
Higher frequencies were not used in the analysis as incurring
frequency throttling due to the processor TDP. This gives a
total of 95 different configurations. The same experiment has
been conducted on the Odroid board, depicted in Figures 11c
and 11d with similar results. Note for both systems the best
performing configurations are distinct and marked as such in
figures 11b and 11d. This simple example demonstrates that

the proposed metrics (CpS and CpJ) are relevant information
for applications running on embedded systems such as the
Odroid board, as well as on high-performance compute nodes
like the Intel server.
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CpJ
1400 B Phase 1
1200 B Phase 2
1000 B Global
800
600
400
200
° 10 20 30 50 Configuration
1 | 2 | 3 | 4 #Core
(c) CpJ on Odroid Board, 52 configurations
CpJ
1400 B Phase 1
1200 B Phase 2
1000 B Global
800
600
400
2 | L]
40 i -42 i i 44 [ 46 i 1481 Configuration

0.2!03!0.4!0.5'0.6:0.7!0.8:0.9!1.0! 1.1 f(GHz)
#Core=4

(d) CpJ on Odroid Board, zoom in optimal configurations (under-
lined in corresponding phase’s color)

Fig. 11. SRAD-Application Characterization, on two architectures: an Intel
server with 20 cores and an Arm platform with 4 cores.
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Fig. 12. SRAD-Application phase detection sample on the CpS profile.

Figure 12 shows the CpS plot with the two different phases
as discovered by the autoencoder runtime. It illustrates the
overall great results provided by the autoencoder, after a
relative short training period. Indeed, autoencoder trainings
took between Imin and 5min for both the Intel-server and
Odroid-board datasets, and converged to a final loss value
after few tens of seconds. They have been conducted on an
Intel Xeon server featured with a Xeon E3-1225v3 CPU. As
expected from the model, once trained, the encoder gives a
code corresponding to each phase. The code value is arbitrary
and may change from one training to another and shall be
rather regarded as an enumerated type.

V. CONCLUSION AND PERSPECTIVES

On-line energy-efficiency analysis is essential for better
management of resources in multicore systems. In this paper
we focus on OpenMP, a parallel programming model widely
used in high-performance computing domain among others.
We propose two new metrics to evaluate both performance and
energy-efficiency of compute systems during run-time. Based
on these metrics, we propose a deep learning autoencoder to
perform on-line detection of programs’ execution phases. Re-
sults show great capabilities from autoencoders to effectively
extract the phase information from the execution profile. This
on-line analysis method has been conducted on both an Intel
and Arm architectures to show its flexibility.

This work opens new perspectives for energy consumption
optimization. Indeed, the on-line analysis made possible by the
introduced metrics can then be exploited by an optimization
engine that identifies best configurations after an exploration
phase for significant energy-efficiency gains. Further work
rely on devising such an algorithm for adaptive systems,
where adequate system configurations will be selected upon
the feedback from the CpS and CpJ analysis. This could
contribute to a more efficient execution of OpenMP programs
on heterogeneous platforms [6].
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