The Workforce Routing and Scheduling Problem: solving real-world Instances
Gabriel Volte, Chloé Desdouits, Rodolphe Giroudeau

To cite this version:

HAL Id: lirmm-02193442
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02193442
Submitted on 24 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
The Workforce Routing and Scheduling Problem: solving real-world Instances

Gabriel Volte
LIRMM, University of Montpellier, CNRS
Montpellier, France
gabriel.volte@lirmm.fr

Chloé Desdouits
DecisionBrain
Montpellier, France
chloe.desdouits@decisionbrain.com

Rodolphe Giroudeau
LIRMM, University of Montpellier, CNRS
Montpellier, France
rodolphe.giroudeau@lirmm.fr

ABSTRACT
We propose an efficient method to solve a workforce routing and scheduling problem with working constraints, and a bounded execution time limit. This problem combines two fundamental problems in operations research: routing and scheduling. In such a context, we develop a column generation algorithm, as a set partitioning problem with side constraints, within a branch-and-price framework. The pricing sub-problem is an elementary shortest path with resource constraints modeled with constraint programming. In our branch-and-price framework, we first solve our problem using branch-and-price and a branch-and-bound strategy is proposed on the last restricted master problem, in order to obtain a feasible solution when the time limit is almost reached. However, we show that the developed method leads to better solutions than using constraint programming or large neighborhood search methods. We show the relevance of our method with various-size real instances.

INTRODUCTION
We consider in this paper a hybrid problem in which it is necessary to associate the vehicle optimization problem with an assignment problem for employees to satisfy some technical constraints. The study of this problem is motivated by taking into account new business constraints for employees with specific skills. These problems are more and more present in the everyday life of maintenance companies. The main difficulty is to consider the various parameters to respond to real situations.

Workforce Scheduling and Routing Problem (hereafter WSRP) represents problems that mobilize workforce to perform tasks for customers. Given a set of employees and a set of tasks to be scheduled, WSRP consists in assigning tasks to employees in order to fulfill some constraints while minimizing operational costs.

WSRP combines the complexity of scheduling problems [2, 18]:
• Multi-skill Project Scheduling Problem, MPSP [6, 14, 21] (Technician and Task Scheduling Problem).
• Sequencing and Scheduling Problem, SSP [19].
• Project Scheduling with Resources Constrained Scheduling Problem,
and problems of vehicle routing [20, 25]:
• Vehicle Routing Problem with Time Windows [23],
• Vehicle Routing Problem with Time Windows and Dependencies,

Figure 1 represents the successive generalizations of basic scheduling and routing problems, such as the TSP, that lead to the WSRP class of problems.

This paper is organized as follows: the section RELATED WORK gives an overview of the previous works found in the literature on the WSRP, the section MODELLING formally describes our problem and a first compact model using integer linear programming (henceforth ILP) is given. The column generation decomposition and the branch-and-price scheme implemented is described in section THE BRANCH-AND-PRICE FRAMEWORK. The results and instances are presented in section TESTS. The last section concludes the paper and presents some future work.

RELATED WORK
In the next section, we formally define the Workforce Scheduling and Routing Problem class, based on the survey [3]. This survey first presents the common characteristics of technicians and tasks, summarized in Table 1, then reviews known methods to solve problems considered as WSRP. The main method used to tackle these problems is a hybrid approach combining exact methods, integer linear programming or constraint programming, and heuristics/meta-heuristics methods, large neighborhood search or tabu search. The branch-and-price approach is also used since this approach is known to be efficient on routing problems and scheduling problems. This survey also gives a detailed computational study outlining the computational difficulties to solve these problems. This study has been carried out on different data sets with different integer linear programming formulations.

We describe some characteristics presented in Table 1. The processing time of the tasks is not negligible compared to the travel time and may depend on the employee. Tasks have required skills to filter employees who can perform them. A task can be processed by one or more employees, in which case all employees must be present before the starting time of the task.
al. [4] and Rasmussen et al. [22] define temporal dependencies among tasks. Thus, some tasks admit a priority over others. Tasks can have priority meaning that a task should be performed before others.

Some tasks can be outsourced. In addition, the schedule of the employees can vary: it can be daily, weekly, etc. In general, WSRP instances are too big to be exactly solved. They are usually divided into smaller geographical areas to prevent an employee from working far from home but also to reduce the size of instances making it easier to solve.

<table>
<thead>
<tr>
<th>Employee</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means of transport</td>
<td>Processing time</td>
</tr>
<tr>
<td>Starting Position</td>
<td>Position</td>
</tr>
<tr>
<td>Ending position</td>
<td>Temporal dependence</td>
</tr>
<tr>
<td>Working Hours</td>
<td>Opening hours</td>
</tr>
<tr>
<td>Team</td>
<td>Required skills</td>
</tr>
<tr>
<td>Skills</td>
<td>Priority</td>
</tr>
<tr>
<td>Outsourcing</td>
<td></td>
</tr>
</tbody>
</table>

| Table 1: Characteristics of employees and tasks. |

For example, we may consider a set of employees who have to execute a set of tasks. Employees can travel by car, bicycle or public transport to perform the tasks. Employees are allowed to start and end their day from home. In the literature, there are numerous works of surveys aimed at characterizing and classifying the various problems belonging to the WSRP class. Based on an extension of the classic notation scheme $[\alpha, \beta, \gamma]$ proposed by [13], Desrochers [7] develop a classification of WSRP.

An extensive overview of time constraint routing and scheduling problems during the last decades is given in Desrosiers et al. [8]. They detail ILP models and algorithms (column generation and dynamic programming) for each variation of problems (TSP, DSRPTW, MDVRPTW, etc), focus their work on optimization methods for practical size instances. Although, they also present heuristic methods to solve complex problems or large-scale instances when optimal solutions are too difficult to obtain. The survey [24] outlines the research on different routing problems with time windows (M-TSPTW, SPPTW, etc) and give hints for future works on these problems.

To solve problems belonging to WSRP, we observe in literature many methods such as exact methods (constraint programming or integer linear programming), meta-heuristics (simulated annealing, tabu search, genetics, ...) or hybrid methods. Regarding exact methods, one can find ILP models and column generation using Dantzig-Wolfe decomposition. The master problem corresponds to a set partitioning problem [1] and the sub-problem to an Elementary Shortest Path Problem with Time Windows [12, 15] which is known to be NP-hard [10].

MODELLING

The goal of the project is to assign maintenance tasks to technicians in order to build daily schedules while optimizing some criterion such as quality of service, travel time, productivity and efficiency. The time limit is bounded to at most one hour for the biggest instances. The number of tasks is too large to schedule all of them in one day, thus tasks can be postponed. Thus the set of tasks is updated every day according to previous schedules.

The problem can be stated as follows: let us define \mathcal{P} the set of technicians and \mathcal{T} the set of tasks. For each technician, we add two artificial tasks: one for the starting point (\emptyset^P) and the other for the ending point (\emptyset^o). Therefore, we define the set $\mathcal{T} = \mathcal{T} \cup \{\emptyset^P, \emptyset^o\}$ for each technician p.

Let p_j be the processing time of task j, and let d_j be the due date of task j. ω is the weight (or revenue) of task j.

Let q be the number of skills and l the number of level of skills. Consider $\alpha_p = (\alpha_p^1, \alpha_p^2, \ldots, \alpha_p^q)$ be the skill vector of technician p and $\beta_j = (\beta_j^1, \beta_j^2, \ldots, \beta_j^q)$ the skill vector of task j. For each $i \in \{0, \ldots, q\}$, α_p^i and β_j^i indicate the level (value in $\{0, \ldots, l\}$) of the ith skill in the vector.

Each task possesses a location and each technician has a starting location and ending location. Let M be the distance matrix where m_{ij} represents the distance between locations i and j.

Let K_p (resp. K_p) be the set of uncovered (resp. available) periods of technician p. The previous notation is extended to task j with W_j and \mathcal{K}_j, \mathcal{K}_j denotes the set of time windows where technician p and task j are both available, $\mathcal{K}_p^w = \mathcal{K}_p \cap \mathcal{K}_j^w$. We define $[a_k, b_k] \in \mathcal{K}_j^w$ the kth time window of the set. A task cannot overlap unavailable period (no task should start or end during an unavailable period).

The beginning (resp. ending) of the workday of a technician is given by the starting time (resp. end time) of his working hours. Moreover, the technician cannot travel before his starting hours or after his ending hours. Lastly, if a technician arrives early to a customer waiting is allowed.

Our problem can be formulated as integer linear program given below. The routing variables x_{ijk}^w take value 1 if the technician $p \in \mathcal{P}$ travels from task $i \in \mathcal{T}^P$ to task $j \in \mathcal{T}^o$ in the time window $k \in \mathcal{K}_j^w$, 0 otherwise; the scheduling variables s^w_i correspond to the time the technician $p \in \mathcal{P}$ starts the task $i \in \mathcal{T}^P$; the covering variables y_j take value 1 if the task $i \in \mathcal{T}$ is unscheduled/covered and 0 if the task i is performed by a technician; the tardiness variables D_i correspond to the lateness of the task $i \in \mathcal{T}$. First, we introduce an ILP representing the backbone of our problem, then we will add the specific constraints (same technician constraints and appointment constraints).

$(\pi_1, \pi_2, \pi_3, \pi_4)$ are the weights of the different criteria in the objective function (Equation (2)). The first criterion corresponds to the number of unscheduled tasks, the second minimizes the technician’s travel distances, the third computes the sum of the tardiness variables, and the fourth maximizes the skill gap between technicians and tasks. \mathcal{W} is the total of the weight of all tasks. The first criterion maximizes the weighted sum of tasks scheduled but we choose to minimize the weighted sum of unscheduled tasks, the weight of all tasks minus the weight of all unscheduled tasks gives the weight of all scheduled tasks.

We denote by Prec, Same and App, the set of pairs $(i,j) \in \mathcal{T} \times \mathcal{T}$ for which a precedence constraint, a same technician constraint, and appointment constraint exists, respectively. Precedence constraints are defined below. Same technician constraint corresponds to a pair $(i,j) \in \mathcal{S}_m$, if technician p executes task i (resp. j) thus he is the only one who can perform task j (resp. i).

Appointment constraints enforce a task to be performed by a technician at a fixed time. These constraints appear when the customers require a specific technician or a specific time to perform a job. There are three kinds of appointment constraints:

- When task j is assigned to technician p (even if he does not have the required skills to perform it): when p should perform task j?
• When task j is assigned to time t: which technician should perform it?
• When task j is assigned to technician p and to time t: is j scheduled for p at time t?

Model M1: Compact formulation

Maximize \(\pi_1(\mathcal{W}) - \sum_{t \in T}(\omega_i j_t) - \pi_2 \sum_{p \in P} \sum_{i,j \in T_{PS}} x^p_{ijk} m_{i,j} \)

\[-\pi_3 \sum_{j \in T} \omega_j D_j + \pi_4 \sum_{p \in P} \sum_{i,j \in T_{PS}} \sum_{k \in K_p}^q x^p_{ijk}(a^p(s) - \beta^l(s))\]

s.t.

\[\sum_{p \in P} \sum_{j \in T_{PS}} \sum_{k \in K_p}^q x^p_{ijk} = 1 \forall p \in P \quad (1)\]

\[\sum_{i \in I} \sum_{j \in T_{PS}} x^p_{ijk} = 1 \forall p \in P \quad (2)\]

\[\sum_{j \in T_{PS}} x^p_{ijk} = 1 \forall i \in I \quad (3)\]

\[\sum_{j \in T_{PS}} x^p_{ijk} = 1 \forall p \in P \quad (4)\]

\[\sum_{i \in I} \sum_{j \in T_{PS}} x^p_{ijk} = \sum_{p \in P} \sum_{j \in T_{PS}} x^p_{ijk} = 1 \forall i \in I \quad (5)\]

\[B_j y_i + \sum_{p \in P} i^p + p_i - \sum_{p \in P} j^p + B_i y_j \quad \forall (i,j) \in \text{Prec} \quad (6)\]

\[\sum_{t \in T} x^p_{ijk} a_{ik} \leq t^p_i \leq \sum_{t \in T} x^p_{ijk} b_{ik} \quad \forall i \in I, \forall p \in P \quad (7)\]

\[\sum_{t \in T} x^p_{ijk} a_{ik} \leq t^p_i + (\sum_{t \in T} x^p_{ijk} b_{ik}) - p_i \leq \sum_{t \in T} x^p_{ijk} b_{ik} \quad \forall i \in I, \forall p \in P \quad (8)\]

\[t^p_i + x^p_{ijk}(m_{i,j} + p_i) \leq t^p_j + (1 - x^p_{ijk})B_k \quad \forall p \in P, \forall i,j \in T, \forall k \in K_p \quad (9)\]

\[D_j \geq \sum_{p \in P} t^p_i + p_i - d_j \quad \forall j \in T \quad (10)\]

\[x^p_{ijk} \in \{0,1\}, \quad \forall p \in P, \forall i,j \in T, \forall k \in K_p \quad (11)\]

\[y_i \in \mathbb{N}, \quad \forall p \in P, \forall i \in T \quad (12)\]

\[t^p_i \in \mathbb{N}, \quad \forall i \in T, \forall p \in P \quad (13)\]

\[D_j \in \mathbb{N}, \quad \forall j \in T \quad (14)\]

\[\text{THE BRANCH-AND-PRICE FRAMEWORK}\]

In this section, we will introduce a branch-and-price framework. First, we use a Dantzig-Wolfe decomposition on the compact formulation in order to model it as a set partitioning problem with side constraints. In a branch-and-price framework the problem is split into a master problem (hereafter MP) and a pricing sub-problem (henceforth PSP). The PSP generates new feasible schedules/routes for each technician. Given the set of all feasible technician schedules, the MP assigns a schedule to each technician such that a maximum of tasks is processed (c.f. the first criterion of the objective function). Since the set of feasible technician schedules can be very large, we restrict the MP to a subset of schedules to obtain a reasonable size problem (called Restricted Master Problem denoted by RMP). A feasible route for a technician begins at his starting location and ends at his ending location, and respects all constraints mentioned in Model M1.

Master Problem

Consider \(S^p \) the set of all feasible schedules for technician \(p \) (this set will be generated successively by the PSP). Let \(d^p_{st} = 1 \) if task \(i \) is in Schedule \(s \) of technician \(p \) and 0 otherwise; let \(t^p_i \) be the starting time of Task \(i \) in schedule \(s \) of technician \(p \). The
constant c^p_s represents the cost of the schedule s for technician p. In the compact formulation (cf. Model M1), the aim is to minimize delays, distances and maximize the skill gap between tasks and technicians. This cost is a variation of the objective function of the compact formulation (Equation (1)). The first criterion of the compact formulation objective function is separated from the others in the RMP objective function to enhance the linear relaxation of the RMP.

$$e^p_s = -\pi_s \sum_{i \in T} \sum_{k \in \mathcal{K}} e^p_{ij} m_{i,j} - \pi_s \sum_{j \in T} w_j D_j + \pi_s \sum_{i \in T} \sum_{k \in \mathcal{K}} q x^p_{ijk} (a^p(s) - \beta^i(s))$$

We introduce binary variables for the RMP: the scheduling variables x^p_i take value 1 if schedule s is chosen for technician p and 0 otherwise; the covering variables y_i take value 1 if task i is uncovered/unscheduled and 0 otherwise.

Model M2: Restricted Master Problem

Max $\sum_{p \in \mathcal{P}} \sum_{s \in \mathcal{S}^p} d^p_s c^p_s + \pi_s \sum_{i \in T} (1 - y_i) w_i$ \hspace{1cm} (20)

s.t. $\sum_{p \in \mathcal{P}} \sum_{s \in \mathcal{S}^p} d^p_s x^p_i = \lambda^p_i - 1 \forall p \in \mathcal{P}$ \hspace{1cm} (21)

$\sum_{s \in \mathcal{S}^p} \lambda^p_i \leq 1 \forall p \in \mathcal{P}$ \hspace{1cm} (22)

$y_i + \sum_{s \in \mathcal{S}^p} d^p_s \lambda^p_i = \sum_{s \in \mathcal{S}^p} d^p_s \lambda^p_i + y_j \forall (i,j) \in \text{Same}, \forall p \in \mathcal{P}$ \hspace{1cm} (23)

$B_j y_i + \sum_{p \in \mathcal{P}} \sum_{s \in \mathcal{S}^p} d^p_s \lambda^p_i + p_i \leq \sum_{p \in \mathcal{P}} \sum_{s \in \mathcal{S}^p} \tau^p_s \lambda^p_i + B_i y_j \forall (i,j) \in \text{Prec}$ \hspace{1cm} (24)

Constraints (21) express the fact that each task must be executed or covered. Constraints (22) ensure that only one schedule is associated with a technician. The same technician constraints are modeled by constraints (23). The same technician constraints are only in the RMP because in the PSP these constraints are always checked (a PSP is solved for each technician). Constraints (24) model the precedence constraints. As precedence constraints among tasks are independent of the set of technicians, the set of constraints must be present in the RMP and the PSP. Constraints (25) (resp. (26)) indicate the domain of λ^p_i variables (resp. y_i).

For any primal solution of the RMP, we obtain a dual solution $[u, z, l, w]$, where $u = (u_{i,j})_{i,j \in T}$; $z = (z_p)_{p \in \mathcal{P}}$; $l = (l_{i,j})_{i,j \in \text{Prec}}$; $w = ((w_{p,i,j})_{i,j \in \text{Same}, p \in \mathcal{P}})$ are the dual variables of constraints (21), (22), (23) respectively. These dual variables are used in the PSP (cf. Equation (36)) to generate new improving routes for each technician.

Pricing subproblem

In our case, the sub-problem generates feasible schedules/routes (that respect the constraints) for each technician, thus these routes are added to the RMP. The sub-problem aims to find feasible routes for a technician which improve the solution obtained in the RMP. We cannot consider technicians as a fleet of vehicles (they have almost no similar characteristics), thus we must solve a sub-problem for each technician. The PSP is solved using constraint programming with the LAG IBM Scheduler constraints and variables (for more information on those constraints and variables please refer to [16, 17]). The Pricing Sub-Problem (hereafter PSP) is the elementary shortest path problem with time windows (ESPTPW). It focuses on finding an improved schedule for a particular technician. Recall that ESPTPW is NP-hard in a strong sense [10] (there is no hope to develop dynamic programming).

Since our problem is a maximization problem if the PSP objective function $Z_{\text{PSP}} < 0$ (cf. Equation (35)) then the corresponding route is not improving the current solution. Adding it in the solution of the RMP would decrease the value of the objective function. So we add in the RMP all tours with a reduced cost (Z_{PSP}) strictly positive to potentially increase the value of the objective function. Since the PSP is hard to solve, the optimization is terminated as soon as a tour with a strictly positive reduced cost is found. Thanks to the constraints propagators, constraint programming is effective to find a good feasible solution in a short time.

For any technician p, we construct the following constraint programming model. We introduce the interval variables $X^p_{i,j}, \forall i \in T^p$ to model tasks scheduling time. The domain of these variables is either $\{1\}$ (task is not processed) or the scheduling horizon (the scheduling time of the task). Let $X^p_{i,j}$ refers to the sequence variable of technician p, the domain of this variable is a permutation of tasks interval variables: $D(X^p_{i,j}) = \text{perm}([X^p_{i-1}, j] \cup \{X^p_{i,p+1}, X^p_{i,n+1})$.

Model M3: Constraint programming

Max $Z_{\text{PSP}} = X^p_{SG} - X^p_{DT} - f(u, z, l, w)$ \hspace{1cm} (35)

Equation (27) ensures that the tasks performed by p are not overlapping and respects the travel time matrix M. Equations (28) and (29) enforce the route to begin (resp. end) at the starting (resp. ending) location. The constraint pO_{f} (meaning presenceOf, is used to know if a task is executed) and the constraint EndBeforeStart are both used to assure that precedence constraints (30) are satisfied. Equations (31) prevent tasks to be performed outside the technician and task time windows. The constraint ForbidExtend ensures that tasks are not overlapping an unavailability period (given by $\mathcal{K}_p \lor \mathcal{K}'$). The constraint ForbidStart (resp. ForbidEnd) ensures that tasks begin before (resp. end after) an unavailability period. We restrict the domain of the variables to satisfy appointment constraints. In the objective function (cf. Equation (35)), the
variable X_{SG} computes the skill gap between technicians and tasks (cf. Equation (34)), the variable X_T computes the tasks tardiness (cf. Equation (32)) and the variable X_P computes the travel time/distance (cf. Equation (33)). The function $f(u, z, l, w)$ is dedicated to the cost associated with the dual variables $[u, z, l, w]$ defined above.

\[
f(u, z, l, w) = \sum_{i \in T} pO f(X^1_i) \times u_i + z_p + \sum_{(i, j) \in \text{Prec}} (l_j \beta_i - l_i \beta_j) - \sum_{(i, j) \in \text{Same}} (w_{ij} \times pO f(X^1_j) - w_{ij} \times pO f(X^1_i))
\]

(36)

Branching strategies

We based our branching strategy on the ones presented in [11]. This paper presents two rules for branching. The first one, «standard strategy» consists in branching on decision variables β_i, this branching is ineffective because it leads to an unbalanced branching tree. The second one, the «natural strategy» consists in branching on flow variables x_{ij} (cf. Model M1) and decision variables y_i, we opt for this strategy because it leads to a more balanced tree and an easier PSP.

Branch-and-price is usually used to obtain optimal solution but with a lack of resources and because of the large-scale instances this method is neglected. Because of the time limit and the large-scale highly constrained instances, finding an optimal solution can be difficult. Our algorithm is based on the one used in [5]. The authors propose a column generation to obtain an optimal non-integer solution. Therefore, a branch-and-bound algorithm is applied to obtain an integer solution.

We enhance this method adding the branch-and-price framework to generate more homogeneous routes. We solve the problem with the following branch-and-price scheme (cf. Figure 2). We first solve the problem using a standard branch-and-price framework, at each node of the branching tree RMP is solved using column generation. If an integer solution is found, the bound (the best feasible solution found) is updated, else we add a branching node. At the end of the time limit, if we reach it, we use branch-and-bound method on the last RMP to obtain an integer solution. If this solution is better than the best one found in the branch-and-price algorithm we keep it.

![Figure 2: Illustration of our branch-and-price framework.](image)

TESTS

We have access to many instances of two Decisionbrain customers. Table 2 gives statistics for each instance. The name #30#256 (first column) means that the instance has 30 technicians and 256 tasks, the column |Prec| gives the number of precedence constraints, |Same| shows the number of same technician constraints, |App| represents the number of precedence constraints, q denotes the number of skills (length of the skill vector), loc indicates the number of task and technician locations, K^P (resp. K^F) shows the mean of technician time windows (resp. task time windows).

| Instance | |Prec| | |Same| | |App| | |loc| | K^P | | |K^F |
|----------|---------|-------|---------|-------|---------|-------|---------|-------|-------|--------|--------|
| #30#256 | 0 | 0 | 0 | 154 | 162 | 0.96 | 1 |
| #30#305 | 30 | 5 | 0 | 137 | 162 | 0.9 | 1 |
| #30#2781 | 341 | 101 | 37 | 137 | 544 | 0.9 | 0.92 |
| #144#1377| 0 | 0 | 0 | 154 | 163 | 0.875 | 1 |
| #145#1460| 0 | 0 | 0 | 183 | 544 | 0.875 | 1 |

Table 2: The set of instances.

We are going to compare the branch-and-price method described here with the proposed ILP model solved using the software CPLEX and four other methods developed by DecisionBrain. The «ILP» corresponds to the integer linear program implemented and tested with Cplex. The «CP» corresponds to constraint programming using ILOG IBM Scheduler constraints and variables and tested with CPOptimizer. The «H» corresponds to a heuristic, kept confidential. The «H+X» method corresponds to start the X optimization with a first solution computed by the heuristic. The «LNS» corresponds to Large Neighborhood Search using the best insert algorithm on different neighborhood operators. The «BP» column corresponds to our branch-and-price scheme.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Model</th>
<th>Obj.</th>
<th>CPU(s)</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>#30#256</td>
<td>ILP</td>
<td>1.1379E7</td>
<td>1802</td>
<td>105%</td>
</tr>
<tr>
<td>#30#305</td>
<td>CP</td>
<td>2.1393E7</td>
<td>1803</td>
<td>9.9%</td>
</tr>
<tr>
<td>#30#256</td>
<td>H</td>
<td>2.1475E7</td>
<td>17</td>
<td>9.5%</td>
</tr>
<tr>
<td>#30#256</td>
<td>H+ILP</td>
<td>2.1475E7</td>
<td>1806</td>
<td>9.5%</td>
</tr>
<tr>
<td>#30#256</td>
<td>H+CP</td>
<td>2.1475E7</td>
<td>1803</td>
<td>9.5%</td>
</tr>
<tr>
<td>#30#256</td>
<td>H+LNS</td>
<td>2.1687E7</td>
<td>1643</td>
<td>8.5%</td>
</tr>
<tr>
<td>#30#305</td>
<td>ILP</td>
<td>2.364770.0</td>
<td>1401</td>
<td>52.5%</td>
</tr>
<tr>
<td>#30#305</td>
<td>CP</td>
<td>1.3094E7</td>
<td>1802</td>
<td>17%</td>
</tr>
<tr>
<td>#30#305</td>
<td>H</td>
<td>1.1269E7</td>
<td>21</td>
<td>35%</td>
</tr>
<tr>
<td>#30#305</td>
<td>H+ILP</td>
<td>1.1278E7</td>
<td>1807</td>
<td>35%</td>
</tr>
<tr>
<td>#30#305</td>
<td>H+CP</td>
<td>1.3102E7</td>
<td>1802</td>
<td>16.9%</td>
</tr>
<tr>
<td>#30#305</td>
<td>H+LNS</td>
<td>1.3314E7</td>
<td>1678</td>
<td>15.1%</td>
</tr>
</tbody>
</table>

Table 3: Results for instances with 30 technicians and 256 tasks and 30 technicians and 305 tasks with a resolution time of 30 minutes.

The ILP model does not scale for the medium and large size instances, we obtain a high gap on the medium size instances (100% for instance #30#256 and 52% for instance #30#305). The CP model scales, and in some cases, achieves better results than the heuristic and meta-heuristic resolution method (H + LNS). One can see that the behavior of the CP is very close to the behavior of heuristics. Indeed, the CP obtains a good quality solution in a short time thanks to solver constraint propagators by cutting non-solution domain values. It is interesting to note that the heuristic gives a good solution in just a few seconds.

Now, we display the results obtained with the branch-and-price scheme. Table 5 gives the results for the different instances. In this table, CP is used to solve the PSP and the adopted tree traversal strategy is the Best-first search strategy in order to converge quickly towards a good solution.
Table 5: Results for branch-and-price on medium-sized instances with a resolution time of 1 hour.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Model</th>
<th>Obj.</th>
<th>CPU(s)</th>
<th>#col</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>#144#1377</td>
<td>CP</td>
<td>1.0995E7</td>
<td>3610</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#144#1377</td>
<td>H</td>
<td>1.4247E7</td>
<td>58</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#144#1377</td>
<td>H+CP</td>
<td>1.4360E7</td>
<td>3591</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#144#1377</td>
<td>H+LNS</td>
<td>1.4738E7</td>
<td>2877</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#145#4568</td>
<td>H</td>
<td>1.0421E8</td>
<td>221</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#145#4568</td>
<td>H+LNS</td>
<td>1.0645E8</td>
<td>3472</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#30#2781</td>
<td>CP</td>
<td>1.7181E7</td>
<td>3650</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#30#2781</td>
<td>H</td>
<td>2.3314E7</td>
<td>20</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#30#2781</td>
<td>H+CP</td>
<td>2.3343E7</td>
<td>3584</td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td>#30#2781</td>
<td>H+LNS</td>
<td>2.3314E7</td>
<td>3636</td>
<td></td>
<td>Feasible</td>
</tr>
</tbody>
</table>

Table 5: Results for branch-and-price on medium-sized instances with a resolution time of 10 and 30 minutes using constraint programming for the PSP.

One can observe that solutions obtained with the branch-and-price are better than solutions obtained with the constraint programming model and even than solutions computed by heuristic followed by the local search. However, as the ILP model, the branch-and-price does not scale. Large instances are too substantial to be treated by our branch-and-price scheme in a reasonable time. These results nevertheless show the interest in using the hybridization between column generation and constraint programming.

CONCLUSION

In this paper, we propose a branch-and-price scheme dedicated to solving a WSRP problem in the presence of large-scale highly constrained real-world instances when the time limit is bounded. With this method, we were able to obtain good results, better than LNS or CP in some instances. However this method is not scalable, therefore results for large instances are missing.

Using a dynamic programming label algorithm to solve the sub-problem should speed the solving process up by adding multiples improving routes in the master problem at each step of the column generation algorithm while decreasing memory usage of each sub-problem. On the column generation phase, we solve a sub-problem for each technician, therefore solving all the sub-problem is time-consuming. One could try to group technicians that have some similar characteristics to reduce the time spent solving sub-problem.

REFERENCES

The column «nodes» refers to the number of nodes browsed in the branch-and-price tree. The column «col» represents the total number of columns in the master problem.