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ABSTRACT

We propose an efficient method to solve a workforce routing and
scheduling problem with working constraints, and a bounded
execution time limit. This problem combines two fundamen-
tal problems in operations research: routing and scheduling. In
such a context, we develop a column generation algorithm, as a
set partitioning problem with side constraints, within a branch-
and-price framework. The pricing sub-problem is an elementary
shortest path with resource constraints modeled with constraint
programming. In our branch-and-price framework, we first solve
our problem using branch-and-price and a branch-and-bound
strategy is proposed on the last restricted master problem, in
order to obtain a feasible solution when the time limit is almost
reached. However, we show that the developed method leads
to better solutions than using constraint programming or large
neighborhood search methods. We show the relevance of our
method with various-size real instances.

INTRODUCTION

We consider in this paper a hybrid problem in which it is neces-
sary to associate the vehicle optimization problem with an assign-
ment problem for employees to satisfy some specific technical
constraints. The study of this problem is motivated by taking into
account new business constraints for employees with specific
skills. These problems are more and more present in the everyday
life of maintenance companies. The main difficulty is to consider
the various parameters to respond to real situations.

Workforce Scheduling and Routing Problem (hereafter WSRP)
represents problems that mobilize workforce to perform tasks
for customers. Given a set of employees and a set of tasks to
be scheduled, WSRP consists in assigning tasks to employees in
order to fulfill some constraints while minimizing operational
costs.

WSRP combines the complexity of scheduling problems [2, 18]:

o Multi-skill Project Scheduling Problem, MPSP [6, 14, 21]
(Technician and Task Scheduling Problem).

e Sequencing and Scheduling Problem, SSP [19],

e Project Scheduling with Resources Constrained Schedul-
ing Problem,

and problems of vehicle routing [20, 25]:

o Vehicle Routing Problem with Time Windows [23],

o Vehicle Routing Problem with Time Windows and Depen-
dencies,

Figure 1 represents the successive generalizations of basic
scheduling and routing problems, such as the TSP, that lead to
the WSRP class of problems.
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Figure 1: Description of hierarchical complexity class for
WSRP .

This paper is organized as follows: the section RELATED
WORK gives an overview of the previous works found in the
literature on the WSRP, the section MODELLING formally de-
scribes our problem and a first compact model using integer
linear programming (henceforth ILP) is given. The column gen-
eration decomposition and the branch-and-price scheme imple-
mented is described in section THE BRANCH-AND-PRICE
FRAMEWORK. The results and instances are presented in sec-
tion TESTS. The last section concludes the paper and presents
some future work.

RELATED WORK

In the next section, we formally define the Workforce Scheduling
and Routing Problem class, based on the survey [3]. This sur-
vey first presents the common characteristics of technicians and
tasks, summarized in Table 1, then reviews known methods to
solve problems considered as WSRP. The main method used to
tackle these problems is a hybrid approach combining exact meth-
ods, integer linear programming or constraint programming, and
heuristics/meta-heuristics methods, large neighborhood search
or tabu search. The branch-and-price approach is also used since
this approach is known to be efficient on routing problems and
scheduling problems. This survey also gives a detailed compu-
tational study outlining the computational difficulties to solve
these problems. This study has been carried out on different data
sets with different integer linear programming formulations.
We describe some characteristics presented in Table 1. The
processing time of the tasks is not negligible compared to the
travel time and may depend on the employee. Tasks have required
skills to filter employees who can perform them. A task can be
processed by one or more employees, in which case all employees
must be present before the starting time of the task. Castillo et
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al. [4] and Rasmussen et al. [22] define temporal dependencies
among tasks. Thus, some tasks admit a priority over others.Tasks
can have priority meaning that a task should be performed before
others.

Some tasks can be outsourced. In addition, the schedule of the
employees can vary: it can be daily, weekly, etc. In general, WSRP
instances are too big to be exactly solved. They are usually divided
into smaller geographical areas to prevent an employee from
working far from home but also to reduce the size of instances
making it easier to solve.

Employee Task
Means of transport Processing time
Starting Position Position
Ending position | Temporal dependence
Working Hours Opening hours
Team Required Skills
Skills Priority
Outsourcing

Table 1: Characteristics of employees and tasks.

For example, we may consider a set of employees who have
to execute a set of tasks. Employees can travel by car, bicycle or
public transport to perform the tasks. Employees are allowed to
start and end their day from home. In the literature, there are nu-
merous works of surveys aimed at characterizing and classifying
the various problems belonging to the WSRP class. Based on an
extension of the classic notation scheme « | § | y proposed by
[13], Desrochers [7] develop a classification of WSRP.

An extensive overview of time constraint routing and sched-
uling problems during the last decades is given in Desrosiers et
al. [8]. They detail ILP models and algorithms (column genera-
tion and dynamic programming) for each variation of problems
(TSPTW, SDVRPTW, MDVRPTW, etc), focus their work on op-
timization methods for practical size instances. Although, they
also present heuristic methods to solve complex problems or
large-scale instances when optimal solutions are too difficult to
obtain. The survey [24] outlines the research on different routing
problems with time windows (M-TSPTW, SPPTW, etc) and give
hints for future works on these problems.

To solve problems belonging to WSRP, we observe in literature
many methods such as exact methods (constraint programming
or integer linear programming), meta-heuristics (simulated an-
nealing, tabu search, genetics, ...) or hybrid methods. Regarding
exact methods, one can find ILP models and column generation
using Dantzig-Wolfe decomposition. The master problem cor-
responds to a set partitioning problem [1] and the sub-problem
to an Elementary Shortest Path Problem with Time Windows
[12, 15] which is known to be NP-hard [10].

MODELLING

The goal of the project is to assign maintenance tasks to tech-
nicians in order to build daily schedules while optimizing some
criterion such as quality of service, travel time, productivity and
efficiency. The time limit is bounded to at most one hour for the
biggest instances. The number of tasks is too large to schedule
all of them in one day, thus tasks can be postponed. Thus the set
of tasks is updated every day according to previous schedules.
The problem can be stated as follows: let us define # the set
of technicians and 7 the set of tasks. For each technician, we
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add two artificial tasks: one for the starting point (0”) and the
other for the ending point (n”). Therefore, we define the set
TP =T U {0P,nP} for each technician p.

Let p; be the processing time of task j, and let d; be the due
date of task j, wj is the weight (or revenue) of task j.

Let g be the number of skills and ! the number of level of skills.

p
90

pand p/ = (f, é, ﬁ{]) the skill vector of task j. For each
i €{0,...,q}, af and p/ indicate the level (value in {0,...,1})
of the ith skill in the vector.

Each task possesses a location and each technician have a start-
ing location and ending location. Let M be the distance matrix
where m; j represents the distance between locations i and j.

Let K (resp. KP) be the set of unavailable (resp. available)
periods of technician p. The previous notation is extended to task

Consider o = (0{{J L0, .., as ) be the skill vector of technician

J with % and ;. (KJP denotes the set of time windows where
technician p and task j are both available, 7(5) =KiNnKP . We

define [ag, br] € ‘7(;0 the k" time window of the set. A task
cannot overlap unavailable period (no task should start or end
during an unavailable period).

The beginning (resp. ending) of the workday of a technician is
given by the starting time (resp. end time) of his working hours.
Moreover, the technician cannot travel before his starting hours
or after his ending hours. Lastly, if a technician arrives early to a
customer waiting is allowed.

Our problem can be formulated as integer linear program
given below. The routing variables xf] . take value 1 if the tech-

nician p € P travels from task i € 77 to task j € 72 in the time
window k € ‘K{J , 0 otherwise; the scheduling variables tf corre-
spond to the time the technician p € P starts the task i € 77; the
covering variables y; take value 1 if the task i € 7 is unsched-
uled/uncovered and 0 if the task i is performed by a technician;
the tardiness variables D; correspond to the lateness of the task
i € 7. First, we introduce an ILP representing the backbone
of our problem, then we will add the specific constraints (same
technician constraints and appointment constraints).

(71, 79, 73, 714) are the weights of the different criteria in the
objective function (Equation (1)). The first criterion corresponds
to the number of unscheduled tasks, the second minimizes the
technician’s travel distances, the third computes the sum of the
tasks tardiness and finally the fourth maximizes the skill gap
between technicians and tasks. ‘W is the total of the weight
of all tasks. The first criterion maximizes the weighted sum of
tasks scheduled but we choose to minimize the weighted sum of
unscheduled tasks, the weight of all tasks minus the weight of
all unscheduled tasks gives the weight of all scheduled tasks.

We denote by Prec, Same and App, the set of pairs (i, j) € TXT
for which a precedence constraint, a same technician constraint, and
appointment constraint exists, respectively. Precedence constraints
are defined below. Same technician constraint corresponds to a
pair (i, j) € Same, if technician p executes task i (resp j) thus he
is the only one who can perform task j (resp i).

Appointment constraints enforce a task to be performed by a
technician at a fixed time. These constraints appear when the cus-
tomers require a specific technician or a specific time to perform
a job. There are three kinds of appointment constraints:

e When task j is assigned to technician p (even if he does
not have the required skills to perform it): when p should
perform j?



e When task j is assigned to time ¢: which technician should
perform it?
e When task j is assigned to technician p and to time ¢: is j
scheduled for p at time ¢?
Model M1: Compact formulation

Maximize m(‘W — Z WiYi) — T2 Z Z Z ijkmi,j

teT peEP i, jeT?P ke'Kf

9
—I13 Z w;-Dj + 74 Z Z Z ngk(ap(s) - ﬂl(s))

jeT pEP i, jeT?P kE'KlP s=1

1)

s.t. ZZ ngk+yi:1\7’ie7' @)
PEPJETP kek?

2 2 o =1vper ®)
JET? ke‘Kg’P
Z fonpkzl\fpep o
JET? ke'Kf
Z fohk_z ZxﬁijOVPEP’VhET ©)

€T kex? JETP kex?

Z Z b @ (D)= P(D) 2 0Vj € T, Vp € P, Vi€ 1]

heT? kg‘]{‘}?

(6)
Bjyi + Z tf +pi < Z tjp +Bjy; V(i,j) € Prec 7)
peP peP
¥4 .
DD sl < Y N Al b VieT Vpep
JET kex? JE€T kek?
(®)
p ,
DI AUEL RO WD UL MDD NP I
JET kex? JET kex? JE€T kex?
VieT,VpeP
)
p . . p —
t! +xfjk(m,,J +pi) < +(1 xfjk).Bk W)
VpeP, Vi,je TP, Vke‘Kf.7
Djzztf+pj—dj VieT (11)
peP
xfjk €{0,1}, VYpe®P, Vi,je TP, Vke 7(f (12)
t! €N, Vpep, VieT? (13)
y; €{0.1}, VieT (14)
DjeN, VjeT (15)

The Model M1 is inspired by the MIP model given by a home
nursing problem [22] and VRPTW [9]. Our problem differs on a
few constraints: the skills/qualifications of employees, the work-
ing hours of employees and precedence constraints (they have
temporal dependencies constraints). In addition, one additional
dimension is needed on the routing decision variables (xfj k) be-
cause it is necessary to know on which time window the task is
scheduled. The relevance of this compact formulation is discussed
in Section TESTS and presented in Table 3.

Constraints (2) ensure that each task is scheduled at most once.
If a task i is not scheduled (ie. Y, Y X £ = 0) then to

pep jeTr ke U

satisfy the constraint, task i must be covered by y; = 1 and
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the task is postponed to a another day. The flow constraints for
each technician depicted in (3), (4) and (5) control that technicians
must start (resp. finish) their shift at their start (resp. end) location
and that the flow conservation is respected (i.e. if a technician
arrives at a customer he musts leave it). The skill constraints
(6) restrict the set of tasks allowed to be performed by a given
technician. A task can only be performed by a technician who
has the required skills. In the current implementation of these
constraints, we force variables xf} L 00 when af (s) — fi(s) >
0,s € [0, .., q]. Constraints (7) give the precedence constraints
among the tasks: let (i, j) € Prec, task j can be performed only if
task i is executed before. The temporal constraints (8) and (9) and
(10) verify that the availability periods of tasks and technicians
are respected in the schedule (no overlap with unavailability
or travel periods). If a task j is not executed by technician p,
constraint (8) forces tjp to 0.

Constraints (16)-(19) correspond to problem-specific constraints.

Constraints (16) model the same technician constraints: they
ensure that if a technician performs one of the two tasks, then
the second is either performed by the same technician or the task
is not scheduled. Constraints (17), (18) and (19) represent pre-
assignment constraints describe above. Constraints (17) ensure
that the right technician performs the task or the task is not
scheduled. Constraints (18) ensure that the task is scheduled at
the right time or not at all. Constraints (19) ensure that the task is
assigned to the right technician at the right time or that otherwise
task is not performed.

Z fohk+yi= Z fohk+yf

heTP ke7(j’.’ heT? ke?(j’.’ (16)
V(i,j) € Same, Vp € P

D D, -y =0 Vipedp  (17)

JET kex?

Z tf -(1-yj).ti=0 V(,t;) € App (18)

peP

tF —(1-yi)ti =0 V(i,p.t;) € App (19)

THE BRANCH-AND-PRICE FRAMEWORK

In this section, we will introduce a branch-and-price framework.
First, we use a Dantzig-Wolfe decomposition on the compact
formulation in order to model it as a set partitioning problem
with side constraints. In a branch-and-price framework the prob-
lem is split into a master problem (hereafter MP) and a pricing
sub-problem (henceforth PSP). The PSP generates new feasible
schedules/routes for each technician. Given the set of all fea-
sible technician schedules, the MP assigns a schedule to each
technician such that a maximum of tasks is processed (c.f. the
first criterion of the objective function). Since the set of feasible
technician schedules can be very large, we restrict the MP to a
subset of schedules to obtain a reasonable size problem (called
Restricted Master Problem denoted by RMP). A feasible route for
a technician begins at his starting location and ends at his ending
location, and respects all constraints mentioned in Model M1.

Master Problem
Consider S? the set of all feasible schedules for technician p
(this set will be generated successively by the PSP). Let af s=1

if task i is in Schedule s of technician p and 0 otherwise; let tf’s
be the starting time of Task i in schedule s of technician p. The



constant cf represents the cost of the schedule s for technician p.
In the compact formulation (cf. Model M1), the aim is to minimize
delays, distances and maximize the skill gap between tasks and
technicians. This cost is a variation of the objective function of
the compact formulation (Equation (1)). The first criterion of
the compact formulation objective function is separated from
the others in the RMP objective function to enhance the linear
relaxation of the RMP.

Sn 5 by YD

i,JGTkeWJf,’ JeT

q
DI -MCLOEYIO)
LIET kex? s=1
We introduce binary variables for the RMP: the scheduling
variables A2 take value 1 if schedule s is chosen for technician p
and 0 otherwise; the covering variables y; take value 1 if task i is
uncovered/unscheduled and 0 otherwise.

Model M2: Restricted Master Problem

Max Z Z Afcf + Z(l —Yi)wi (20)
pPEP seSP i€l
st. > Y d M ryi=1vieT (21)
PEP seSP
ZAfsleeP (22)
seSP
vi + Z afs/lf = Z afslf +vj
seSP seSP (23)
V(i,j) € Same, Vp € P
Bj)’i"' Z Z tfs/l‘ls)"'PiS Z Z tfs)g"'Bin
PEP seSP PEP seSP (24)
V(i,j) € Prec
2 el0,1] VpeP, Vs e SP (25)
viel0,1] Vie T (26)

Constraints (21) express the fact that each task must be exe-
cuted or covered. Constraints (22) ensure that only one schedule
is associated with a technician. The same technician constraints
are modeled by constraints (23). The same technician constraints
are only in the RMP because in the PSP these constraints are
always checked (a PSP is solved for each technician). Constraints
(24) model the precedence constraints. As precedence constraints
among tasks are independent of the set of technicians, these con-
straints must be present in the RMP and the PSP. Constraints
(25) (resp. (26)) indicate the domain of /1‘2 variables (resp. y;).

For any primal solution of the RMP, we obtain a dual solution
[0.2.1w], where u = (up)ic:2 = (zp)perpi 1 = (. )iy eprec
w = ((Wip, Wjp))(i, j)eSame, pep are the dual variables of con-
straints (21), (22), (24), (23) respectively. These dual variables are
used in the PSP (cf. Equation (36)) to generate new improving
routes for each technician.

Pricing subproblem

In our case, the sub-problem generates feasible schedules/routes
(that respect the constraints) for each technician, thus these
routes are added to the RMP. The sub-problem aims to find feasi-
ble routes for a technician which improve the solution obtained
in the RMP. We cannot consider technicians as a fleet of vehicles
(they have almost no similar characteristics), thus we must solve
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a sub-problem for each technician. The PSP is solved using con-
straint programming with the ILOG IBM Scheduler constraints
and variables (for more information on those constraints and vari-
ables please refer to [16, 17]). The Pricing Sub-Problem (hereafter
PSP) is the elementary shortest path problem with time windows
(ESPPTW). It focuses on finding an improved schedule for a par-
ticular technician. Recall that ESPPTW is NP-hard in a strong
sense [10] (there is no hope to develop dynamic programming).

Since our problem is a maximization problem if the PSP objec-
tive function Zpgp < 0 (cf. Equation (35)) then the corresponding
route is not improving the current solution. Adding it in the so-
lution of the RMP would decrease the value of the objective
function. So we add in the RMP all tours with a reduced cost
(Zpsp) strictly positive to potentially increase the value of the ob-
jective function. Since the PSP is hard to solve, the optimization
is terminated as soon as a tour with a strictly positive reduced
cost is found. Thanks to the constraints propagators, constraint
programming is effective to find a good feasible solution in a
short time.

For any technician p, we construct the following constraint
programming model. We introduce the interval variables X lI ,Vie
TP to model tasks scheduling time. The domain of these variables
is either { L} (task is not processed) or the scheduling horizon
(the scheduling time of the task). Let X g refers to the sequence
variable of technician p, the domain of this variable is a permu-
tation of tasks interval variables: D(Xg) = perm({X ;I;—i | Vi e

1 1
THU (XL XD, ).
Model M3: Constraint programming

NoOverLap(X3, M) (27)
first(Xs,XII)O) (28)
last(X, Xp ) (29)
pOf(X]) < pOf(X]) .
{ EndBeforeStart(XiI,X]I) V(i j) € Prec (30)
ForbidExtent(XiI,‘K;;)
ForbidStart(X],, KP) Vie T, (31)
ForbidEnd(X;n,‘Kp)
X7 = Z max(0,d; — EndO (X)) (32)
ieT
XD = Z ml"j (33)
(i.)eX;
Xso = ), pOfX)x > (aP(s) = B'(s)) (34)
ieT s€ll..q]
Max Zpsp = Xsg — X1 — Xp — f(u,z,1, w) (35)

Equation (27) ensures that the tasks performed by p are not over-
lapping and respects the travel time matrix M. Equations (28) and
(29) enforce the route to begin (resp. end) at the starting (resp. end-
ing) location. The constraint pO f (meaning presenceO f, is used
to know if a task is executed) and the constraint EndBe foreStart
are both used to assure that precedence constraints (30) are sat-
isfied. Equations (31) prevent tasks to be performed outside the
technician and task time windows. The constraint ForbidExtend
ensures that tasks are not overlapping an unavailability period
(given by 7(; orK?). The constraint ForbidStart (resp. ForbidEnd)
ensures that tasks begin before (resp. end after) an unavailability
period. We restrict the domain of the variables to satisfy appoint-
ment constraints. In the objective function (cf. Equation (35)), the



variable Xgg computes the skill gap between technicians and
tasks (cf. Equation (34)), the variable X7 computes the tasks tardi-
ness (cf. Equation (32)) and the variable Xp computes the travel
time/distance (cf. Equation (33)). The function f(u, z,1, w) is ded-
icated to the cost associated with the dual variables [u, z,1, w]
defined above.

fzlw)= > pOf(X)xui+zp+ Y. UiBi—Lif))

i (ij)ePree
_ Z (ij XpOf(X]I) ~ Wip XPOf(XlI))

(i,j)€Same
(36)

Branching strategies

We based our branching strategy on the ones presented in [11].
This paper presents two rules for branching. The first one, «stan-
dard strategy» consists in branching on decision variables /112 ,
this branching is not effective because it leads to an unbalanced
branching tree. The second one, is the «natural strategy» consists
in branching on flow variables x;; (cf. Model M1) and decision
variables y;, we opt for this strategy because it leads to a more
balanced tree and an easier PSP.

Branch-and-price is usually used to obtain optimal solution but
with a lack of resources and because of the large-scale instances
this method is neglected. Because of the time limit and the large-
scale highly constrained instances, finding an optimal solution
can be difficult. Our algorithm is based on the one used in [5].
The authors propose a column generation to obtain an optimal
non-integer solution. Therefore, a branch-and-bound algorithm
is applied to obtain an integer solution.

We enhance this method adding the branch-and-price frame-
work to generate more heterogeneous routes. We solve the prob-
lem with the following branch-and-price scheme (cf. Figure 2).
We first solve the problem using a standard branch-and-price
framework, at each node of the branching tree RMP is solved
using column generation. If an integer solution is found, the
bound (the best feasible solution found) is updated, else we add
a branching node. At the end of the time limit, if we reach it,
we use branch-and-bound method on the last RMP to obtain an
integer solution. If this solution is better than the best one found
in the branch-and-price algorithm we keep it.

solve RMP [¢
reduced costs
solve PSP

no new columns

yes ~ no
’ stop H integer solution? }—)

time limit reached

add branching
node

’ branch-a;d-bound ‘

Figure 2: Illustration of our branch-and-price framework.

TESTS

We have access to many instances of two Decisionbrain cus-
tomers. Table 2 gives statistics for each instance. The name
#30#256 (first column) means that the instance has 30 technicians
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and 256 tasks, the column |Prec| gives the number of precedence
constraints, |Same| shows the number of same technician con-
straints, | App| represents the number of precedence constraints,
q denotes the number of skills (length of the skill vector), loc
indicate the number of task and technician locations, ¥ (resp.
K<) shows the mean of technician time windows (resp. task time
windows).

instance |Prec| | |Same| | |App|l | q loc | K7 K
#30#256 0 0 0 154 162 | 0.96 1
#30#305 30 5 0 137 | 162 | 0.9 1
#30#2781 341 101 37 137 | 514 | 0.9 0.92
#144#1377 | 0 0 0 154 163 | 0.875 1
#145#4568 | 0 0 0 183 | 544 | 0.87 1

Table 2: The set of instances.

We are going to compare the branch-and-price method de-
scribed here with the proposed ILP model solved using the soft-
ware CPLEX and four other methods developed by Decision-
Brain. The «ILP» corresponds to the integer linear program im-
plemented and tested with Cplex. The «CP» corresponds to con-
straint programming using ILOG IBM Scheduler constraints and
variables and tested with CPOptimizer. The «H» corresponds to
a heuristic, kept confidential. The «H+X» method corresponds
to start the X optimization with a first solution computed by the
heuristic. The «LNS» corresponds to Large Neighborhood Search
using the best insert algorithm on different neighborhood oper-
ators. The «BP» column corresponds to our branch-and-price
scheme.

Instance | Model | Obj. CPU(s) | Gap
#30#256 | ILP 1.1379E7 1802 105%
#30#256 | CP 2.1393E7 1803 9.9%
#30#256 | H 2.1475E7 17 9.5%
#30#256 | H+ILP 2.1475E7 1806 9.5%
#30#256 | H+CP 2.1475E7 1803 9.5%
#30#256 | H+LNS | 2.1687E7 1643 8.5%
#30#305 | ILP 2364770.0 | 1801 525%
#30#305 | CP 1.3094E7 1802 17%
#30#305 | H 1.1269E7 21 35%
#30#305 | H+ILP 1.1278E7 1807 35%
#30#4305 | H+CP 1.3102E7 1802 16.9%
#30#305 | H+LNS | 1.3314E7 1678 15.1%

Table 3: Results for instances with 30 technicians and 256
tasks and 30 technicians and 305 tasks with a resolution
time of 30 minutes.

The ILP model does not scale for the medium and large size
instances, we obtain a high gap on the medium size instances
(100% for instance#30#256 and 525% for instance#30#305). The CP
model scales, and in some cases, achieves better results than the
heuristic and meta-heuristic resolution method (H + LNS). One
can see that the behavior of the CP is very close to the behavior
of heuristics. Indeed, the CP obtains a good quality solution in
a short time thanks to solver constraint propagators by cutting
non-solution domain values. It is interesting to note that the
B e S e s A W S S ranch-and-
price scheme. Table 5 gives the results for the different instances.
In this table, CP is used to solve the PSP and the adopted tree
traversal strategy is the Best-first search strategy in order to
converge quickly towards a good solution.



Instance Model | Obj. CPU(s) | Status

#144#1377 | CP 1.0995E7 | 3610 Feasible
#144#1377 | H 1.4247E7 | 58 Feasible
#144#1377 | H+CP 1.4360E7 | 3591 Feasible
#144#1377 | H+LNS | 1.4738E7 | 2877 Feasible
#145#4568 | H 1.0421E8 | 221 Feasible
#145#4568 | H+LNS | 1.0645E8 | 3472 Feasible
#30#2781 CP 1.7181E7 | 3650 Feasible
#30#2781 H 2.3314E7 | 20 Feasible
#30#2781 H+CP 2.3343E7 | 3584 Feasible
#30#2781 H+LNS | 2.3314E7 | 3636 Feasible

Table 4: Results for large instances with a resolution time
of 1 hour.

The column «nodes» refers to the number of nodes browsed
in the branch-and-price tree. The column «#col» represents the
total number of columns in the master problem.

Instance | Model | Obj. CPU(s) | nodes | #col | gap
#30#256 | BP 2.1690E7 | 607.0 7 436 8.4%
#30#256 | H+BP | 2.1599E7 | 600.0 9 421 8.9%
#30#305 | BP 1.3322E7 | 612.0 13 484 15%
#30#305 | H+BP 1.3232E7 | 601.0 14 424 15,8%
#30#256 | BP 2.0802E7 | 1812.0 15 565 13%
#30#256 | H+BP | 2.1712E7 | 1808.0 17 544 8.3%
#30#305 | BP 1.3263E7 | 1809.0 13 606 15.5%
#30#305 | H+BP 1.3251E7 | 1816.0 23 558 15.6%

Table 5: Results for branch-and-price on medium-sized in-
stances with a resolution time limit of 10 and 30 minutes
using constraint programming for the PSP.

One can observe that solutions obtained with the branch-and-
price are better than solutions obtained with the constraint pro-
gramming model and even than solutions computed by heuristic
followed by the local search. However, as the ILP model, the
branch-and-price does not scale. Large instances are too substan-
tial to be treated by our branch-and-price scheme in a reasonable
time. These results nevertheless show the interest in using the
hybridization between column generation and constraint pro-
gramming.

CONCLUSION

In this paper, we propose a branch-and-price scheme dedicated
to solving a WSRP problem in the presence of large-scale highly
constrained real-world instances when the time limit is bounded.
With this method, we were able to obtain good results, better
than LNS or CP in some instances. However this method is not
scalable, therefore results for large instances are missing.

Using a dynamic programming label algorithm to solve the
sub-problem should speed the solving process up by adding mul-
tiples improving routes in the master problem at each step of the
column generation algorithm while decreasing memory usage of
each sub-problem. On the column generation phase, we solve a
sub-problem for each technician, therefore solving all the sub-
problem is time-consuming. One could try to group technicians
that have some similar characteristics to reduce the time spent
solving sub-problem.
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