F. Almeida, J. Arteaga, and V. Blanco, and Alberto Cabrera. Energy measurement tools for ultrascale computing: A survey, Supercomputing Frontiers and Innovations, vol.2, issue.2, 2015.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally et al., , 2008.

A. Bhattacharyya, S. Sotiriadis, and C. Amza, Online phase detection and characterization of cloud applications, 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp.98-105, 2017.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, A portable programming interface for performance evaluation on modern processors, Int. J. High Perform. Comput. Appl, vol.14, issue.3, pp.189-204, 2000.

A. Butko, F. Bruguier, A. Gamatié, G. Sassatelli, D. Novo et al., Full-system simulation of big.little multicore architecture for performance and energy exploration, 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pp.201-208, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01418745

A. Butko and F. Bruguier, Abdoulaye Gamatié, and Gilles Sassatelli. Efficient Programming for Multicore Processor Heterogeneity: OpenMP versus OmpSs, OpenSuCo 1 (ISC17), 2017.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer et al., Rodinia: A benchmark suite for heterogeneous computing, 2009 IEEE International Symposium on Workload Characterization (IISWC), pp.44-54, 2009.

L. Dagum and R. Menon, Openmp: An industry-standard api for shared-memory programming, IEEE Comput. Sci. Eng, vol.5, issue.1, pp.46-55, 1998.

T. Do, S. Rawshdeh, and W. Shi, ptop: A process-level power profiling tool, Proceedings of the 2nd Workshop on Power Aware Computing and Systems, 2009.

M. Geimer, F. Wolf, J. N. Brian, . Wylie, D. Erikaábrahám et al., The scalasca performance toolset architecture, Concurr. Comput. : Pract. Exper, vol.22, issue.6, pp.702-719, 2010.

G. E. Hinton and R. S. Zemel, Autoencoders, minimum description length and helmholtz free energy, Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS'93, pp.3-10, 1993.

D. Kai, Tools for assessing and optimizing the energy requirements of high performance scientific computing software, vol.16, p.837838, 2016.

, High performance computing power application programming interface (api) specification, 2014.

S. Mittal, A survey of techniques for improving energy efficiency in embedded computing systems, IJCAET, vol.6, issue.4, pp.440-459, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101854

A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, Runtime monitoring of software energy hotspots, 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pp.160-169, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00715331

A. Noureddine, R. Rouvoy, and L. Seinturier, A review of energy measurement approaches, SIGOPS Oper. Syst. Rev, vol.47, issue.3, pp.42-49, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912996

A. Orgerie, M. Dias-de-assuncao, and L. Lefevre, A survey on techniques for improving the energy efficiency of large-scale distributed systems, ACM Comput. Surv, vol.46, issue.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00767582

S. Sameer, A. D. Shende, and . Malony, The tau parallel performance system, Int. J. High Perform. Comput. Appl, vol.20, issue.2, pp.287-311, 2006.

M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang et al., Accurate and stable run-time power modeling for mobile and embedded cpus, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.36, issue.1, pp.106-119, 2017.

J. Xie, L. Xu, and E. Chen, Image denoising and inpainting with deep neural networks, Advances in Neural Information Processing Systems, vol.25, pp.341-349, 2012.