
HAL Id: lirmm-02194269
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02194269

Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Network Optimization INOC 2019
Benoit Darties, Michael Poss

To cite this version:
Benoit Darties, Michael Poss (Dir.). Network Optimization INOC 2019: 9th International Network
Optimization Conference Avignon, France, June 12–14, 2019 Proceedings. OpenProceedings, 2019,
978-3-89318-079-0. �10.5441/002/inoc.2019.01�. �lirmm-02194269�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02194269
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Network Optimization
INOC 2019

9th International Network Optimization Conference
Avignon, France, June 12–14, 2019

Proceedings

Editors

Benoit Darties
Michael Poss

http://OpenProceedings.org/

Network Optimization (INOC 2019) Series ISSN: 2510-7437
Proceedings of the 9th International Network Optimization Conference
Avignon, France, June 12–14, 2019

Editors

Benoit Darties, LIRMM, University of Montpellier, CNRS, Montpellier, France
Michael Poss, LIRMM, University of Montpellier, CNRS, Montpellier, France

OpenProceedings.org
University of Konstanz
University Library
78457 Konstanz, Germany

COPYRIGHT NOTICE: Copyright © 2019 by the authors of the individual papers.

Distribution of all material contained in this volume is permitted under the terms of the Creative Commons license CC-by-
nc-nd 4.0

OpenProceedings ISBN: 978-3-89318-079-0 DOI of this front matter: 10.5441/002/inoc.2019.01

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/inoc.2019.01

Foreword

This volume corresponds to the Special Issue dedicated to the International Network Optimization Conference
(INOC 2019), held in Avignon, France, from June 12 to June 14, 2019. This volume contains 20 papers (6 pages
long) that were subject to a review process, each of them corresponding to a presentation at the conference.
INOC conferences are organized biannually by the European Network Optimization Group (ENOG), a work-
ing group of EURO. The aim of this conference is to provide researchers from different areas of Operations
Research, with the opportunity to present and discuss their results and research on the field of Network Op-
timization, in an inspiring and bridge building environment where fruitful ideas may flow freely. INOC 2019
is the 9th edition of this event and the second to take place in France. Previous editions were held in Lisbon
(2017), Warsaw (2015), Tenerife (2013), Hamburg (2011), Pisa (2009), Spa (2007), Lisbon (2005) and Paris (2003).
INOC 2019 was organized in Avignon, at the University of Avignon, in collaboration with the Laboratoire
d’Informatique d’Avignon and the Laboratoire d’Informatique, de Robotique et de Microélectronique de Mont-
pellier.
In INOC 2019 there were two types of submissions: full papers (4-6 pages long) and extended abstracts (1-2
pages long). We received a total of 28 full papers and 39 extended abstracts. After a peer-review process 21 full
papers and 38 extended abstracts were accepted. The papers included in this volume correspond to 20 of the
accepted full papers. In total, we had 58 contributed presentations. In addition, there were 3 invited plenary
sessions

• “Scalable On-Demand Mobility Services” by Pascal Van Hentenryck (Georgia Tech, USA)

• “Hub Location Problems: Applications, Models and Solution Methods” by Hande Yaman (KU Leuven,
Belgium)

• “Analyzing Network Robustness via Interdiction Problems” by Rico Zenklusen (ETH Zurich, Switzer-
land)

and two tutorials

• “Modern Branch-and-Cut-and-Price for Vehicle Routing Problems” by Ruslan Sadykov (Inria Bordeaux
Sud-Ouest, France)

• “Linearization techniques for MINLP: recent developments, challenges and limits” by Sandra Ulrich
Ngueveu (Toulouse INP, France)

Benoit Darties, Michael Poss

i

Program Committee Members

Edoardo Amaldi, Politecnico di Milano (Italy)
Zacharie Alès, UMA / CEDRIC ENSTA ParisTech (France)
Walid Ben-Ameur, Telecom SudParis (France)
Andreas Bley, Universität Kassel (Germany)
Christina Büsing, RWTH Aachen University (Germany)
Fabio D’Andreagiovanni, ZIB (Germany)
Bernard Fortz, Université Libre de Bruxelles (Belgium)
Bernard Gendron, University of Montreal (Canada)
Eric Gourdin, Orange Labs (France)
Luís Gouveia, Universidade de Lisboa (Portugal)
Arie Koster, RWTH Aachen University (Germany)
Markus Leitner, Vrije Universiteit Amsterdam (Netherlands)
Ivana Ljubic, ESSEC (France)
Abilio Lucena, Universidade Federal do Rio de Janeiro (Brazil)
Dritan Nace, Université de Technologie de Compiegne (France)
Adam Ouorou, Orange Labs (France)
Pierre Pesneau, Université de Bordeaux (France)
Michal Pioro, Warsaw University of Technology (Poland) and Lund University (Sweden)
Michael Poss, LIRMM, Université de Montpellier (France), Chair
S. Raghavan, University of Maryland (USA)
Cristina Requejo, Univesidade de Aveiro (Portugal)
Juan José Salazar-Gonzalez, Universidad de La Laguna (Spain)
Maria Grazia Scutellà, Università di Pisa (Italy)
Douglas Shier, Clemson University (USA)
Amaro de Sousa, Universidade de Aveiro (Portugal)
Eduardo Uchoa, Universidade Federal Fluminense (Brazil)
Stefan Voss, Universität Hamburg (Germany)
Hande Yaman, Bilkent University (Turkey)

ii

Table of Contents

Foreword . i

Program Committee Members . ii

Table of Contents . iii

Research Papers

Interdependent Infrastructure Network Restoration Optimization from Community and Spatial Resilience Per-
spectives
Deniz Berfin Karakoc, Kash Barker, Yasser Almoghathawi . 1

On the Complexity of RSSA of Anycast Demands in Spectrally-Spatially Flexible Optical Networks
Róża Goścień, Piotr Lechowicz . 7

Extended linear formulation of the pump scheduling problem in water distribution networks
Gratien Bonvin, Sophie Demassey . 13

Risk averse management on strategic multistage operational two-stage stochastic 0-1 optimization for the Rapid
Transit Network Design (RTND) problem
Luis Cadarso, Laureano F. Escudero, Ángel Marín . 19

Formulation and Branch-and-cut algorithm for the Minimum Cardinality Balanced and Connected Clustering
Problem
Alexandre Salles da Cunha . 25

A Branch-and-Bound Algorithm for the Maximum Weight Perfect Matching Problem with Conflicting Edge Pairs
Temel Öncan, M. Hakan Akyüz, İ. Kuban Altınel . 31

Minimum-Cost Virtual Network Function Resilience
Yannick Carlinet, Nancy Perrot, Anderson Alves-Tzitas . 37

Valid constraints for time-indexed formulations of job scheduling problems with distinct time windows and sequence-
dependent setup times
Bruno Ferreira Rosa, Marcone Jamilson Freitas Souza, Sérgio Ricardo de Souza, Zacharie Ales, Philippe Yves Paul
Michelon . 43

Smart Grid Topology Designs
Paula Carroll, Cristina Requejo . 49

On Optimization of Semi-stable Routing in Multicommodity Flow Networks
Artur Tomaszewski, Michał Pióro, Davide Sanvito, Ilario Filippini, Antonio Capone . 54

The Workforce Routing and Scheduling Problem: solving real-world Instances
Gabriel Volte, Chloé Desdouits, Rodolphe Giroudeau . 60

Distributionally robust airline fleet assignment problem
Marco Silva, Michael Poss . 66

Routing and Slot Allocation in 5G Hard Slicing
Nicolas Huin, Jérémie Leguay, Sébastien Martin, Paolo Medagliani, Shengmin Cai . 72

MILP approaches to practical real-time train scheduling: the Iron Ore Line case
Lukas Bach, Carlo Mannino, Giorgio Sartor . 78

Minimum Concurrency for Assembling Computer Music
Carlos E. Marciano, Abilio Lucena, Felipe M. G. França, Luidi G. Simonetti . 83

Routing and Resource Assignment Problems in Future 5G Radio Access Networks
Amal Benhamiche, Wesley da Silva Coelho, Nancy Perrot . 89

iii

Pooling Problems with Single-Flow Constraints
Dag Haugland . 95

[paper retracted by authors]
Guillermo Rela, Franco Robledo, Pablo Romero . 101

A Nested Decomposition Model for Reliable NFV 5G Network Slicing
HuyQuang Duong, Brigitte Jaumard . 107

A heuristic algorithm for a vehicle routing problem with pickup & delivery and synchronization constraints
Seddik Hadjadj, Hamamache Kheddouci . 113

iv

Interdependent Infrastructure Network Restoration
Optimization from Community and Spatial Resilience

Perspectives
Deniz Berfin Karakoc

School of Industrial and Systems
Engineering

University of Oklahoma
Norman, Oklahoma, USA

denizberfinkarakoc@ou.edu

Kash Barker
School of Industrial and Systems

Engineering
University of Oklahoma
Norman, Oklahoma, USA

kashbarker@ou.edu

Yasser Almoghathawi
Systems Engineering Department
King Fahd University of Petroleum

and Minerals
Dahran, Saudi Arabia

moghathawi@kfupm.edu.sa

ABSTRACT
Modern societies rely on the critical infrastructure networks to
ensure their operability and existence. Most of the recent re-
search and government planning revolves around maintaining
the proper and continuous functioning of these critical infrastruc-
ture networks. However, these critical infrastructure networks
do not exist on their own, but they perform interdependently.
Thus, the study of forming resilient interdependent infrastruc-
tures against natural or man-made large-scale disruptions and
planning the restoration of these critical networks becomes a
more complex challenge. As such, the frequency of large-scale
disruptions appears to be increasing and devastating for the
surrounding communities in the long-term, the social and ge-
ographic aspects of these disruptions should be emphasized in
the restoration planning studies so that resilience and well-being
of the served community is also optimized. In this work, we
integrate (i) a resilience-driven multi-objective mixed-integer
programming formulation that schedules the restoration of dis-
rupted components in each network with (ii) a geographically
distributed social vulnerability index and population density ra-
tio and (iii) a spatial risk measure to assign the impact of the
surrounding environment to the system. This model is illustrated
with an example study in Shelby County, TN in the United States.

1 INTRODUCTION
Critical infrastructure networks, such as power, natural gas, and
water distribution, form the backbone of modern societies to
provide their daily needs and ensure their safety, high socio-
economic standards, and quality of life. However, these critical
infrastructures have experienced various disruptions in the past
and continue to be subject to both external and internal stressors
such as aging-induced system failures, natural disasters, and
malevolent attacks. Hence, given the inevitability of these large-
scale disruptions, an ability to adapt and quickly recover from
these disruptions is extremely crucial for both the interdependent
infrastructure networks and their surrounding communities.

Moreover, these networks have become more dependent on
each other where they contain a bi-directional relationship to
operate properly and more efficiently [30]. This type of a com-
plex coordination that is caused by physical, spatial, cyber, or
logical interdependencies can increase performance efficiency
and reduce the resource consumption of these networks since
the output of one network could be the input of another. How-
ever, due to the existence of such complex coordinations, there
is a possibility of chain reactions of dysfunctionality between
the interdependent components due to disruption in a single

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

network. Hence, this type of bi-directional relationships could
enhance the overall network vulnerability since complete sys-
tem failure could be caused by a disruption in a single network.
Therefore, the study of recovery planning to ensure a desired
level of resilience in these highly vulnerable networks become a
crucial challenge [7, 22, 36]. Hence, the importance of addressing
risks associated with the interdependencies among the critical
infrastructures through building secure and resilient networks
is highlighted in many governmental planning documents [28]
and examined in recent literature work [1, 4, 18].

Further, the socio-economic status and the demographics of
the served community, as well as the spatial risks related to the
surrounding environment and the location of these networks,
could increase the impact of disruptions [24] over the system
performance, thus system resilience. Therefore, resilience and
recovery planning studies for the interdependent infrastructure
networks should take social and spatial vulnerabilities into ac-
count to reveal more reliable and comprehensive guidance to
decision makers.

In this work, we study the problem of interdependent infras-
tructure network restoration after the occurrence of a disruptive
event with a focus on the vulnerability of society that interacts
with the network and additional hazard risk of the surrounding
environment. As for the results, we observe that when additional
community and spatial resilience measures are included in the
problem, both the optimal restoration schedule of disrupted com-
ponents and the performance of networks through the restoration
process show changes. Therefore, the overall system resilience
through time differs when community and spatial vulnerability
measures are taken into account.

2 BACKGROUND
2.1 Network Resilience
The term resilience is defined as the ability to withstand, adapt to,
and recover from a disruption [27]. Even though the definition
is commonly agreed, many different approaches are introduced
in the literature to formulate and quantify the resilience of a
network. Some of the proposed measurement methods include
(i) describing the resilience as the normalized area underneath
the performance graph [11], (ii) representing the resilience as
a function of topological measures [32], and (iii) quantifying
resilience as the probability of recovery [21].

As shown in Figure 1, two primary dimensions of resilience,
vulnerability and recoverability, help characterize network re-
silience [5]. The vulnerability of a network states the magnitude
of damage in the performance of a network due to a stressor [19],
where the recoverability of a network refers to the speed at which
the network reaches to its desired performance level [31]. Hence,
resilience is measured in this work as the of network recovery
over network loss through complete recovery period [17].

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 1 DOI: 10.5441/002/inoc.2019.02

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.02

Figure 1: The Network Performance ϕ(t) across the Before,
During and After States of a Disruptive Event [17].

2.2 Recovery of Infrastructure Networks
The study of optimally scheduling the restoration of infrastruc-
ture networks is emphasized in the last decade especially due to
the high frequency of both natural disasters and the malevolent
attacks. In the literature, a mixed-integer programming is devel-
oped with an objective of minimizing the total cost associated
with the flow and unmet demand in the network system [20].
Another optimization model is for the restoration of disrupted
components in the interdependent networks is formulated in
such a way that each component is assigned with a recovery
due date that should be satisfied [15]. A different mixed-integer
programming model is proposed that (i) determines the set of
disrupted components that should be restored and (ii) assigns the
related work crews through the restoration that would ensure
the minimum total cost of flow, unmet demand and restoration
activities [33]. More recently, an interdependent infrastructure
network design problem is introduced in the literature that sched-
ules the restoration activities of the disrupted components under
certain budgetary and resource-based constraints [16]. Finally, a
different approach is defined as a two-phase recovery for physi-
cally interdependent critical infrastructures that includes both
a linear and a mixed-integer programming with the objectives
of minimizing the flow cost and maximizing the total amount of
commodity deliveries in the system [35].

In this study, we extend a previously proposed approach for
the restoration scheduling of interdependent infrastructure net-
works [2] in such a way that the modified resilience-driven multi-
objective mixed integer programming model would account for
the additional risk and vulnerability measures of the surround-
ing environment. Hence, the newly optimal restoration schedule
of disrupted components would prioritize the community and
spatial resilience perspectives.

2.3 Social Vulnerability
Social vulnerability is defined by the set of characteristics of a
group or individual that influence their capacity to anticipate,
cope with, resist, and recover from the impact of a hazard [6].
Many studies propose to identify the behavioral aspects, human
occupancy, and response level of societies that are shaped by
these different socio-economic characteristics.

The social vulnerability of a community is often defined by the
number and the availability of recovery resources. Such resources
for a disrupted region include the number of work crews, restora-
tion equipment, number of physicians, their dispatch locations
[26], shelter number and capacity [34], and medical capacity [3].
However, some of the proposed studies revolve around the idea
that certain social and economic characteristics, namely inequal-
ities and differences in the society, have an effect on vulnerabil-
ity and recoverability. Some of the most commonly considered

demographics are racial and technical inequalities [26], and ed-
ucational inequalities [25, 26] where according to the way that
these socio-economic characteristics are defined, they either con-
tribute to or counteract the resilience of the communities against
disruptive events.

A common algorithm to quantify social vulnerability is the
Social Vulnerability Index (SoVI), which is a measure that is
formulated by the different levels of age, gender, race, wealth, and
occupation of the citizens [12]. This proposed algorithm considers
multiple socio-economic characteristics to define vulnerability
levels based on the cumulative effect of all the demographics.
These socio-economic characteristics are utilized to identify the
42 variables that are grouped into 11 factors to be used in the SoVI
algorithm [12]. These 11 factor groups that are listed in Table 1,
are used to measure the social vulnerability index of communities
to accurately estimate their recoverability, resilience capacity and
response level against a possible stressor.

Table 1: Social Vulnerability Index Factors

Personal wealth Ethnicity (Native-American)
Age Occupation

Ethnicity (Hispanic) Infrastructure dependence
Race (African-American) Housing stock and tenancy

Race (Asian) Density of the built environment
Single-sector economic dependence

In this study, we utilize a reduced version of the SoVI algorithm,
the SoVI-Lite approach [14]. The SoVI-Lite approach contains
less technical implementation but efficient data compilation [14].
An overview of the SoVI-Lite implementation is as follows:

1. Calculate the ratio of the population that is included in the all
possible 42 socio-economic variables

2. Standardize the percentages of variables to the z-scores
3. Assign signs to the z-scores according to the influence of a

higher percentage level of the variables on social vulnerability
concept

4. Sum all the z-scores

We also normalize the final sum of z-scores for each geo-
graphic region such that a SoVI of 0 suggests the least socially
vulnerable and of 1 suggests the most socially vulnerable com-
munity.

2.4 Spatial Risk
In addition to social demographics, the surrounding environment
and changes in spatial conditions also affect the impacts of a
disruption as experienced by a community [14]. These spatial
conditions refer both the type of the local region (e.g., village,
sub-district) [37] and the geographic location (e.g., island, coastal
area, volcanic risk area, seismic hazard zone). [9].

In this study, we consider the geographic location as the spatial
risk indicator where risk is caused by the high possibility of
being subjected to a specific natural disaster, an earthquake. To
quantify earthquake risk, we use the peak ground acceleration
(PGA) measure to formally express the expected seismic hazard
impact due to a ground shake [13].

Additionally, we scale the PGA measures of different geo-
graphic regions to be between 0 and 1. For the PGA measures,
similar to the SoVI scores, 0 represents spatially the least risky
location and 1 represents spatially the most risky location.

2

3 PROPOSED MODEL
We extend a multi-objective resilience-driven restoration op-
timization model for restoration scheduling of interdependent
infrastructure networks in such a way that differing levels of com-
munity and spatial resilience measures are taken into account
while planning the recovery process optimally after a disruption.
We integrate social vulnerability, population density, and spatial
risk measures into the resilience maximization and total restora-
tion cost minimization objectives to ensure that the restoration
scheduling is driven by community and spatial resilience per-
spectives.

3.1 Model Assumptions
In the proposed multi-objective resilience-driven mixed-integer
programming model, the following assumptions hold: (i) each
network consists of nodes and links that are either not disrupted
or fully disrupted, (ii) the recovery duration can vary for each
component in each network, (iii) disrupted components are not
operational unless their restoration is completed, (iv) the demand
and supply of the nodes and the flow of the links are known in
advance, (v) a known unmet demand penalty, restoration, and
flow cost is associated with component in each network, (vi) for
a component to be functional all the physically interdependent
components must be functional as well,(vii) a fixed number of
work crews are assigned to each network for restoration, and
finally (viii) a specific disrupted component could be restored by
a single work crew at a certain time period.

3.2 Model Notation
The sets, parameters, and the decision variables of the proposed
optimization model for interdependent infrastructure network
restoration problem are listed in Table 2, 3 and 4, respectively.

Table 2: Sets of Restoration Model

Notation Explanation

T Available recovery time horizon, T = {1, . . . ,τ }
K Interdependent infrastructure networks, K = {1, . . . ,κ}
N Nodes of the networks
L Links of the networks
N ′ Disrupted nodes
L′ Disrupted links
N k Nodes in network k ∈ K

Lk Links in network k ∈ K

Rk Restoration work crews for network k ∈ K

N k
s Supply nodes in network k ∈ K , N k

s ⊆ N k

N k
d Demand nodes in network k ∈ K , N k

d ⊆ N k

N
′k Disrupted nodes in network k ∈ K , N

′k ⊆ N k

L
′k Disrupted links in network k ∈ K , L

′k ⊆ Lk

Ψ Interdependent nodes

3.3 Objectives of Model
The total amount of unmet demand in the network states the sys-
tem loss that is caused by the disruptive event. Thus, decreasing
the amount of total unmet demand to a desired level refers to
enhancing system performance and represents the effectiveness
of the restoration process. Hence, the resilience of the system
would be formalized by the cumulative recovery of the inter-
dependent infrastructure networks over the total system loss
through a certain time horizon as in Eq. 1.

Table 3: Parameters of Restoration Model

Notation Explanation

bki Amount of maximum flow at node i ∈ N k

SoV Iki Social vulnerability index for demand node i ∈ N k
d

V k
i Social vulnerability score for demand node i ∈ N k

d
Pki Population density for demand node i ∈ N k

d
PGAki Peak ground acceleration measure for demand node i ∈ N k

d
Gk
i Peak ground acceleration score for demand node i ∈ N k

d
Qk
i Unmet demand of node i ∈ N k

d after disruption
µk Weight of each network k ∈ K

f nki Restoration cost for disrupted node i ∈ N
′k

f lki j Restoration cost for disrupted link (i, j) ∈ L
′k

cki j Unitary flow cost for link (i, j) ∈ Lk

pki Unmet demand penalty cost for demand node i ∈ N k
d

dnki Restoration duration of the disrupted node i ∈ N
′k

dlki j Restoration duration of the disrupted link (i, j) ∈ L
′k

uki j Flow capacity of link (i, j) ∈ Lk

Table 4: Decision Variables of Restoration Model

Notation Explanation

skit Amount of unmet demand at node i ∈ N k
d at time t ∈ T

xki jt Flow through link (i, j) ∈ Lk at time t ∈ T

yki Restoration status of node i ∈ N
′k

zki j Restoration status of link (i, j) ∈ L
′k

αki jt Operational status of link (i, j) ∈ L
′k at time t ∈ T

βkit Operational status of node i ∈ N k

γkrit Work crew assignment to node i ∈ N
′k for restoration

δkri j Work crew assignment to link (i, j) ∈ L
′k for restoration

max
∑
k ∈K

µk
τ∑
t=1

(
t
[∑

i ∈N k
d

(
Qk
i V

k
i P

k
i G

k
i

)
−

∑
i ∈N k

d

(
skitV

k
i P

k
i G

k
i

)]
∑
i ∈N k

d

(
τQk

i V
k
i P

k
i G

k
i

)
−(t − 1)

[∑
i ∈N k

d

(
Qk
i V

k
i P

k
i G

k
i

)
−

∑
i ∈N k

d

(
ski (t−1)V

k
i P

k
i G

k
i

)]
∑
i ∈N k

d

(
τQk

i V
k
i P

k
i G

k
i

))
(1)

The second objective of the proposed model takes the total
cost associated with the (i) restoration process that includes the
recovery of the disrupted nodes and links, (ii) the flow cost, and
(iii) the penalty cost of the leftover unmet demand in the system
which fluctuates by both the social and geographical vulnerability
levels of the service areas of the demand nodes. Therefore, the
minimization of the total cost objective would be formulated as
in Eq. 2.

min
∑
k ∈K

(∑
i ∈N ′k

f nki y
k
i +

∑
(i, j)∈L′k

f lki jz
k
i j

+
∑
t ∈T

[∑
(i, j)∈Lk

cki jx
k
i jt +

∑
i ∈N k

d

pki V
k
i P

k
i G

k
i s

k
it

])
(2)

3.4 Mathematical Model
The explained objectives are subject to the following constraints.

3

∑
(i, j)∈Lk

xki jt −
∑

(j,i)∈Lk
xkjit = 0, ∀i ∈ N k \ {N k

s ,N
k
d }, (3)

k ∈ K , t ∈ T∑
(j,i)∈Lk

xkjit + skit = bki , ∀i ∈ N k
d ,k ∈ K , t ∈ T (4)

xki jt − uki jβ
k
it ≤ 0, ∀(i, j) ∈ Lk , i ∈ N k ,k ∈ K , t ∈ T (5)

xki jt − uki jβ
k
jt ≤ 0, ∀(i, j) ∈ Lk , j ∈ N k ,k ∈ K , t ∈ T (6)

xki jt − uki jα
k
i jt ≤ 0, ∀(i, j) ∈ Lk ,k ∈ K , t ∈ T (7)

β k̄īt ≤ βkit , ∀

(
(i,k), (ī, k̄)

)
∈ Ψ (8)

zki j = ∑
r ∈Rk

∑
t ∈T

δkri jt , ∀(i, j) ∈ L
′k ,k ∈ K (9)

yki = ∑
r ∈Rk

∑
t ∈T

γkrit , ∀i ∈ N
′k ,k ∈ K (10)

∑
(i, j)∈L′k

min(τ ,t+dlki j−1)∑
l=t

δkri jl +

∀k ∈ K , r ∈ Rk , t ∈ T (11)∑
i ∈N ′k

min(τ ,t+dnki −1)∑
l=t

γkril ≤ 1

βkit ≤
∑

r ∈Rk

t∑
l=1

γkril , ∀i ∈ N
′k ,k ∈ K , t ∈ T (12)

αki jt ≤
∑

r ∈Rk

t∑
l=1

δkri jl , ∀(i, j) ∈ L
′k ,k ∈ K , t ∈ T (13)

dlki j−1∑
t=1

αki jt = 0, ∀(i, j) ∈ L
′k ,k ∈ K (14)

dnki −1∑
t=1

βkit = 0, ∀i ∈ N
′k ,k ∈ K (15)

∑
r ∈Rk

dlki j−1∑
t=1

δkri jt = 0, ∀(i, j) ∈ L
′k ,k ∈ K (16)

∑
r ∈Rk

dnki −1∑
t=1

γkrit = 0, ∀i ∈ N
′k ,k ∈ K (17)

skit ≥ 0, ∀i ∈ N k
d ,k ∈ K , t ∈ T (18)

xki jt ≥ 0, ∀(i, j) ∈ Lk ,k ∈ K , t ∈ T (19)
yki ∈ {0, 1}, ∀i ∈ N

′k ,k ∈ K (20)
zki j ∈ {0, 1}, ∀(i, j) ∈ L

′k ,k ∈ K (21)
βkit ∈ {0, 1}, ∀i ∈ N k ,k ∈ K , t ∈ T (22)
αki jt ∈ {0, 1}, ∀(i, j) ∈ L

′k ,k ∈ K , t ∈ T (23)
γkrit ∈ {0, 1}, ∀i ∈ N

′k ,k ∈ K , t ∈ T , r ∈ Rk (24)
δkri jt ∈ {0, 1}, ∀(i, j) ∈ L

′k ,k ∈ K , t ∈ T , r ∈ Rk (25)

In the proposed mathematical model, the first two constraints,
Eqs. (3) and (4), govern the flow conservation of node i ∈ N k .
In Eqs. (5) to (7), capacities of the network components are for-
mulated. Eq. (8) governs the physical interdependency between
nodes. In Eqs. (9) to (18), the restoration process of disrupted
components is formulated, where Eqs. (9) and (10) ensure the
work crew assignment for to be restored components, Eq. (11)
ensures that a single work crew can restore at most one disrupted
component in network k ∈ K at a specific time t ∈ T , Eqs. (12)
and (13) ensure the operability of a component when its restora-
tion is completed, and Eqs. (14) to (18) ensure that for a disrupted
component to be functional, its restoration should be completed.
Finally, the nature of decision variables in the optimization model
is represented in Eqs. (18) to (25).

4 ILLUSTRATIVE EXAMPLE
The proposedmodel is applied to data collected for Shelby County,
Tennessee in the United States, whose geographic location is the
epicenter of the New Madrid Seismic Zone [16].

The three distinct critical interdependent infrastructure net-
works, water, gas and power distribution systems, are represented
in Figure 2. There is a total of 124 nodes, 37 of which are demand

nodes, and a total of 176 links in the three networks. We im-
plement a single scenario with 19 disrupted demand nodes and
assign two work crews separately for each network to complete
the restoration process simultaneously for all three networks in
28 time periods.

Figure 2: Layout of Interdependent Water, Gas and Power
Infrastructure Networks over Shelby County [16].

In Figure 3, the geographic location of the demand nodes of all
three infrastructure networks, i.e. water, gas and power, and the
PGA measures that are specific to each region due to the New
Madrid Seismic Zone is illustrated [13].

Figure 3: Distribution of Regional PGA Measures among
Shelby County [13].

For the SoVI-Lite approach, the eight variables from Table 5
are used in the block group level for Shelby County, TN, where
block groups are formed by multiple adjacent blocks with a total
of 300 to 6000 residents [8].

To assign the social vulnerability scores and the proportional
population densities that are calculated in block group level to
each demand node, the block groups are distributed among them
according to their location to represent the specific service area
of demand nodes. For this distribution process, Voronoi diagram
method is utilized [29]. The Voronoi diagram method calculates
the distance from predetermined input points to any point in the
sample space. Later, it sets the boundaries for the coverage area
of input points in such a way that any point in the sample space
is covered by its closest input point.

4

Table 5: SoVI-Lite Variables for Block Groups

Percentage of households that earn less than $75.000 annually
Percentage of population that is African-American

Percentage of population that is Asian
Percentage of population that is Hispanic

Percentage of population that is over age 65
Percentage of population that is under age 5
Percentage of single-female based households

Percentage of households that live under the poverty line

Also, the social vulnerability indices SoV Iki are normalized
and relatively more importance is given to the demand nodes
that are highly vulnerable by implementing an exponential effect
to formulate the social vulnerability scores V k

i , [23]. Also, a sim-
ilar approach is utilized to enhance the emphasize on demand
nodes with higher peak ground acceleration measure, PGAki . The
exponential formulation of the social vulnerability scores and
the peak ground acceleration scores are represented in Eq. 26
and in Eq. 27, respectively.

V k
i = ea∗SoV Iki , ∀i ∈ N k

d ,a ∈ Z+ (26)

Gk
i = ea∗PGA

k
i , ∀i ∈ N k

d ,a ∈ Z+ (27)

To account for the social expectations and the human occu-
pancy levels of the service areas of demand nodes, we include
the population density measure in the proposed approach as we
adopted the idea that the size of the population that is repre-
sented by each demand node could also be an effective aspect in
the community-resilience perspective. The population density
measure is formulated as the ratio of the population that is served
by demand node i ∈ N k

d , over the total population of all service
areas.

After the distribution of the block groups to demand nodes,
an average of the social vulnerability scores is taken and the
population density of block groups proportional to their layout
in the Voronoi cells is calculated to assign these measures to
the demand nodes. The visualization of the social vulnerability
scores among the block groups is illustrated in Figure 4.

Figure 4: Distribution of Block-Group Social Vulnerabil-
ity Scores and Demand Node Service Areas among Shelby
County [12, 14].

The ϵ-constraint method is used in the resilient objective to
transform it into a constraint with the assigned values such that

ϵ ∈ [0, 1], to solve the multi-objective problem [10]. As the re-
silience levels are ∈ [0, 1], the consistent ϵ-constraint formulation
is in Equation 28.

∑
k ∈K

µk
τ∑
t=1

(
t
[∑

i ∈N k
d

(
Qk
i V

k
i P

k
i G

k
i

)
−

∑
i ∈N k

d

(
skitV

k
i P

k
i G

k
i

)]
∑
i ∈N k

d

(
τQk

i V
k
i P

k
i G

k
i

)
−(t − 1)

[∑
i ∈N k

d

(
Qk
i V

k
i P

k
i G

k
i

)
−

∑
i ∈N k

d

(
ski (t−1)V

k
i P

k
i G

k
i

)]
∑
i ∈N k

d

(
τQk

i V
k
i P

k
i G

k
i

))
≤ ϵ

(28)
The following Table 6 represents a subset of disrupted nodes

in each network and the change in the restoration schedule. The
second column, titled as ’With’ states recovery scheduling results
when social vulnerability and spatial risk measures are taken
into consideration, i.e. the defined parameters of V k

i , Pki and Gk
i

are included in the model whereas the third column labeled as
’Without’ states the restoration order without these measures.
The disrupted node which is scheduled earliest in the restoration
process is ranked 1 where the disrupted node that is ordered latest
in the restoration process is ranked 4. Lastly, Figure 5 represents
the change in the network performance for three infrastructure
networks when community and spatial resilience measures are
considered and not considered in the optimization model.

Table 6: A Subset of Restoration Schedule Comparison for
Critical Infrastructure Networks

Water Node ID With Without Gas Node ID With Without Power Node ID With Without

45 1 2 1 1 2 34 1 4

10 2 1 15 2 4 14 2 2

48 3 4 13 3 3 5 3 1

27 4 3 9 4 1 20 4 3

Note the difference in the ranking of disrupted nodes when
the additional social and environmental measures are included in
restoration problem of interdependent infrastructure networks.
Not only the recovery order of demand nodes is changed, that
is assigned with social vulnerability and spatial risk scores as
their importance measure, but also ranking of the transshipment
nodes and supply nodes that are effective in the delivery of the
commodity and responsible from providing the needs of these
relatively more important demand nodes differ.

Figure 5: Illustration of the Change in the Network Perfor-
mance

In this study, we encounter when additional social vulnerabil-
ity and spatial risk measures are considered, optimum restoration

5

schedule differs for each network. As the restoration schedule
differs, the total unmet demand in each network hence the net-
work performance through time differ when the results of both
models are compared.

5 CONCLUSION
Modern day societies heavily depend on the continuous and
proper functioning of critical infrastructure networks in terms
of maintaining their existence and day-to-day operability. These
physical infrastructures contain an interdependency such as they
would be attached to each other logically, physically, geographi-
cally or informatively. Additionally, there exists a bi-directional
relationship between the community networks and physical in-
frastructure networks for supply and demand manners. There-
fore, the critical infrastructure networks become more vulnerable
against external stressors where any disruption that would occur
in these networks would impact the societies and the resilience
and vulnerability levels of the societies would effect the perfor-
mances of these networks.

In this study, to achieve more comprehensive understanding
of the interdependent infrastructure network resilience we pro-
posed a resilience-driven multi-objective mixed-integer program-
ming model that is integrated with the vulnerability levels of its
surrounding environment. To plan accordingly with the social
expectations against disruptions and the geographical risks asso-
ciated with the spatial location of these networks, the proposed
approach takes into account a geographically distributed (i) so-
cial vulnerability index to represent the behavioral responses
of the various socio-economic dynamics in the society, and (ii)
geographic risk index measure to illustrate the differing potential
disruption levels of a spatial hazard.

As for the results of our proposed study, we observe that con-
sidering the social vulnerability, population density measures
of the surrounding community and the potential geographic
risk of the spatial location of these networks requires a differ-
ent restoration scheduling to recover from external stressors in
a timely manner. The newly achieved restoration schedule of
the disrupted components, and the performance of critical net-
works through time are both planned based on the resilience
enhancement of both surrounding community and the physical
networks. For future work, we believe that as more aspects of
vulnerability is considered additionally in the proposed study,
more extended research with higher humanitarian motivation
would be accomplished.

REFERENCES
[1] Dilek Tuzun Aksu and Linet Ozdamar. 2014. A mathematical model for post-

disaster road restoration: Enabling accessibility and evacuation. Transportation
research part E: logistics and transportation review 61 (2014), 56–67.

[2] Yasser Almoghathawi, Kash Barker, and Laura A. Albert. 2019. Resilience-
driven restoration model for interdependent infrastructure networks. Relia-
bility Engineering & System Safety 185 (2019), 12 – 23. https://doi.org/10.1016/
j.ress.2018.12.006

[3] Erik Auf der Heide and Joseph Scanlon. 2007. Health and medical prepared-
ness and response. Emergency management: Principles and practice for local
government (2007), 183–206.

[4] Prabin M Baidya and Wei Sun. 2017. Effective restoration strategies of in-
terdependent power system and communication network. The Journal of
Engineering 2017, 13 (2017), 1760–1764.

[5] Kash Barker, Jose Emmanuel Ramirez-Marquez, and Claudio M Rocco. 2013.
Resilience-based network component importance measures. Reliability Engi-
neering & System Safety 117 (2013), 89–97.

[6] Piers Blaikie, Terry Cannon, Ian Davis, and Ben Wisner. 1994. At risk: natural
hazards, people’s vulnerability and disasters. Routledge.

[7] Sergey V Buldyrev, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo
Havlin. 2010. Catastrophic cascade of failures in interdependent networks.
Nature 464, 7291 (2010), 1025.

[8] US Census Bureau. 2010. Geographic Terms and Concepts Report. (2010).
[9] Jayajit Chakraborty, Graham A Tobin, and Burrell E Montz. 2005. Popula-

tion evacuation: assessing spatial variability in geophysical risk and social
vulnerability to natural hazards. Natural Hazards Review 6, 1 (2005), 23–33.

[10] Vira Chankong and Yacov Y Haimes. 2008. Multiobjective decision making:
theory and methodology. Courier Dover Publications.

[11] Gian Paolo Cimellaro, Andrei M Reinhorn, and Michel Bruneau. 2010. Seismic
resilience of a hospital system. Structure and Infrastructure Engineering 6, 1-2
(2010), 127–144.

[12] Susan L Cutter. 2003. The vulnerability of science and the science of vul-
nerability. Annals of the Association of American Geographers 93, 1 (2003),
1–12.

[13] Leonardo Dueñas-Osorio, James I Craig, and Barry J Goodno. 2007. Seis-
mic response of critical interdependent networks. Earthquake engineering &
structural dynamics 36, 2 (2007), 285–306.

[14] Christopher T Emrich and Susan L Cutter. 2011. Social vulnerability to climate-
sensitive hazards in the southern United States. Weather, Climate, and Society
3, 3 (2011), 193–208.

[15] Jing Gong, Earl E Lee, John E Mitchell, and William A Wallace. 2009. Logic-
based multiobjective optimization for restoration planning. In Optimization
and Logistics Challenges in the Enterprise. Springer, 305–324.

[16] Andrés D González, Leonardo Dueñas-Osorio, Mauricio Sánchez-Silva, and
Andrés LMedaglia. 2016. The interdependent network design problem for opti-
mal infrastructure system restoration. Computer-Aided Civil and Infrastructure
Engineering 31, 5 (2016), 334–350.

[17] Devanandham Henry and Jose Emmanuel Ramirez-Marquez. 2012. Generic
metrics and quantitative approaches for system resilience as a function of
time. Reliability Engineering & System Safety 99 (2012), 114–122.

[18] Richard Holden, Dimitri V Val, Roland Burkhard, and Sarah Nodwell. 2013.
A network flow model for interdependent infrastructures at the local scale.
Safety Science 53 (2013), 51–60.

[19] Henrik Jönsson, Jonas Johansson, and Henrik Johansson. 2008. Identifying
critical components in technical infrastructure networks. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 222,
2 (2008), 235–243.

[20] Earl E Lee II, John E Mitchell, and William A Wallace. 2007. Restoration of
services in interdependent infrastructure systems: A network flows approach.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 37, 6 (2007), 1303–1317.

[21] Yi Li and Barbara J Lence. 2007. Estimating resilience for water resources
systems. Water Resources Research 43, 7 (2007).

[22] Richard G. Little. 2002. Controlling Cascading Failure: Understanding the
Vulnerabilities of Interconnected Infrastructures. Journal of Urban Tech-
nology 9, 1 (2002), 109–123. https://doi.org/10.1080/106307302317379855
arXiv:https://doi.org/10.1080/106307302317379855

[23] R Timothy Marler and Jasbir S Arora. 2010. The weighted sum method for
multi-objective optimization: new insights. Structural and multidisciplinary
optimization 41, 6 (2010), 853–862.

[24] Dennis Mileti. 1999. Disasters by design: A reassessment of natural hazards in
the United States. Joseph Henry Press.

[25] Betty Hearn Morrow. 1999. Identifying and mapping community vulnerability.
Disasters 23, 1 (1999), 1–18.

[26] Fran H Norris, Susan P Stevens, Betty Pfefferbaum, Karen F Wyche, and
Rose L Pfefferbaum. 2008. Community resilience as a metaphor, theory, set of
capacities, and strategy for disaster readiness. American journal of community
psychology 41, 1-2 (2008), 127–150.

[27] Barack Obama. 2013. Presidential policy directive 21: Critical infrastructure
security and resilience. Washington, DC (2013).

[28] Department of Homeland Security. 2013. National Preparedness Report.
(2013).

[29] Atsuyuki Okabe, Toshiaki Satoh, Takehiro Furuta, Atsuo Suzuki, and Kyoko
Okano. 2008. Generalized network Voronoi diagrams: Concepts, compu-
tational methods, and applications. International Journal of Geographical
Information Science 22, 9 (2008), 965–994.

[30] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. 2001. Identifying, understand-
ing, and analyzing critical infrastructure interdependencies. IEEE Control
Systems Magazine 21, 6 (Dec 2001), 11–25. https://doi.org/10.1109/37.969131

[31] Adam Rose. 2007. Economic resilience to natural and man-made disasters:
Multidisciplinary origins and contextual dimensions. Environmental Hazards
7, 4 (2007), 383–398.

[32] Daniel J Rosenkrantz, Sanjay Goel, SS Ravi, and Jagdish Gangolly. 2009. Re-
silience metrics for service-oriented networks: A service allocation approach.
IEEE Transactions on Services Computing 2, 3 (2009), 183–196.

[33] Thomas C Sharkey, Burak Cavdaroglu, Huy Nguyen, Jonathan Holman, John E
Mitchell, and William A Wallace. 2015. Interdependent network restoration:
On the value of information-sharing. European Journal of Operational Research
244, 1 (2015), 309–321.

[34] Kathleen Tierney. 2009. Disaster response: Research findings and their implica-
tions for resilience measures. Technical Report. CARRI Research Report Oak
Ridge, TN.

[35] Diman Zad Tootaghaj, Novella Bartolini, Hana Khamfroush, and Thomas
La Porta. 2017. Controlling cascading failures in interdependent networks
under incomplete knowledge. In Reliable Distributed Systems (SRDS), 2017 IEEE
36th Symposium on. IEEE, 54–63.

[36] Baichao Wu, Aiping Tang, and Jie Wu. 2016. Modeling cascading failures in
interdependent infrastructures under terrorist attacks. Reliability Engineering
& System Safety 147 (2016), 1–8.

[37] J Zeng, ZY Zhu, JL Zhang, TP Ouyang, SF Qiu, Y Zou, and T Zeng. 2012.
Social vulnerability assessment of natural hazards on county-scale using high
spatial resolution satellite imagery: a case study in the Luogang district of
Guangzhou, South China. Environmental Earth Sciences 65, 1 (2012), 173–182.

6

On the Complexity of RSSA of Anycast Demands in
Spectrally-Spatially Flexible Optical Networks

Róża Goścień and Piotr Lechowicz
Department of Systems and Computer Networks, Faculty of Electronics

Wroclaw University of Science and Technology, Wroclaw, Poland
{roza.goscien,piotr.lechowicz}@pwr.edu.pl

ABSTRACT
Spectrally-spatially flexible optical networks (SS-FONs) are pro-
posed as a solution to overcome the expected capacity crunch
caused by the rapidly growing overall Internet traffic. SS-FONs
combine two network technologies, namely, flex-grid optical net-
works and spatial division multiplexing yielding a significant
capacity increase. Moreover, network services applying anycast
transmission are gaining popularity. In anycasting, the same con-
tent is provided in several geographically spread data centers
(DCs), and the requested content is delivered to the network client
from themost convenient DC, e.g., minimizing the network traffic
and delay. The main optimization challenge in SS-FONs is rout-
ing, spectrum and space allocation (RSSA) problem, which can
be solved using integer linear programming (ILP). The main goal
of this paper is to compare the complexity of various ILP models
for routing static anycast traffic in SS-FONs over single-mode
fiber bundles (SMFBs). The proposed ILP models apply differ-
ent modeling techniques, i.e., slice-based and lightpath-based.
Moreover, proposed models differ with the core switching (lane
changes) capability and consideration of DCs location problem.
In order to test the complexity and scalability of models, we run
simulations assuming a different number of demands, fibers in
SMFBs, candidate paths and DCs.

1 INTRODUCTION
The rapid increase of overall Internet traffic results with the in-
tensive effort concentrated on preventing the future capacity
crunch. Spectrally-spatially flexible optical networks (SS-FONs)
are proposed as a possible solution to overcome the limitations
of currently deployed wavelength division multiplexing (WDM)
backbone optical networks. SS-FONs combine two network tech-
nologies, namely, flexgrid optical networks and spatial division
multiplexing (SDM) providing a massive capacity increase. Due
to the additional spatial dimension, SS-FONs enable parallel trans-
mission of several co-propagating optical channels in properly de-
signed optical fibers. As the main advantages, SS-FONs allow for
multi-carrier (super-channel, SCh) transmission, adaptive modu-
lation formats selection, better spectral utilization with additional
flexibility in the spatial resources management and potential cost
savings due to the integrated devices. One of the possible fiber
technologies supporting SS-FONs is single-mode fibers bundles
(SMFBs), i.e., several single-core single-mode fibers aggregated
in a single bundle [4]. The key network devices, such as reconfig-
urable optical add/dropmultiplexers (ROADMs), are yet expected,
thus, different assumptions are taken about their switching ca-
pabilities. In particular, if core switching (lane changes) is con-
sidered, the spatial switching between input and output ports is
allowed in network nodes, i.e., the lightpaths may have assigned

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

differently indexed fibers in the SMFB links belonging to the
routing path. Otherwise, each lightpath has assigned fibers with
the same index (resulting in lower devices complexity). The fun-
damental optimization challenge in SS-FONs is routing, spectrum
and space allocation (RSSA). It aims to select a routing path, op-
tical channel and spatial resources for each of the traffic requests
[3]. The most common approach for solving static optimization
problems is the integer linear programming (ILP). Two common
ILP techniques are applied in the modeling of optical networks,
namely, slice-based and lightpath-based. In the former, the start-
ing and ending slice of each request is considered as a decision
variable, while in the latter, a set of precomputed lightpaths is
used, where each lightpath defines valid optical channel [10].

Concurrently, many network services, such as content delivery
networks (CDNs) or cloud computing, apply anycast transmission
in order to minimize the traffic load and delay in the network.
According to Cisco forecast, the CDNs will cover almost 71% of
total traffic in 2021 [1] making optimization of anycast traffic
an important issue. In more detail, anycast is the one-to-one-
of-many transmission technique, where one of the request end
nodes is fixed, i.e., a client node, and the second node is selected
from the set of possible nodes where the data centers (DCs) are
located. DCs are spread geographically and each one provides the
same content, hence, the request may be handled with any of the
available DCs (e.g., the closest one) [14]. Besides improvement
of the network performance, the anycast traffic makes related
optimization problems more complex and challenging.

In this paper, we focus on the modeling and complexity analy-
sis of RSSA of anycast demands. We consider scenarios with and
without core switching possibility. Moreover, we study cases with
given DC locations and cases that incorporate DC placement into
the optimization task. Overall, we focus on four RSSA versions
and each version we define using two ILP models (slice-based and
lightpath-based) proposing eight ILP models. Then, we compare
them in terms of complexity (measured in number of included
variables and constraints), processing time and scalability.

2 RELATEDWORKS
Recently, the topic of SS-FONs has been extensively studied (e.g.,
see [3, 5, 13]). Different ILPmodels have been used to define RSSA
problem variations using link-path slice-based [3, 7, 8, 16], link-
path lightpath-based [3, 9, 11], or node-link [3, 6] formulations.
In particular, in [8], the authors propose ILP model for routing,
spectrum and core allocation (RSCA) problem for SS-FONs over
multi-core fibers (MCFs) minimizing the highest allocated slice
index, with worst-case inter-core crosstalk (XT) awareness as-
suming realistic physical fiber parameters. In turn, in [6], ILP
model is proposed for routing, wavelength and core allocation
problem, maximizing the number of accepted traffic while mini-
mizing the total number of used network resources in MCF-based
SDM networks applying multi-input multi-output XT suppres-
sion. In [7], RSCA ILP model is given that minimizes the overall

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 7 DOI: 10.5441/002/inoc.2019.03

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.03

network cost due to the number of switching modules required
for different cores assuming programmable ROADMs. In [11], ILP
model of extended RSSA problem is presented, namely, routing,
modulation format, baud-rate and spectrum allocation which
jointly minimizes the cost of installed transceivers and spectrum
occupation utilizing few-mode transmission. In [15], different
lightpath-based ILP models are proposed for the RSSA consid-
ering various spatial allocation flexibility. In [9], lane changes
are allowed and the lightpath-based model makes use of the re-
laxation of the space continuity constraint resulting with the
lower number of constraints and decision variables. ILP model
assuming anycast traffic in SS-FONs is only considered in [16].

To the best of our knowledge, there has been no work that
compares the complexity of various ILP models formulations
for the allocation of anycast demands in SS-FONs. To fill the
literature gap, in this paper, we define eight ILP models assuming
two modeling techniques, i.e., link-path slice-based and link-
path lightpath-based. The models differ with the core switching
capability and additional DCs placement problem.

3 NETWORK MODEL
The network is modeled as a directed graph G = (V ,E) where V
is the set of network nodes and E is the set of directed optical
links that connect the nodes. Each link e ∈ E comprises a number
of single-mode fibers that are aggregated in the bundle and are
included in set K . Spectrum resources of each fiber k ∈ K are
divided into narrow frequency slices (slots) of 12.5 GHz width
and are included in set S . Signals are transmitted using optical
corridor within spectral super-channel (SCh) by grouping several
adjacent slices. Each SCh has to be separated from the adjacent
one using fixed-size guardband of 12.5 Ghzwidth.We assume that
there are R DCs available in the network and each one provides
the same content. Depending on the problem, either DCs are
located at some nodes or the DCs location problem is considered.

A set of anycast traffic requests (D) to be served in the network
is given. Each demand is defined with the client node and bit-rate.
To simplify the problem, we assume only downstream (from DCs
to client nodes) transmission. Let Pd denote the set of candidate
routing paths for each demand d ∈ D. Each routing path p ∈ Pd
originates in one of the DCs and terminates in the client node.
The number of required slices for given demand depends on the
requested bit-rate and length of the applied routing path and is
denotedwithndp . Each demand is realized using one routing path
within selected spectral SCh in such a way that each slice of each
fiber of each link is used at most by one demand. Finally, if in the
considered scenario core switching ability is not assumed, each
SCh has to be realized using the same indexed fibers. Otherwise,
it can be freely switched between fibers among the routing path.

The aim of the optimization task is to allocate all demands and
minimize index of the highest allocated slice [3]. We study four
problem versions which differ with the core switching possibility
(with core switching — WCS, without core switching — WOCS)
and DC location scenario. For DC location scenario, we analyze
two cases: (i) the location of DCs is given in advance, (ii) the
problem of DCs placement is a part of the optimization task.
Below, we present ILP models of the four problem versions using
slice-based (Sec. IV) and lightpath-based (Sec. V) approaches. All
presented models are based on link-path modelling technique.
Details about considered models, number of decision variables
and constraints are presented in Table 1.

4 SLICE-BASED (SB) MODELS
In this section, link-path slice-based models are proposed. Ac-
cording to Table 1, the models complexity depends mostly on the
number of demands to be realized.
sets and indices
v ∈ V network nodes
e ∈ E network physical links
s ∈ S frequency slices
k ∈ K link fibers
d ∈ D traffic anycast (DC to client direction) demands
p ∈ Pd candidates paths for demand d
constants
R number of DCs (to be) placed in the network
|K | number of fibers available on each physical link
δedp = 1, if link e belongs to routing path p associated with

demand d ; 0, otherwise
ndp number of slices required to realize demand d on can-

didate path p ∈ Pd
o(d,p) origin node of path p ∈ Pd defined for demand d ∈ D
variables
xdp =1, if demand d is realized using candidate path p ∈ Pd ;

0, otherwise (binary)
ydk =1, if demand d uses fiber k; 0, otherwise (binary)
ydke =1, if demand d uses fiber k on physical link e; 0, other-

wise (binary)
wd /zd index of starting/ending slice for demand d (integer ≥1)
z index of the highest allocated slice in the network (in-

teger ≥ 1)
adi = 1, if ending slot of demand d is greater or equal to

starting slice of demand i (binary)
cdi =1, if demands d and i have some common fibers and

links; 0, otherwise (binary)
rv =1, if DC is placed in node v ∈ V ; 0, otherwise (binary)

4.1 Without core-switching + given DCs
(SB_WOCS)

Objective (1) and constraints (2)–(8).
objective

min z . (1)

subject to ∑
p∈Pd

xdp = 1,d ∈ D (2)∑
k ∈K

ydk = 1,d ∈ D (3)

zd −wd + 1 =
∑
p∈Pd

xdpndp ,d ∈ D. (4)

z ≥ zd ,d ∈ D (5)
|S |adi ≥ zd −wi + 1,d, i ∈ D : d , i (6)

cdi ≥
∑
p∈Pd

xdpδedp + ydk +
∑
p∈Pi

xipδeip + yik − 3,

e ∈ E,k ∈ K ,d, i ∈ D,d , i (7)
adi + aid + cdi ≤ 2,d, i ∈ D : d < i (8)

The objective 1 is to minimize the overall spectrum usage de-
fined as the width of spectrum (i.e., number of slices) required to
allocate the demands. Constraint 2 ensures that exactly one rout-
ing path is selected for each demand. The selection of only one
fiber for request is controlled with the equation 3. Constraint 4
defines starting and ending slice index of each demand. The value
of objective is controlled by the inequality 5. Inequality 6 denotes
the relation between starting slice of one demand with ending

8

Table 1: Modeling technique, core switching capability and DC placement location selection for considered ILP models

ILP model core
switching

DC
placement

Number of variables Number of constraints

sl
ic
e

ba
se
d

SB_WOCS no no |D | (|P | + |K | + 2 + 2|D |) + 1 |D |(4 + 3
2 |D | + |E | |K | |D |)

SB_WCS yes no |D | (|P | + |K | |E | + 2 + 2|D |) + 1 |D |(3 + |E | + 3
2 |D | + |E | |K | |D |)

SB_WOCS_DC no yes |D | (|P | + |K | + 2 + 2|D |) + |V | + 1 |D |(4 + 3
2 |D | + |E | |K | |D | + |P |) + 1

SB_WCS_DC yes yes |D | (|P | + |K | |E | + 2 + 2|D |) + |V | + 1 |D |(3 + |E | + 3
2 |D | + |E | |K | |D | + |P |) + 1

lig
ht
pa
th

ba
se
d

LB_WOCS no no |S | + |D | |L| + |E | |K | |S | + |E | |S | |D | + |E | |K | |S | + |E | |S | + |S |
LB_WCS yes no |S | + |D | |L| + |E | |S | |D | + |E | |S | + |S |
LB_WOCS_DC no yes |S | + |D | |L| + |E | |K | |S | + |E | |S | + |V | |D | + |E | |K | |S | + |E | |S | + |S | + 1 + |D | |L|
LB_WCS_DC yes yes |S | + |D | |L| + |E | |S | +V |D | + |E | |S | + |S | + 1 + |D | |L|

slice of another one while 7 switches cdi on if demands d and i
have some common fibers and links. Finally, the spectrum not
overlapping is controlled with the inequality 8, which is a contra-
diction if two demands utilize slices within the same frequency
region and contain common fiber.

4.2 With core-switching + given DCs
(SB_WCS)

Objective (1) and constraints (2), (9), (4)–(6), (10), (8).
subject to ∑

k ∈K

ydke =
∑
p∈Pd

xdpδedp ,d ∈ D, e ∈ E (9)

cdi ≥
∑
p∈Pd

xdpδedp + ydke +
∑
p∈Pi

xipδeip + yike − 3,

e ∈ E,k ∈ K ,d, i ∈ D,d , i (10)
Equation 9 assures selection of exactly one fiber on each link of

the selected routing path for each demand. Additionally, inequal-
ity 10 instead of 7 does account for the core switching ability.

4.3 Without core-switching + DC placement
(SB_WOCS_DC)

Objective (1) and constraints (2)–(8), (11), (12).∑
v ∈V

rv = R (11)

xdp ≤ ro(d,p),d ∈ D,p ∈ Pd (12)
Equality 11 ensures that exactly R nodes are chosen to host

DCs, while the inequality 12 controls that each selected routing
path originates in the node selected for DC location.

4.4 With core-switching + DC placement
(SB_WCS_DC)

Objective (1) and constraints (2), (9), (4)–(6), (10), (8), (11), (12).

5 LIGHTPATH-BASED (LB) MODELS
In this section, link-path lightpath-based ILPmodels are proposed.
Let Ld denote the set of precomputed available lightpaths for
demandd ∈ D, where each lightpath l ∈ Ld is associatedwith one
routing path. Moreover, each lighpath defines utilized starting
and ending slice index of the SCh and, in the case of WOCS
models, fiber on each link among the routing path. Note, the size
of the lightpath corresponds to the ndp constant. According to
Table 1, the models complexity depends mostly on the number of
candidate lightpath for each demand, which in turn is determined
by the number of candidate paths and available spectrum width.

sets and indices (additional)
l ∈ Ld candidates lightpaths for demand d
constants (additional)
βdls = 1, if lightpath l for demand d uses slice s ; 0, otherwise
ξdle = 1, if link e belongs to lightpath l for demand d ; 0,

otherwise
γdlk = 1, if lightpath l for d uses core k ; 0, otherwise
o(d, l) origin node of lightpath l ∈ Ld for demand d
variables (binary)
udl =1, if demand d uses lightpath l ∈ Ld ; 0, otherwise
veks =1, if slice s is used on fiber k on link e; 0, otherwise
ves =1, if slice s is used on any fiber of link e; 0, otherwise
vs =1, if slice s is used on any fiber on any link; 0, otherwise

5.1 Without core-swithing + given DCs
(LB_WOCS)

Objective (13) and constraints (14)–(17).
objective

min
∑
s∈S

vs (13)

subject to ∑
l ∈Ld

udl = 1,d ∈ D (14)

∑
d ∈D

∑
l ∈Ld

udl ξdleγdlk βdls ≤ veks , e ∈ E, s ∈ S,k ∈ K (15)

∑
k ∈K

veks ≤ |K |ves , e ∈ E, s ∈ S (16)

∑
e ∈E

ves ≤ |E |vs , s ∈ S (17)

The objective 13 is to minimize the overall spectrum usage.
Equality 14 assures selection of exactly one lightpath for each
demand. In 15, vesk is switched on if slice s is used on fiber k on
physical link e . Inequalities 16 and 17 control whether slice s is
used on any fiber of link e and on any link, respectively.

5.2 With core-switching + given DCs
(LB_WCS)

Objective (13) and constraints (14), (18), (17).∑
d ∈D

∑
l ∈Ld

udl ξdle βdls ≤ |K |ves , e ∈ E, s ∈ S . (18)

Constraint 18 assures that the slice s on link e is used at most
|K | times. This constraint makes use of the relaxation of the space
continuity constraint.

9

Table 2: Supported bit-rate and transmission reach for
modulation formats.

Modulation format BPSK QPSK 8-QAM 16-QAM

Supported bit-rate [Gbps] 200 150 100 50
Transmission reach [km] 6300 3500 1200 600

Figure 1: Int9 network topology.

5.3 Without core-swithing + DC placement
(LB_WOCS_DC)

Objective (13) and constraints (14)–(17), (11), (19).

udl ≤ ro(d,l),d ∈ D, l ∈ Ld . (19)
Inequality 19 controls whether each selected lightpath associ-

ated with the demand d originates in a DC node.

5.4 With core-swithing + DC placement
(LB_WCS_DC)

Objective (13) and constraints (14), (18), (17), (11), (19).

6 NUMERICAL EXPERIMENTS
In this section, we evaluate performance of various ILP models
for the RSSA problem in SS-FONs, considering anycast demands.
We run experiments on Int9 network topology (Fig. 1) composed
of 9 nodes and 13 links, with an average link length of 1063 km.
We assume SS-FON composed of SMFBs, where each fiber pro-
vides a 4 THz bandwidth (spectrum) divided into 320 frequency
slices, each of 12.5 GHz width. As in [12], we assume that the
transceiver operates at the fixed baud rate and each transceiver
transmits/receives optical channel (optical carrier, OC) of 37.5
GHz width (3 slices). We consider 4 available modulation formats,
namely, BPSK, QPSK, 8-QAM and 16-QAM. Supported bit-rate
and transmission reach depend on the selected modulation for-
mat and are presented in Table 2 [2]. If the requested bit-rate
exceeds a single transceiver capacity for the applied MF, the re-
quest is transmitted using several OCs within one SCh using a set
of adjacent slices (i.e., a spectral SCh). Each request is transmitted
using the most efficient MF supporting the required transmission
reach, i.e., a distance adaptive transmission is used. In most of
the experiments, we assume that the number of fibers per SMFB
is |K | = 2, the number of candidate shortest paths is |P | = 2
(number of candidate paths between client node and one of the
DCs) and number of available DCs is R = 2. The number of de-
mands is equal to |D | = {10, 20, 30, 40, 50, 60, 80, 100}. For each
value, we evaluate 5 randomly generated sets of demands. Each
demand has randomly selected source and destination nodes and
a bit-rate uniformly selected within the range from 50 Gbps to
1 Tbps, with 50 Gbps granularity. All experiments were run on
a virtual machine with available 2 cores of Intel Xeon E5 series
CPU at 2.90 GHz and 32 GB RAM using CPLEX v12.5 solver,
executed through Java interface, with a 1-hour run-time limit.

In Table 3, average spectrum usage and time are presented for
various ILPmodels. Normally, spectrum usage should be the same
for all models considering given DCs and DC placement problem,

respectively. However, for larger demands set, the results start to
vary, as it is only possible to obtain feasible (not optimal) solution
within given 1-hour run-time limit. Note, the corresponding time
may be lower than 1 hour, as this is the average value. In partic-
ular, only part of the results may be feasible, while the rest of
them may be optimal obtained in shorter time. The lack of results
reflects the situation when out of memory error has occurred for
all studied cases. As it can be observed, the required computa-
tional time increases rapidly even for small sizes of demands sets.
In terms of models with given DCs, the SB_WOCD and LB_WCS
are able to yield results for the largest demand sets due to the
lower number of variables and constraints. Moreover, for 30 to
60 demands sets, LB_WCS ILP model provides worse results than
SB_WOCS, despite that the required time is lower. It is possible
due to the presence of far from optimal feasible results, while
other instances were solved in shorter time. It can be justified
with the Table 4, which presents the number of optimal, feasible
and out of memory results for each tested case (the numbers are
separated with the slash). In terms of models with DC placement,
SB_WOCS_DC performs the best.

Next, we compare the models scalability. We study different
number of candidate paths |P | = {2, 4}, fibers per SMFB |K | =

{2, 4} and number of DCs R = {2, 4}. In the presented results, let
S(X = α) and t(X = α) denote the spectrum usage and time in
seconds, respectively, when given parameter X has value α (e.g.,
S(|P | = 2) denotes spectrum usage for 2 candidate paths). It is
worth noting, the missing of results in the charts indicates that
the run out of memory was obtained for all 5 tested cases.

Fig. 2 presents spectrum usage and time for models for can-
didate paths |P | = {2, 4} and 20 demands. As it can be observed
the increase of number of candidate paths yields slightly lower
spectrum usage, however, required time for LB models grows
quickly. In turn, number of candidate paths has the low impact on
the required time of SB models. Fig 3 reports spectrum usage and
time as a function of number of demands for SB_WOCS_DC for
various number of candidate paths. The first conclusion is that
for small instances with the larger number of candidate paths
it is possible to find a lower optimal solution. However, in the
presence of run-time limits, the feasible results are worse and
the out of memory error is obtained for smaller instances (100
and 80 demands for 2 and 4 candidate paths, respectively). The
results for models with given DCs are similar.

4
5

.8

4
5

.8

4
5

.8

4
5

.8

2
6

.8

2
6

.8

2
6

.8

2
6

.8

4
5

.8

4
5

.8

4
5

.8

4
5

.8

2
6

.4

2
6

.4

2
6

.4

2
6

.4

0

600

1200

1800

2400

0

10

20

30

40

50

Ti
m

e
[s

]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

ILP model

S (P = 2) S (P = 4) t (P = 2) t (P = 4)

DC placement

Figure 2: Spectrum usage and time as a function of ILP
models for 2 and 4 candidate paths for 20 demands.

Fig 4 shows the spectrum usage as a function of ILP models for
number of fibers per SMFBs |K | = {2, 4} for 30 demands. Firstly,
the increase of number of fibers allows reducing the spectrum

10

Table 3: Spectrum usage and time for ILP models for various number of demands.

Number of demands
10 20 30 40 50 60 80 100 10 20 30 40 50 60 80 100

ILP model Spectrum usage Time [s]

SB_WCS 35.0 45.8 70.3 86.5 — — — — 0.4 721.8 3600.0 3600.0 — — — —
SB_WOCS 35.0 45.8 70.3 91.0 99.0 142.3 201.0 233.0 0.3 721.7 3600.0 3600.0 3600.0 3600.7 3600.7 3600.7
LB_WCS 35.0 45.8 72.6 103.0 120.2 154.2 196.8 185.5 2.8 20.7 2005.1 2156.8 2309.0 2411.6 2602.0 2714.8
LB_WOCS 35.0 45.8 72.6 103.2 120.6 128.5 — — 10.3 352.6 2892.1 2614.4 3236.4 3283.6 — —
SB_WCS_DC 19.0 26.8 29.0 33.2 69.3 86.0 118.0 — 0.1 2.8 1682.7 3600.0 3600.0 3600.0 3600.1 —
SB_WOCS_DC 19.0 26.8 29.0 33.2 47.8 80.5 96.0 — 0.1 2.1 853.9 3600.0 3600.0 3600.0 3600.0 —
LB_WCS_DC 19.0 26.8 29.0 34.7 49.0 — — — 7.9 43.0 2378.1 3600.1 3600.0 — — —
LB_WOCS_DC 19.0 26.8 35.0 — — — — — 69.9 759.4 3600.1 — — — — —

Table 4: Number of optimal/feasible/out-of-memory re-
sults for ILP models for various number of demands.

Number of demands
ILP model type 10 20 30 40 50 60 80 100

SB_WCS 5/0/0 4/1/0 0/3/2 0/2/3 0/0/5 0/0/5 0/0/5 0/0/5
SB_WOCS 5/0/0 4/1/0 0/3/2 0/3/2 0/2/3 0/3/2 0/2/3 0/1/4
LB_WCS 5/0/0 5/0/0 3/2/0 4/1/0 2/3/0 4/1/0 4/1/0 1/1/3
LB_WOCS 5/0/0 5/0/0 1/4/0 4/1/0 1/4/0 2/0/3 0/0/5 0/0/5
SB_WCS_DC 5/0/0 5/0/0 3/2/0 0/5/0 0/4/1 0/2/3 0/5/0 0/0/5
SB_WOCS_DC 5/0/0 5/0/0 4/1/0 0/5/0 0/4/1 0/4/1 0/3/2 0/0/5
LB_WCS_DC 5/0/0 5/0/0 3/2/0 0/3/2 0/2/3 0/0/5 0/0/5 0/0/5
LB_WOCS_DC 5/0/0 5/0/0 0/4/1 0/0/5 0/0/5 0/0/5 0/0/5 0/0/5

1
9

.0 2
6

.8

2
9

.0 3
3

.2

4
7

.8 8
0

.5

9
6

.0

1
9

.0 2
6

.4

2
8

.6 3
7

.5

7
1

.8

8
4

.7

0

600

1200

1800

2400

3000

3600

0

20

40

60

80

100

10 20 30 40 50 60 80 100

Ti
m

e
[s

]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

Number of demands

S (P = 2) S (P = 4) t (P = 2) t (P = 4)

Figure 3: Spectrumusage and time as a function of number
of demands for SB_WOCS_DC for 2 and 4 candidate paths.

usage around 46% and 11% for given DCs and DC placement,
respectively. Surprisingly, the computational time is also lower. It
may follow from the fact, that for a higher number of fibers, it is
easier to allocate traffic and find a feasible good quality solution
and quicker discard other worse solutions. Next, Figs 5 and 6
present spectrum usage and time as a function of number of
demands for SB_WOCS and SB_WOCS_DC ILP models, respec-
tively, for number of fibers per SMFB |K | = {2, 4}. We can easily
observe that the run out of memory occurs for smaller demands
sets when the number of fiber is higher, because the number of
decision variables and constraints in ILP model is higher.

Fig 7 reports the spectrum usage and time as a function of
ILP models for number of DCs R = {2, 4} and 20 demands. The
increase of number of DCs from 2 to 4 allows reducing required
spectrum usage around 41% and 45% for given DCs and DC place-
ment problems, respectively. Note, that for higher number of DCs,

7
0

.3

7
0

.3

7
2

.6

7
2

.6

2
9

.0

2
9

.0

2
9

.0 3
5

.0

1
4

.1

1
4

.9 2
0

.5

2
1

.2

1
1

.7

1
2

.6

1
4

.5

1
5

.5

0

600

1200

1800

2400

3000

3600

0

20

40

60

80

Ti
m

e
[s

]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

ILP model

S (K = 2) S (K = 4) t (K = 2) t (K = 4)
DC placement

Figure 4: Spectrum usage and time as a function of ILP
models for 2 and 4 fibers per SMFB for 20 demands.

3
5

.0 4
5

.8 7
0

.3 9
1

.0

9
9

.0

1
4

2
.3

2
0

1
.0 2

3
3

.0

2
8

.0

2
9

.8

3
8

.6 5
2

.6

5
4

.0 7
1

.7

0

600

1200

1800

2400

3000

3600

0

50

100

150

200

250

10 20 30 40 50 60 80 100
Ti

m
e

[s
]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

Number of demands

S (K = 2) S (K = 4) t (K = 2) t (K = 4)

Figure 5: Spectrumusage and time as a function of number
of demands for SB_WOCS for 2 and 4 fibers per SMFB.

the lower time is required to solve the model. Figs 8 and 9 present
spectrum usage and time as a function of number of demands
for SB_WOCS and SB_WOCS_DC ILP models, respectively, for
number of DCs R = {2, 4}. Despite that for higher number of
DCs the spectrum utilization and required computational time
is lower, again the run out of memory error occurs for smaller
demands set sizes due to the higher number of variables and
constraints in ILP instances.

7 CONCLUSIONS
In this paper, we study RSSA of anycast demands in SS-FONs.
We analyze four problem versions which differ with the core
switching possibility (WCS andWOCS) and DC location scenario
(given DCs and DC placement involved into optimization task).
Then, we define all RSSA versions using twomodeling techniques

11

1
9

.0 2
6

.8

2
9

.0 3
3

.2

4
7

.8

8
0

.5

9
6

.0

1
9

.0 2
5

.6

2
5

.6

2
7

.6

2
8

.8

0

600

1200

1800

2400

3000

3600

0

20

40

60

80

100

10 20 30 40 50 60 80 100

Ti
m

e
[s

]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

Number of demands

S (K = 2) S (K = 4) t (K = 2) t (K = 4)

Figure 6: Spectrumusage and time as a function of number
of demands for SB_WOCS_DC for 2 and 4 fibers per SMFB.

4
5

.8

4
5

.8

4
5

.8

4
5

.8

2
6

.8

2
6

.8

2
6

.8

2
6

.8

2
6

.8

2
6

.8

2
6

.8

2
6

.8

1
4

.8

1
4

.8

1
4

.8

1
4

.8

0

200

400

600

800

0

20

40

60
Ti

m
e

[s
]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

ILP model

S (R = 2) S (R = 4) t (R = 2) t (R = 4)

DC placement

Figure 7: Spectrum usage and time as a function of ILP
models for 2 and 4 DCs for 20 demands.

3
5

.0 4
5

.8 7
0

.3 9
1

.0

9
9

.0

1
4

2
.3

2
0

1
.0

2
3

3
.0

2
8

.0

2
6

.8

3
0

.6

3
6

.6

4
0

.8 5
1

.0

6
0

.4

0

600

1200

1800

2400

3000

3600

0

50

100

150

200

250

10 20 30 40 50 60 80 100

Ti
m

e
[s

]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

Number of demands

S (R = 2) S (R = 4) t (R = 2) t (R = 4)

Figure 8: Spectrumusage and time as a function of number
of demands for SB_WOCS for 2 and 4 DCs

(slice-based (SB) and lightpath-based (LB)) proposing eight ILP
models. Next, we compare models in terms of complexity (mea-
sured in the number of variables and constraints), processing
time and scalability. The analysis reveals that the complexity of
SB models strongly depends on the number of demands while
the complexity of LB models on the number of candidate paths
and available spectrum width. The core switching possibility
increases complexity of SB models while decreases complexity of
LB models. The incorporation of DC placement into optimization
task makes problem more complex considering both — SB and
LB models. Concluding simulations, LB_WCS and SB_WOCS_DC
provide the best performance for RSSA with given DC location
and DC location selection problem, respectively.

In the future work, we plan to further study RSSA complexity
considering different traffic types and network survivability.

1
9

.0 2
6

.8

2
9

.0 3
3

.2

4
7

.8

8
0

.5

9
6

.0

1
3

.0

1
4

.8 1
9

.0

2
0

.8 2
5

.0

0

600

1200

1800

2400

3000

3600

0

20

40

60

80

100

10 20 30 40 50 60 80 100

Ti
m

e
[s

]

Sp
ec

tu
rm

 u
sa

ge
 [

sl
ic

e]

Number of demands

S (R = 2) S (R = 4) t (R = 2) t (R = 4)

Figure 9: Spectrumusage and time as a function of number
of demands for SB_WOCS_DC for 2 and 4 DCs

ACKNOWLEDGMENTS
The work was supported by National Science Centre, Poland
under Grant 2015/19/B/ST7/02490 and statutory funds of the
Department of Systems and Computer Networks, Wroclaw Uni-
versity of Science and Technology under Grant 0402/0112/18.

REFERENCES
[1] CISCO. 2017. The Zettabyte Era: Trends and Analysis. Technical Report. CISCO.

1–29 pages.
[2] P. S. Khodashenas, J. M. Rivas-Moscoso, D. Siracusa, F. Pederzolli, B. Shariati,

D. Klonidis, E. Salvadori, and I. Tomkos. 2016. Comparison of Spectral and
Spatial Super-Channel Allocation Schemes for SDM Networks. J Lightwave
Technol 34, 11 (2016), 2710–2716.

[3] MirosÅĆaw Klinkowski, Piotr Lechowicz, and Krzysztof Walkowiak. 2018.
Survey of resource allocation schemes and algorithms in spectrally-spatially
flexible optical networking. Opt Switch Netw 27 (2018), 58 – 78.

[4] D. Klonidis, F. Cugini, O. Gerstel, M. Jinno, V. Lopez, E. Palkopoulou, M. Sekiya,
D. Siracusa, G. Thouenon, and Ch. Betoule. 2015. Spectrally and Spatially
Flexible Optical Network Planning and Operations. IEEE Comm Mag 53, 2
(2015), 69–78.

[5] Guifang Li, Neng Bai, Ningbo Zhao, and Cen Xia. 2014. Space-division mul-
tiplexing: the next frontier in optical communication. Adv. Opt. Photon. 6, 4
(Dec 2014), 413–487.

[6] Y. Li, N. Hua, and X. Zheng. 2015. Routing, wavelength and core allocation
planning for multi-core fiber networks with MIMO-based crosstalk suppres-
sion. In 2015 Opto-Electronics and Communications Conference (OECC). 1–3.

[7] A. Muhammad, G. Zervas, G. Saridis, E. H. Salas, D. Simeonidou, and R. Forch-
heimer. 2014. Flexible and synthetic SDM networks with multi-core-fibers
implemented by programmable ROADMs. In 2014 The European Conference
on Optical Communication (ECOC). 1–3.

[8] A. Muhammad, G. Zervas, D. Simeonidou, and R. Forchheimer. 2014. Routing,
spectrum and core allocation in flexgrid SDM networks with multi-core fibers.
In Proc. Optical Network Design and Modeling (ONDM). 192–197.

[9] J. Perello, J. M. GenÃľ, A. PagÃĺs, J. A. Lazaro, and S. Spadaro. 2016. Flex-
grid/SDM backbone network design with inter-core XT-limited transmission
reach. J Opt Commun Netw 8, 8 (2016), 540–552.

[10] Michal Pióro and Deepankar Medhi. 2004. Routing, Flow, and Capacity Design
in Communication and Computer Networks. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[11] C. Rottondi, P. Boffi, P. Martelli, and M. Tornatore. 2017. Routing, Modulation
Format, Baud Rate and Spectrum Allocation in Optical Metro Rings With
Flexible Grid and Few-Mode Transmission. J Lightwave Technol 35, 1 (2017),
61–70.

[12] Cristina Rottondi, Massimo Tornatore, and Giancarlo Gavioli. 2013. Opti-
cal Ring Metro Networks With Flexible Grid and Distance-Adaptive Optical
Coherent Transceivers. Bell Labs Technical Journal 18, 3 (2013), 95–110.

[13] G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou. 2015. Survey
and Evaluation of Space Division Multiplexing: From Technologies to Optical
Networks. IEEE Commun Surv Tut 17, 4 (2015), 2136–2156.

[14] Krzysztof Walkowiak. 2016. Modeling and Optimization of Cloud-Ready and
Content-Oriented Networks (1st ed.). Springer Publishing Company, Incorpo-
rated.

[15] K. Walkowiak, P. Lechowicz, M. Klinkowski, and A. Sen. 2016. ILP modeling of
flexgrid SDM optical networks. In Proc. Telecommunications Network Strategy
and Planning Symposium (Networks). 121–126.

[16] Liang Zhang, Nirwan Ansari, and Abdallah Khreishah. 2016. Anycast Planning
in Space Division Multiplexing Elastic Optical Networks With Multi-Core
Fibers. IEEE Commun Lett 20, 10 (2016), 1983–1986.

12

Extended linear formulation of the pump scheduling problem
in water distribution networks

Gratien Bonvin
Center for Applied Mathematics,

Mines ParisTech, PSL Research University
Sophia Antipolis, France

gratien.bonvin@mines-paristech.fr

Sophie Demassey
Center for Applied Mathematics,

Mines ParisTech, PSL Research University
Sophia Antipolis, France

sophie.demassey@mines-paristech.fr

ABSTRACT

This paper presents a generic non-compact linear program-
ming approximation of the pump scheduling problem in
drinking water distribution networks. Instead of relying on
the binary on/off status of the pumps, the model draws
on the continuous duration of activation of pump combina-
tions, whose entire set is computed in a preprocessing step
by ignoring the pressure variation in the water tanks. Pre-
processing is accelerated using network partition and sym-
metry arguments. A combinatorial Benders decomposition-
based local search takes the approximated solution as input
to derive a feasible solution. Our experiments on two differ-
ent benchmark sets, with fixed- or variable-speed pumps,
show the accuracy of the approximated formulation and
the ability of the matheuristic to compute near-optimal
solutions in seconds, where concurrent, more specialized
approaches need minutes or hours.

1 INTRODUCTION

With the evolution of the power sector – because dynamic
pricing is a savings opportunity for water network opera-
tors [6] – together with advances in mixed-integer nonlinear
programming (MINLP), recent years have seen a renewed
interest in minimizing the pumping costs in drinking water
distribution networks.

The so-called pump scheduling problem is a hard com-
binatorial non-convex optimization problem. A variety of
solution approaches have been investigated, but they often
inefficiently deal with large or medium networks, and many
small instances are still open. A first category of approaches
(e.g. [6, 7, 10]) combine a numerical simulator, to compute
the feasible hydraulic balances, with an exact or heuristic
optimization algorithm, to schedule the pump operations
at minimum cost. Separating feasibility from optimization
makes the convergence of these approaches slow, resulting
in sub-optimal solutions. A second category of approaches
formulate the whole problem as a MINLP with simplified
hydraulic constraints, based either on piecewise-linear ap-
proximations (e.g. [8, 9]) or convex relaxations [2, 3, 13].
These approaches only apply to small networks, because
of the combinatorial nature of the models, and they may
return impracticable solutions. Instead, Burgschweiger et
al. [4] keep the non-convex constraints in their model but
relax the binary on/off pump activation variables by ag-
gregating them. This relaxation is only suitable to large

© 2018 Copyright held by the owner/author(s). Published in Pro-
ceedings of the International Network Optimization Conference
(INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

city-wide networks where dozen of pumps are installed in
parallel in each pumping station.

In this paper, we are interested in tackling intermediate-
size networks with a mixed approach. We propose to ap-
proximate the MINLP model by decoupling feasibility and
optimization in the way of Dantzig-Wolfe decomposition:
by ignoring the pressure variation in the water tanks, we
can compute the feasible hydraulic balances for all pump
configurations as a preprocessing step, then derive a non-
compact linear programming (LP) model based on the
durations of activation of these configurations. We apply
network partition and symmetry arguments to acceler-
ate the preprocessing without hindering optimality. While
the approximated LP solutions may be accurate enough
to be practically implemented in pump controllers, we
also propose to derive feasible solutions for the original
MINLP with a local search approach, adapted from the
combinatorial Benders decomposition of Naoum-Sawaya et
al. [10]. Finally, we generalize the approach to networks
with variable-speed pumps or pressure-reducing valves,
which are often overlooked in the literature.

Experiments on the Poormond [6] and Van Zyl [17]
benchmark networks show the efficiency of our prepro-
cessing, the accuracy of our approximation, and the poten-
tial of the overall method to compute near-optimal solutions
within seconds where concurrent methods [3, 6, 8, 10, 13]
need minutes or hours to compute solutions of higher costs.

The paper is organized as follows: Section 2 defines the
problem and describes the standard MINLP formulation in
a simplified case. Section 3 presents our non-compact LP
formulation and preprocessing reduction techniques and
Section 4 the heuristic. Computational results are given in
Section 5 and conclusions and perspectives in Section 6.

2 PUMP SCHEDULING PROBLEM

This section describes the problem and a standard formu-
lation in the special case, for the sake of simplicity, of a
network equipped with unidirectional pipes, fixed-speed
pumps and no valves. Comprehensive formulations for more
general networks can be found e.g. in [3, 4].

As illustrated in Figure 1, a water distribution network
can be represented as a directed graph G = (J, L) with
sources JS , junctions JJ and tanks JT as nodes J , and
pipes LP and pumps K as arcs L. Given a time horizon
T of typically one day, the system dynamics are driven by

the water demand rate D ∈ RJJ×T
+ at the junctions and

are governed by complex hydraulic laws of conservation
of flow and pressure through the network. The problem
is to schedule the pump operations over T in order to
continuously satisfy the demand and the allowed filling
level of the tanks, while minimizing the operation cost.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 13 DOI: 10.5441/002/inoc.2019.04

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.04

Figure 1: The Poormond network

A standard model is defined as follows, with x ∈ {0, 1}K×T

the binary on/off state of the pumps, q ∈ RL×T
+ the flow

rate through the arcs, and h ∈ RJ×T
+ the head at the nodes

(defined as the sum of pressure and elevation):

(P) : min
x,q,h

∑
t∈T

∑
k∈K

Ct∆tΓk(xkt, qkt) (1)

s.t.
∑
ij∈L

qijt =
∑
ji∈L

qjit +Djt, t ∈ T , j ∈ JJ (2)

∑
ij∈L

qijt−
∑
ji∈L

qjit =
σj

∆t
(hjt−hjt−1), t ∈ T , j ∈ JT (3)

hj0 = H0
j , j ∈ JT (4)

Hmin
jt ≤ hjt ≤ Hmax

jt , t ∈ T , j ∈ J (5)

qkt ≤ Qmax
k xkt, t ∈ T , k ∈ K (6)

hit − hjt = Φij(qijt), t ∈ T , ij ∈ LP (7)

(hjt − hit −Ψij(qijt))xijt = 0, t ∈ T , ij ∈ K. (8)

In this model, the time horizon is discretized T = {1, . . . , T}
with a resolution ∆t of typically 1 hour in which the sys-
tem is assumed to operate in steady state. Constraints (2)
and (3) enforce the conservation of flow at junctions and
tanks. In (3), a tank j ∈ JT is assumed to be a vertical
cylinder of area σj which links the stored water volume
linearly to the head. Bounds on heads (4) and (5) depend
on the node types: for a tank j ∈ JT , they are given by the
minimum and maximum filling levels, and by the initial
level H0

j ; for a junction j ∈ JJ , H
min
jt stands for the mini-

mum pressure required to serve demand Djt; for a source
j ∈ JS , the head is fixed exogenously. Constraints (7) en-
force the head losses due to friction in pipes. For each
directed pipe ij ∈ Lp, the head loss can be accurately
approximated by a quadratic function Φij of the flow. Con-
straints (6) bound the flow through the pumps and bind
flow values and pump activation states. Constraints (8)
model the head increase through active pumps (if xijt = 1).
For each pump k ∈ K, head-flow coupling function Ψk can
be accurately fitted from operating points as a quadratic
function. Finally, the financial cost is mainly incurred by
purchasing electricity for pumping, see objective (1) with
Ct ≥ 0 the actualized electricity price on period t, and Γk

the power consumption of pump k defined by a linear curve
fit Γk(x, q) = λkx+ µkq.

Model (P) is a non-convex MINLP which is often un-
tractable even for small networks. One option to solve (P)
is to decrease the resolution of the time discretization, and
thus the model size, but it has potential drawbacks: (1)
the steady-state assumption is less realistic over longer

time steps, (2) this artificially reduces the set of feasible
schedules, and (3) the optimum increases accordingly. We
investigate the opposite option, closer to the reality, by
allowing to operate pumps at any time.

3 AN APPROXIMATED
NON-COMPACT MODEL

We present a new approximated LP formulation of the
pump scheduling problem which separates the computation
of the hydraulic balances from the optimization of the
schedule. The description is first given in the context of
networks where fixed-speed pumps are the only operable
elements. We then generalize the definition to networks
with valves or variable-speed pumps.

3.1 Tank head approximation

Let A ⊆ L be the set of operable elements of the network,
and assume for now that A = K the set of fixed-speed
pumps. We call configuration any subset s ⊆ A, also de-
noted by its indicator function Is ∈ {0, 1}A defined by
Isa = 1 ⇔ a ∈ s. Configuration s is said active at time
t ∈ T if all its elements, and only these elements, are active
(e.g. pumps are on): xat = 1 ⇐⇒ a ∈ s.

Looking at model (P), a configuration s ⊆ A can be
active at time t ∈ T only if, given the tank levels and the
allowed variation range, the pumps belonging to the config-
uration offer together enough power to increase head and
satisfy the demand rate Dt at all junctions. Because water
tanks are usually very large containers, the level variation
during 1 hour or less is relatively limited when compared
to their heights. We propose to ignore this variation and
assume that, at any tank j ∈ JT , the head is fixed to an ar-
bitrary value H∗

j during time step t. Under this assumption,
we can easily compute the hydraulic balance for supplying
demand Dt with configuration s. Indeed, by definition, it
is a solution (qt, ht) ∈ RL

+ × RJ
+ of the non-convex sys-

tem {(2), (5), (6), (7), (8)} restricted to a single time step
T = {t} with fixed pump states xat = Isa ∀a ∈ A and fixed
tank heads hjt = H∗

j ∀j ∈ JT . It is known [5, 6, 16] that
this equation system, that we denote Ft(I

s, H∗), has at
most one solution which can quickly be computed, in par-
ticular, by the Newton method [16] which is implemented
in the popular numerical simulator EPANET [11].

To estimate if a configuration s may supply demand rate
Dt, we thus propose to check the feasibility of Ft(I

s, H∗)
with tank heads arbitrarily fixed to their median values
H∗

j = (Hmin
j + Hmax

j)/2 for all j ∈ JT . If feasible and
(qs, hs) its solution, we compute the corresponding instan-
taneous power consumption P s

t =
∑

k∈s∩K Γk(1, q
s
kt) and

net fill rate Rs
jt =

∑
ij∈L qsijt −

∑
ji∈L qsjit at each tank

j ∈ JT . We denote by S∗
t = {s ⊆ A | Ft(I

s, H∗) ̸= ∅} the
set of configurations which may be active during time step
t ∈ T according to this assumption.

3.2 Configuration scheduling

Given these estimates, we reformulate the pump scheduling
problem as a configuration scheduling problem where, at
any time step t, any configuration s ∈ S∗

t is allowed to be
active for a duration 0 ≤ δst ≤ ∆t within the time step.
Modelling the system dynamics boils down to enforce tank
head conservation between consecutive time steps, then

14

leads to the following linear program:

(P ∗) : min
δ,h

∑
t∈T

Ct

∑
s∈S∗

t

P s
t δst (1’)

s.t.
∑
s∈S∗

t

δst = ∆t, t ∈ T (9)

hjt−hjt−1 =
∑
s∈S∗

t

Rs
jt

σj
δst, t ∈ T , j ∈ JT (3’)

Hmin
jt ≤ hjt ≤ Hmax

jt , t ∈ T , j ∈ J. (5’)

In (P ∗), pumps can thus be operated during time steps.
Furthermore, (P ∗) is an approximation of (P), and not
just a relaxation: an optimal configuration s at time t for
(P) may not belong to S∗

t if it can indeed satisfy demand
Dt but not under the half-filled tanks assumption; if s does
belong to S∗

t , otherwise, then its actual consumption may
not be P s

t precisely.

3.3 Processing configurations

Computing one hydraulic balance with the Newton algo-
rithm is almost immediate, but the exponential number of
configurations to evaluate, in O(T2|A|), can make it com-
putationally challenging to build (P ∗). We propose two
techniques to significantly reduce the computation time
without hindering optimality.

First, we exploit the symmetries, which are frequent
in real data. For instance, when demand rate Dt ∈ RJJ

is constant at all junctions over a number of time steps,
then the configurations need to be evaluated on only one
time step, since if Dt = Dt′ , then S∗

t = S∗
t′ , P

s
t = P s

t′ and
Rs

t = Rs
t′ for all s ∈ S∗

t . Another symmetry arises when
pumps with identical characteristics are installed in parallel
at a pumping station (see e.g. pumps 1 and 2 in Figure 1).
Only one symmetric configuration is then evaluated.

Second, we exploit a partition of the network along the
tank nodes. Precisely, we consider the graph G′ = (J ′, L′)
obtained from G by duplicating each tank node j ∈ JT for
each incoming arc ij ∈ L as a new node denoted ji, i.e.
J ′ = J∪{ji | ij ∈ L, j ∈ JT } and L′ = L∪{iji | ij ∈ L, j ∈
JT } \ {ij ∈ L | j ∈ JT }. Once the heads at tanks j ∈ JT

(and at duplicate nodes ji) are fixed to their median values
H∗

j , the arc flow and node head values become independent
in each connected component of G′. We thus compute the
set of feasible configurations SC

t ⊆ A ∩ LC independently
for each connected component C = (JC , LC) ∈ CC(G′).
These sub-configurations are then combined by summa-

tion: for all s ⊆ A, P s
t =

∑
C∈CC(G′) P

s∩LC
t and Rs

jt =∑
C∈CC(G′) | j∈JC

Rs∩LC
jt for j ∈ JT . Hence, the network

partition reduces both the number of computations and
their complexity, being evaluated on smaller graphs. Fur-
thermore, the symmetry condition on constant demand
occurs with a higher frequency when regarding the subsets
of junctions independently.

3.4 Generalization

In most water distribution networks, not only pumps but
also valves V ⊆ L of different types can be operated. Like
fixed-speed pumps, gate valves and check valves have only
two possible states (close or open) and can be modeled in
(P) with a binary variable for each time step (see e.g. [4]).

The definition of configuration can then be extended to
A = K ∪ V the set of pumps and valves, saying that a
valve is active if it is close. Furthermore, according to [12],
Ft(I

s, H∗) has still at most one solution.
The presence of variable-speed pumps or pressure-reducing

valves deserves more attention as they admit a continuous
range of operation modes. A variable-speed pump is either
off or operated within an allowed range of speed. For a
pressure-reducing valve, the amount of pressure reduction
is chosen within a given range and a binary state indicates
the direction of the flow (see e.g. [15]). As suggested in [5],
we propose to approximate the allowed operation range
of each pressure-reducing valve or variable-speed pump a
by a discrete set of sample values Aa. The set A is then
augmented with these sample values and a configuration is
now defined as s ⊆ A with |s∩Aa| ≤ 1. Once pump speeds
and pressure reductions are fixed in configuration s, the
Newton method can quickly solve Ft(I

s, H∗) as before.
Hence, the approximation model (P ∗) and configuration

processing scheme apply to a comprehensive class of water
networks. Still, the number of configurations to evaluate
grows exponentially with the number of operable elements,
unless the network partition separates these elements in
small sets so that the growth becomes near linear.

4 BENDERS DECOMPOSITION-
BASED HEURISTIC

This section describes an adaptation of the combinatorial
Benders decomposition of [10] to search, in the neighbor-
hood of the approximated solutions of (P ∗), feasible solu-
tions to the pump scheduling problem with pump aging
constraints.

4.1 Pump aging

While in practice pumps can be operated at any time,
too frequent switches are prohibited to prevent premature
pump aging. Ghaddar et al. [6] proposed to enforce the
following constraints in model (P) for each pump k ∈ K:∑

t∈T

ykt ≤ N, (10)

ykt ≥ xkt − xk(t−1), t ∈ T (11)

xkt′ ≥ ykt, t ∈ T , t′ ∈ [t, t+ τ1] (12)

zkt ≥ xk(t−1) − xkt, t ∈ T (13)

xkt′ ≤ 1− zkt, t ∈ T , t′ ∈ [t, t+ τ0] (14)

with ykt (resp. zkt) a binary variable equal to 1 if pump
k ∈ K is switched on (resp. off) at time t, N the maximal
number of times a pump can be switched on, τ1 (resp. τ0)
the minimum continuous duration a pump is on (resp. off).

Naoum-Sawaya et al. [10] designed a combinatorial Ben-
ders decomposition approach, where the master integer
linear program denoted (M) is initialized with the ag-
ing constraints (10)-(14) alone. At each iteration, (M) re-
turns a candidate schedule X ∈ {0, 1}K×T to evaluate: the
EPANET simulator computes the hydraulic balance and
power consumption at each time step, sequentially. If a
hydraulic constraint is violated or if the partial cost exceeds
the best solution known so far at a given time t̄ ∈ T , then
the partial schedule up to time t̄ is discarded from the

15

search by adding a no-good cut to master (M):

t̄∑
t=1

 ∑
k∈K

Xkt=0

xkt +
∑
k∈K

Xkt=1

(1− xkt)

 ≥ 1. (15)

The cut is also added with t̄ = T each time X proves to be
the new incumbent, i.e. an improving solution. The algo-
rithm stops when (M) becomes unfeasible. The algorithm
theoretically converges to a certified optimal schedule, but
its slow convergence requires to limit the computation time.

4.2 Truncated Benders decomposition

In the original method [10], the objective function of master
(M) is initialized to 0, then systematically redefined as the
minimal distance to the new incumbent, so as to search
the next candidate in a neighborhood. Thus, the algorithm
improves the solution progressively, as in a local search,
but it may start with a low quality solution. We propose to
adapt this algorithm to conduct it explicitly as a heuristic
to compute good solutions fast. To this end, we initialize the
algorithm with an optimal approximate solution δ∗ of (P ∗),
then adjust the distance function, i.e. the neighborhood,
iteratively until finding a feasible solution.

More precisely, we first compute the duration δ∗at =∑
s∈S∗

t
Isaδ

∗
st of activation of any pump or valve a ∈ A

during time step t ∈ T in the approximated solution. We
expect that, in an optimal schedule x, if δ∗at is close to
∆t then a is active during t (i.e. xat = 1), and that, if
δ∗at is close to 0 then a is inactive during t (i.e. xat =
0). Furthermore, we estimate that the daily duration of
activation

∑
t∈T xat∆t of a is close to

∑
t∈T δ∗at. Hence,

the minimization criterion of (M) is initialized to:∑
a∈A

∑
t∈T

(∆at −xat∆t)
2 +

∑
a∈A

(
∑
t∈T

∆at −
∑
t∈T

xat∆t)
2 (16)

with ∆at =

{
δ∗at if δ∗at ∈ {0,∆t}
αat otherwise,

and αat ∈ {0, δ∗at,∆t}

is a parameter of diversification which is initialized to δ∗at
to search first around the approximated solution of (P ∗),
and is then updated randomly at each iteration.

Another difference with [10], is that we generalize the
method to networks with variable-speed pumps or pressure-
reducing valves. In this context, we propose to use a non-
convex NLP solver instead of the EPANET simulator to
evaluate the candidate solutions X ∈ {0, 1}A×T by solv-
ing the slave program, i.e. the standard MINLP formula-
tion with the binary variables x fixed to values X. Note
here that, unlike for the processing of the configurations
(see Section 3.4), we do not extend the definition of the
set of operable elements A by discretizing the continuous
state range for variable-speed pumps and pressure-reducing
valves. Finally, because we run the Benders decomposition
as a heuristic, the slave problem is not required to be solved
at optimality. Hence, when the global optimization of the
restricted non-convex NLP is too time consuming, a fast
local optimization solver can be used instead.

5 COMPUTATIONAL RESULTS

We experimented the full heuristic, sketched in Algorithm 1,
on two benchmark sets: Poormond [6] and Van Zyl [17].
In this section, we evaluate the solutions in comparison

Algorithm 1: Heuristic for (P)

1 for C ∈ CC(G′), s ⊆ A ∩ LC , t ∈ T do
2 solve F(Is, H∗) with Newton method

3 compute P s
t , R

s
t by summation ∀s ∈ S∗

t , t ∈ T
4 solve LP (P ∗): get δ∗

5 initialize (M): min (16) s.t. (10)-(14)

6 while unfeasible do
7 solve MIQP (M): get X

8 simulate X with Newton method or NLP solver

9 if X feasible then
10 return X

11 else
12 add cut (15) to (M)

13 update (16)

Figure 2: The Van Zyl network

with the best solutions known so far for these instances
(see [3] for a comparative analysis of the results published
in [3, 6, 10, 13] on Poormond).

5.1 Experimental set-up

The Poormond network, depicted in Figure 1, was derived
by [6] from the real water distribution network of Rich-
mond, England. It is a medium-size network with 47 nodes
including 1 source and 5 tanks, 44 pipes, 7 fixed-speed
pumps and 4 gate valves. The benchmark set has five daily
instances, denoted from P21 to P25, each corresponding
to the real dynamic power tariff, available at [14], that
occurred each day in range May 21-25, 2013. The time
horizon is discretized in T = 48 time steps of ∆t = 1/2
hour each. Pumps are required to stay on for at least 1
hour (τ1 = 2), off for at least 1/2 hour (τ0 = 1), and to be
activated at most N = 6 times. The Van Zyl network [17],
depicted in Figure 2, is a fictive, small but complex network
with 1 source, 2 tanks, 15 pipes, 1 check valve and 3 pumps
assumed to be variable-speed pumps after [8]. We experi-
mented on this network using the same 5 tariff profiles set
at the same time resolution. We denote the five instances
Z21 to Z25 accordingly.

The computations were performed on a Xeon E5-2650V4
2.2GHz with 254 GB RAM. The processing of the configu-
rations, including the Newton method, was implemented in
Python, while the default LP solver and MINLP solver of
Gurobi 7.0.2 were run on one thread to solve (P ∗) and (M)
respectively. For the Van Zyl instances, the slave problems
of the Benders decomposition were solved with the default
non-convex NLP local solver of Bonmin [1]. The step to

16

discretize the allowed pump speed range was empirically
fixed to |Aa| = 6.

The heuristic solutions are compared with the best solu-
tions returned by the branch-and-cut method of [3] running
in 1 hour under the same experimental set-up. In [3], a
MILP outer approximation of (P) is solved with a LP-
branch and bound augmented with user cuts: at each inte-
ger node, the corresponding pump configuration is evalu-
ated as in the Benders decomposition here described, and
no-good cuts generated accordingly. To make the com-
parison of the results valid, we implemented the exact
evaluation procedure described in [3]. It includes, for the
Poormond instances, a primal heuristic which slightly ad-
justs the duration of activation of the pumps to correct
the small bound violations induced by the fixed time dis-
cretization.

5.2 Quality of the approximation

Figure 3 illustrates on instance P21, for each of the 7 pumps
of the Poormond network, the optimal pump schedule δ∗

returned by (P ∗) after recomputation of the real flows and
heads (in blue), and the feasible pump schedule returned
by our heuristic (in pink). Figure 4 depicts the water filling
profiles of the 5 tanks for both solutions and, below, the
dynamic electricity tariff profile.

Figure 3: Approximated and feasible schedules

We observe for the approximated solution on Figure 4
that the water levels in the tanks (the blue curves) only
slightly fall outside the allowed range (delimited by the
black lines) which indicates that the approximated pump
schedule is close to be practically feasible. When consid-
ering the modelling errors and the security margins and
ignoring the formal pump aging constraints, this approx-
imated schedule could probably directly be applied as a
command for the real-time control of the pumps.

The near feasibility of the solution attests the relevancy
of approximating the tank heads to their median values.

Figure 4: Tank levels in the approximated and fea-
sible solutions

Indeed, we observe an average relative deviation lower than
1% between the flow profiles delivered by the pumps, before
and after recomputation with the actual tank heads. This
confirms our hypothesis, we observed on a sample configu-
ration, that the error on the flow due to this approximation
is significant only when some tanks are empty while oth-
ers are full. Here, on the contrary and as expected, the
filling profiles of the 5 tanks all follow the same dynamic
generated by the variable electricity tariff.

Perhaps more surprising, we observe on Figure 3 that
the approximated and feasible pump schedules overlap ex-
tensively, from 77% for pump 5C to 100% for pump 1A,
which indicates that the approximated solution mostly sat-
isfies the fixed time discretization constraint of model (P)
and the pump aging constraints, although they are entirely
relaxed in (P ∗). Actually, because (P ∗) has comparatively
few constraints (O(T |J |)), a basic solution has then few
columns. In other words, only a fraction of the configu-
rations over all the time steps have a non-zero duration
in the optimal approximated schedule. For instance P21
depicted here, only 104 configurations are active which
corresponds to 3% of the generated configurations, and, on
the 48 time steps, 15 are associated to an unique configura-
tion. This explains why pumps are activated at reasonable
frequency, from 1 for pump 1A to 21 for pump 4B, in the
approximated solution.

Finally as the approximated and feasible solutions are
close, their costs (111.03 euros for the former and 117.50 for
the latter) present a moderate gap (+6%). We observed the
same proximity on all the Poormond instances and on all
the Van Zyl instances too. For example, in instance Z21, the
approximated solution has only 50 active configurations on
more than 20,000 candidates over the 48 times steps and it
satisfies all the pump aging constraints. Only one iteration
of the Benders decomposition and a slight adjustment of

17

Computation time (s) Cost (euros)

Day conf LP TBD Total TBD best[3] TBD/LB best/LB

P21 1.6 <0.1 16.3 17.9 117.50 112.48 8.2% 4.1%
P22 1.6 <0.1 11.2 12.8 118.55 116.49 5.6% 3.9%
P23 1.6 <0.1 8.0 9.6 120.93 120.85 4.1% 4.0%
P24 1.6 <0.1 10.9 12.5 137.05 134.99 4.6% 3.1%
P25 1.6 <0.1 21.2 22.8 98.74 92.53 9.8% 3.8%

Z21 2.1 <0.1 0.7 2.8 220.60 222.66 14.9% 15.7%
Z22 2.1 <0.1 1.7 3.8 230.07 230.69 14.1% 14.3%
Z23 2.1 <0.1 1.4 3.5 240.67 240.93 13.7% 13.8%
Z24 2.1 <0.1 0.6 2.6 267.77 268.91 14.4% 14.7%
Z25 2.1 <0.1 0.7 2.8 188.52 190.29 14.5% 15.3%

Table 1: Results of the heuristic

the pump speeds were needed to retrieve a feasible solution
with a +4.2% cost deviation.

5.3 Performance of the heuristic

Table 1 summarizes the computational results of our heuris-
tic on the 10 instances of Poormond and Van Zyl. On the
left part, the computation times (in seconds) are detailed
for each algorithmic component: the preprocessing of the
configurations (conf), the solution of the approximated
model (P ∗) (LP), and the truncated Benders decomposi-
tion (TBD). The right part of the table gives the costs (in
euros) of the solutions returned by our heuristic (TBD)
compared to the solutions of the branch-and-cut approach
returned in 1 hour (best [3]); TBD/LB and best/LB de-
note the respective optimality gaps to the best know lower
bound also returned by the branch-and-cut in 1 hour.

We observe that the heuristic computed good quality
solutions fast. About 2 seconds were required to generate
an approximated schedule, mostly to preprocess the set of
configurations since solving the LP was immediate. The
graph partition has a great impact on the number of config-
urations to process. On the Van Zyl network, for example,
the partition creates two components: the one with all
the operable elements but no demand – resulting in 456
configurations which are identical for each time step (even
for each instance, actually) – and the other with the unique
demand node, only two pipes and no operable elements –
resulting in one configuration for each time step. Hence, we
computed 456 + 48 hydraulic balances instead of 456× 48.

The truncated Benders decomposition ran in 14 seconds
in average on Poormond and in 1 second on Van Zyl. It
stopped with a feasible solution after the first iteration,
except for instance P25 which required two iterations. On
Poormond, the costs of the heuristic solutions were, in
average, 2.9% higher than the best solutions, and up to
5% higher for instance P25. In comparison, the branch-
and-cut required 306 seconds in average to compute a first
feasible solution of comparable quality (at 2.6% of the final
solutions). According to [3], our heuristic solutions also
improve upon the solutions reported by [6] and [10] after 1
hour of computation. On Van Zyl, the heuristic computed
in 3 seconds, in average, solutions which slightly improve
upon the solutions found in 1 hour by the branch-and-cut.
The average optimality gap is 14.3%. In comparison, [8]
reported approximated solutions with a 30% optimality
gap computed in 5 minutes by solving a MILP obtained
by piecewise linearization of the non-convex constraints in
(P).

6 CONCLUSION

We formulated the pump scheduling problem in water dis-
tribution network as a new generic non-compact linear
program, based on the approximation of the head at the
water tanks and on the relaxation of the pump aging con-
straints. This approximation turned out to be both tight
and easy to solve when experimented on two networks with
different characteristics. We were then able to quickly find
low cost feasible solutions by searching in a neighborhood of
the approximated solutions. These results lead us to believe
that this method could deal with networks larger than with
the currently known approaches. Failing to dispose of such
study cases, we envisage to build new realistic instances
to confirm our claim. Perspectives to extend our method
are, first, to exploit the new LP approximation in a global
optimization approach, and, second, to exploit historical
data of network operations to build the configuration set.

REFERENCES
[1] Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann,

I., Laird, C., Lee, J., Lodi, A., Margot, F., and Sawaya, N.
An algorithmic framework for convex mixed integer nonlinear
programs. Discrete Optimization 5, 2 (2008), 186–204.

[2] Bonvin, G., Demassey, S., Le Pape, C., Mäızi, N., Mazauric, V.,
and Samperio, A. A convex mathematical program for pump
scheduling in a class of branched water networks. Applied
Energy 185 (2017), 1702 – 1711.

[3] Bonvin, G., Demassey, S., and Lodi, A. Pump scheduling in
drinking water distribution networks with an LP/NLP-based
branch and bound. Tech. rep., CMA, Mines ParisTech, 2018.
http://sofdem.github.io/art/bonvin19lpnlp.pdf.

[4] Burgschweiger, J., Gnädig, B., and Steinbach, M. Optimiza-
tion models for operative planning in drinking water networks.
Optimization and Engineering 10, 1 (2009), 43–73.

[5] D’Ambrosio, C., Lodi, A., Wiese, S., and Bragalli, C. Mathe-
matical programming techniques in water network optimization.
European J. of Operational Research 243, 3 (2015), 774 – 788.

[6] Ghaddar, B., Naoum-Sawaya, J., Kishimoto, A., Taheri, N., and
Eck, B. A Lagrangian decomposition approach for the pump
scheduling problem in water networks. European Journal of
Operational Research 241, 2 (2015), 490 – 501.

[7] Mackle, G., Savic, G. A., and Walters, G. A. Application
of genetic algorithms to pump scheduling for water supply.
In First International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications (1995),
pp. 400–405.

[8] Menke, R., Abraham, E., and Stoianov, I. Modeling variable
speed pumps for optimal pump scheduling. In World Environ-
mental and Water Resources Congress (2016), pp. 199–209.

[9] Morsi, A., Geißler, B., and Martin, A. Mixed integer optimiza-
tion of water supply networks. In Mathematical Optimization
of Water Networks. Springer, 2012, pp. 35–54.

[10] Naoum-Sawaya, J., Ghaddar, B., Arandia, E., and Eck, B.
Simulation-optimization approaches for water pump scheduling
and pipe replacement problems. European Journal of Opera-
tional Research 246, 1 (2015), 293–306.

[11] Rossman, L. EPANET, 2000.
[12] Salgado-Castro, R. O. Computer modelling of water supply

distribution networks using the gradient method. PhD thesis,
Newcastle University, 1988.

[13] Shi, H., and You, F. Energy optimization of water supply
system scheduling: Novel MINLP model and efficient global
optimization algorithm. AIChE J. 62, 12 (2016), 4277–4296.

[14] Single Electricity Market Operator. http://www.sem-o.com.
[accessed: 10-Nov-2016].

[15] Skworcow, P., Paluszczyszyn, D., and Ulanicki, B. Pump
schedules optimisation with pressure aspects in complex large-
scale water distribution systems. Drinking Water Engineering
and Science 7, 1 (2014), 53–62.

[16] Todini, E., and Pilati, S. A gradient algorithm for the analysis
of pipe networks. In Computer Applications in Water Supply:
Vol. 1—systems Analysis and Simulation, B. Coulbeck and
C.-H. Orr, Eds. Research Studies Press Ltd., 1988, pp. 1–20.

[17] van Zyl, J., Savic, D., and Walters, G. Operational opti-
mization of water distribution systems using a hybrid genetic
algorithm. J. Water Res. Plann. Manage. (2004), 160.

18

Risk averse management on strategic multistage operational
two-stage stochastic 0-1 optimization for the Rapid Transit

Network Design (RTND) problem
Luis Cadarso

European Institute for Aviation
Training and Accreditation (EIATA),

Universidad Rey Juan Carlos
Fuenlabrada, Madrid, Spain

luis.cadarso@urjc.es

Laureano F. Escudero
Estadística e Investigación

Operativa, Universidad Rey Juan
Carlos

Móstoles, Madrid, Spain
laureano.escudero@urjc.es

Ángel Marín
Aeronautical and Space Engineering
School, Universidad Politécnica de

Madrid
Madrid, Spain

angel.marin@upm.es

ABSTRACT
The Rapid Transit Network Design planning problem along a
multi-period time horizon is treated by considering uncertainty
in passenger demand, strategic costs and network disruption. The
problem has strategic decisions about the timing to construct
stations and edges, and operational decisions on the available
network at the periods. The uncertainty in the strategic side is
represented in a multistage scenario tree, while the uncertainty
in the operational side is represented in two-stage scenario trees
which are rooted with strategic nodes. The variability in the
strategic cost along the time horizon as well as the variability
in the lost passenger demand to the operational transit system
current conditions could be very high. In order to avoid the nega-
tive impacts of low probability but high cost or high lost demand
scenarios, some risk reduction measures should be considered.
In this work the expected conditional stochastic dominance func-
tional is modeled in two flavors. First, controlling the cost in
the strategic scenarios in selected groups and clusters and sec-
ond, controlling the lost passenger demand in the operational
scenarios. Both flavors are time consistent.

KEYWORDS
Transportation, Rapid Transit Network Design, multistage multi-
horizon scenario trees, 0-1 models, risk averse, matheuristic al-
gorithms.

1 INTRODUCTION
Transportation systems are spatially distributed systems, which
are vulnerable to different incidents that may occur. Despite the
unpredictable nature of these incidents in terms of location, time
and magnitude, effective mitigation methods should be designed
from the very first strategic stage of design.

When designing a transport network, decisions are made ac-
cording to an expected value for network state variables, such as
infrastructure, vehicle, and traffic conditions, which are uncertain
in a planning horizon of up to decades.

In order to find resilient network designs, different research
approaches can be used, such as deterministic static, two-stage
stochastic, multistage stochastic and robust optimization, among
others. Robust optimization features solutions which are immune
to data uncertainty [8, 23]. However, these solutions have been
demonstrated to be too conservative and, then, expensive on a
daily basis [11]. The key is that the recovery of the system in

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

different operational scenarios in a given strategic scenario may
not be as expensive as the introduction of traditional robustness
concepts.

It is also well known that deterministic models do not provide
high quality solutions if long planning horizons are considered,
where variability of data is prominent. It should be pointed out
that the optimization of the Risk Neutral (RN) model has the
drawback of providing a solution that ignores the potential vari-
ability of the objective function value in the scenarios and, so, the
occurrence of low-probability high-cost scenarios. Alternatively,
risk averse measures could be considered.

This work aims at advancing the state-of-the-art of rapid tran-
sit network design by introducing a novel modeling approach
for a stochastic recoverable robustness.

Review of the State-of-the-Art. In the context of rail Rapid
Transit Network Design (RTND), a complete review is recently
given in [27]. There is an extensive literature about determin-
istic RTND problems, where all parameters are assumed to be
known with certainty [7, 10, 12, 13, 22, 25, 29, 30]. But, stochastic
optimization is currently one of the most robust tools for deci-
sion making and broadly used in real-world applications in a
wide range of problems from different areas (energy, finance,
production, distribution, supply chain management, etc.). It is
well known that an optimization (say, minimization) problem
under uncertainty with a finite number of possible supporting
scenarios has a Deterministic Equivalent Model (DEM). Tradi-
tionally, special attention has been given to optimizing the DEM
by minimizing the objective function expected value in the sce-
narios, subject to the satisfaction of all the constraints, i.e., the
so-called Risk Neutral (RN) approach. Note that large DEMs can
be solved by using different types of decomposition approaches,
e.g., see in [1]. There have been many attempts with two-stage
problems in the field of RTND, which are approximations of real
problems [11, 17, 26]. Other rail related problems have been also
addressed with a two-stage RN approach [9, 15, 16, 28]. Recently,
in a series of works [4–6], an alternative approach so-named
Service Reliability is introduced for solving large-scale mixed 0-1
models with uncertain passenger demand in RTND.

Let us point out that the optimization of the RN model has
the drawback of providing a solution that ignores the potential
variability of the objective function value in the scenarios and, so,
the occurrence of low-probability high-cost scenarios. Alterna-
tively, risk averse measures could be considered. A computational
comparison of some risk averse measures is presented in [2].
Several versions of the multistage mixed 0-1 time-inconsistent
risk averse measure based on the Stochastic Dominance (SD)
functional introduced in [18] have been presented in [19], and a

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 19 DOI: 10.5441/002/inoc.2019.05

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.05

time-consistent version of the multistage mixed 0-1 risk averse
SD measure is introduced in [21].

For strategic problems (such as RTND), strategic decisions
should not depend, even in part, on operational uncertainties in
the previous periods. Long-term uncertainty, basically passenger
demand and investment costs, should be represented in a multi-
stage scenario tree, where short-term operational uncertainty, ba-
sically RTN elements’ disruptions, should be represented by con-
sidering sub-trees rooted with the strategic nodes. The mixture of
those trees may be named as (strategic) multistage (operational)
multi-horizon tree. It is worthy to point out that its structure
strongly impacts on the model design. Additionally, that type of
model should also impact on the decomposition methodologies
for problem solving in an affordable effort. Partially due the prob-
lem difficulty, there is not a wide literature on the subject. As
we know [20, 24, 33] are the first works dealing with multistage
multi-horizon trees. A specific application is presented in [33]
for a gas transportation network, where the risk averse measure
Average Value-at-Risk is considered. A multistage multi-horizon
modeling is presented in [3] for an electricity transmission and
generation network capacity expansion planning, where the risk
averse measure Time Stochastic Dominance is considered. [14] is
the first work as we know that addresses the RTND problem as a
RN model in a multistage scenario tree by considering dependent
stage-wise non-Markovian scenarios with a mixture of the sets
of strategic and operational uncertain parameters.

In order to avoid the negative impacts of low probability but
high cost or high lost demand scenarios, this work presents a
strategic multistage operational multi-horizon 0-1 stochastic risk
averse optimization model for the RTND problem. The expected
conditional stochastic dominance functional is modeled in two
flavors. First, controlling the cost in the strategic scenarios in
selected groups and clusters and second, controlling the lost
passenger demand in the operational scenarios. Both flavors are
time consistent.

This short version of the paper is organized as follows. Section
2 presents the main elements of the scenario tree partitioned in
the strategic multistage tree and the operational two-sage trees
rooted in nodes in the strategic tree. Section 3 is devoted to the
meta model where strategic and operational constraints are con-
sidered. Section 4 presents several time-consistent risk averse
measures based on the stochastic dominance functional. And, Sec-
tions 5 and 6 sketch out the solution approach and computational
experiments, respectively.

2 STRATEGIC MULTISTAGE AND
OPERATIONAL TWO-STAGE SCENARIO
TREES

For completeness let us consider the main elements of the prob-
lem inspired in [14, 20]. To represent the uncertainty a scenario
analysis approach is used, where the scenario set can be visual-
ized in a tree. Let E be the set of stages along the time horizon,
E = |E |, Te be the set of periods (usually, years, semesters) in
stage e , for e ∈ E, T be the set of periods in the time horizon,
such that T = ∪e ∈ETe , T = |T |, and Ω be the finite set of rep-
resentative strategic scenarios. A scenario ω ∈ Ω is a particular
realization of the uncertain strategic parameters along the time
horizon, it is represented in the tree as a root-to-leaf path. A
node of the strategic scenario tree represents an event, where
it is assumed that the realization of the strategic uncertain pa-
rameters and strategic decision variables take place at the first

Figure 1: Strategic multistage scenario tree with opera-
tional two-stage scenario trees

period of the related stage. Notice that the group of scenarios
that have the same realization of the uncertain parameters up to
any given stage have the same value for the strategic decision
variables up to that stage and, thus, the well-known nonantic-
ipativity principle is satisfied. Let n and N denote a node and
the set of lexicographically numbered nodes {1, . . . , |N |} in the
tree, and Ne is the set of nodes that belong to stage e , such that
N = ∪e ∈ENe . Let also Ωn ⊆ Ω denote the group of scenarios
with one-to-one correspondence with node n in the tree. Each
node represents a point in time where a strategic decision can be
made. Once a decision is made, some contingencies may occur,
and information related to those contingencies is available at the
beginning of the next stage.

The additional notation to represent the strategic multistage
scenario tree is as follows:

te , first period in the lexicographically ordered setTe in stage
e , for e ∈ E.

en , stage to which node n belongs to, for n ∈ N .
An , set of nodes composed of node n and its ancestors in the

tree, for n ∈ N . Note: A1 = {1}.
Ãn , set of nodes composed of noden and its ancestorswhose re-

lated variables (i.e., representing strategic decisions) have
nonzero elements in the constraints in node n, for n ∈ N .
Note: Ãn ⊆ An .

Sn , set of successor nodes of node n in the tree, for n ∈ N .
Sn1 , set of immediate successor nodes to noden, forn ∈ Ne , e ∈

E. Note: Sn1 ⊆ Sn .
σn , immediate ancestor node to node n, thus, σn ∈ An , for

n ∈ N \ {1}.
wω , weight or probability assigned to scenario ω, for ω ∈ Ω,

andwn =
∑
ω ∈Ωn wω , for n ∈ N .

Now, consider any node n ∈ N also as a representative of
any operational period of stage en . The operational uncertainty
attached to node n is represented by a finite set of scenarios. They
are so-called operational scenarios in a two-stage tree rooted with
node n, and the realizations of the scenarios are, precisely, the
nodes in the second stage. A 7-node scenario tree is depicted in
Fig. 1.

In RTND problems, passenger demand may be considered as
the most important uncertain parameter, since its uncertainty is
the most independent one of the design of RTN; so, the strategic
multistage scenario tree is generated around it. Also assume
that the strategic (investment) cost is on some way correlated

20

with the passenger demand. Therefore, passenger demand and
investment cost are strategic uncertain parameters defined in
strategic nodes while RTN disruptions and operational cost are
operational uncertain parameters defined in operational nodes
(the ones in the second stage of the two-stage tree rooted with
strategic nodes). Thus, in order to have affordable dimensions
in the scenario tree from a computational point of view, as an
illustration consider E = 4 stages, with 5 periods, say years, each
one. On the other hand, assume that the number of strategic
immediate successor nodes of node n is |Sn1 | = 3 for en = 1, 2, 3
and, so, the cardinality of the scenario tree is |N | =

∑
e ∈E |Ne | =

1 + 3 + 9 + 27 = 40 nodes. Some additional notation related to
the RTN infrastructure is as follows:

I , set of RTN infrastructure elements to be constructed.
ℓi , latency, i.e., number of periods that are required between

the period when the construction starts for the RTN in-
frastructure element i (e.g., an edge as a connection of two
stations, a station in the network) and the period at which
it becomes available for operation.

Ii , set of RTN infrastructure elements whose construction
cannot start until element i is available (i.e. its construction
is over), for i ∈ I . Note: Ii ⊂ I .

J , set of RTN operational elements.
I j , set of RTN infrastructure elements that should be available

when operational element j is active, for j ∈ J . Note: I j ⊂ I .
The notation for the other elements in strategic node n and

its operational two-stage scenario tree is as follows, for n ∈ N :
ιni , strategic ancestor node related to RTN infrastructure el-

ement i , such that the period which it belongs to (i.e., te
where e ≡ eιni) is the latest period by which element i
can start its construction, so that it is available for use in
the RTN at any period in set Ten for strategic node n, for
n ∈ N , i ∈ I :

ιni = arдmaxq∈An {teq ∈ T : teq ≤ ten − ℓi }.

Πn , set of operational scenarios for the two-stage tree rooted
with strategic noden. As an illustrative case, assume |Πn | =

8 operational scenarios per each node n in the tree with
|N | = 40 strategic nodes in the case that have been illus-
trated above. So, in total, there are 320 uncertain situations
to be dealt with, being partitioned in 40 groups. It means
that there are 320 RTN operational submodels within the
strategic-operational one to be presented next. Many of
those submodels will probably have the same or a similar
topology.

wπ , weight or probability of operational scenario π , for π ∈

Πn , such that
∑
π ∈Πn w

π = 1.

3 STRATEGIC MULTISTAGE OPERATIONAL
TWO-STAGE STOCHASTIC RISK
NEUTRAL 0-1 MODEL

The Risk Neutral (RN) model that is introduced in this section
requires the following notation for the variables:
(xn)i , 0-1 step variable for RTN infrastructure element i in noden,

for i ∈ I . Its value is 1 if the element starts its construction
by period ten and otherwise, 0, forn ∈ N : ten ≤ T−ℓi , i ∈
I . It is a strategic variable. Let xn be the |I |-dimensional
vector of variables {(xn)i ∀i ∈ I }. Notice that (xn)i −

(xσ
n
)i = 1 means that element i starts is construction at

node n.
(yπ)j , 0-1 impulse variable for RTN operational element j in op-

erational node π , for π ∈ Πn, n ∈ N , j ∈ J . Its value is 1
if the element is active at operational scenario π in stage
en to which strategic node n belongs to and otherwise, 0.
It is an operational variable. Let yπ be the |J |-dimensional
vector of variables {(yπ)j ∀j ∈ J }.

Note: It is well-known that the modeling scheme where the step
x-variables are considered is stronger than the model where they
are replaced with impulse variables.

The parameters are as follows:
(an)i , objective function coefficient (i.e., investment cost) related

to the RTN infrastructure element i if it starts its construc-
tion at node n, for n ∈ N : ten ≤ T −ℓi , i ∈ I . It is assumed
that the construction cost is made at the starting period
ten . Note: That assumption can be easily replaced with an
ad-hoc policy.

bπ , vector of the objective function coefficients (e.g., passenger
demand lost, among others) of the operational variables
in vector yπ , for π ∈ Πn, n ∈ N .

hns , rhs of the set of constraints related to strategic node n, for
n ∈ N .

A
q
n , constraint matrix for the variables in vector xq of ancestor

node q in the strategic constraints related to node n, for
q ∈ Ãn, n ∈ N .

hπo , rhs of the set of constraints related to operational scenario
π , for π ∈ Πn, n ∈ N .

Bπ , constraint matrix for the variables in vector yπ , for π ∈

Πn, n ∈ N .
k , interest rate by period.
The DEM RN 0-1 model can be expressed as follows:

z = min
∑
i ∈I

∑
n∈N :

ten ≤T−ℓi

1
(1 + k)ten

wn (an)i ((x
n)i − (xσ

n
)i)+

∑
n∈N

1
(1 + k)ten

wn |Ten |
∑
π ∈Πn

wπbπyπ ,

(1)
subject to∑

q∈Ãn
A
q
nx

q = hns ∀n ∈ N

(xσ
n
)i ≤ (xn)i ∀n ∈ N : ten ≤ T − ℓi , i ∈ I

(xn)i′ − (xσ
n
)i′ ≤ (x ι

n
i)i ∀n ∈ N : ten ≤ T − ℓi , i

′ ∈ Ii , i ∈ I

(yπ)j ≤ (x ι
n
i)i ∀π ∈ Πn, n ∈ N , i ∈ I j , j ∈ J

Bπyπ = hπo ∀π ∈ Πn, n ∈ N
(xn)i ∈ {0, 1} ∀n ∈ N : ten ≤ T − ℓi , i ∈ I
(yπ)j = 0 ∀π ∈ Πn, n ∈ N , j ∈ J
yπ ∈ {0, 1} ∀π ∈ Πn, n ∈ N , j ∈ J .

(2)

4 RISK AVERSE EXPECTED CONDITIONAL
STOCHASTIC DOMINANCE
FUNCTIONALS

There are some risk averse approaches that deal with risk man-
agement [31], see a computational comparison in [2]. Among
them, the Stochastic Dominance (SD)-based measures reduce the
risk of the negative impact of the solutions in non-wanted sce-
narios in a better way than the others under some circumstances.
See in [18, 32] its theoretical foundations, among others.

21

In a rapid transit network, the variability in cost along the
time horizon in the strategic scenarios (where the operational
scenarios are considered) and the variability in lost passenger
demand in the operational scenarios for the related strategic
node in the stages could be very high. In order to avoid the
negative impact of the solution in the scenarios, mainly those
with low probability and high cost or high lost demand, some
risk reduction measures should be considered.

Time-consistency
Roughly, a risk-averse measure is time-consistent if the solution
to be obtained from the submodel supported by a subtree rooted
with a node at a given stage in a multistage scenario tree is
the same as the one for that node and successors in the model
supported by the full multistage scenario tree.

The rationale behind a time-consistent risk measure is that the
solution value to be obtained in any node n and its successors for
the related submodel "‘solved"’ at stage en should have the same
value as in the original model "‘solved"’ at stage e = 1. Obviously,
the RN model given by (1) and (2) and the model given by (1),
(2) and (5) supported by the operational two-stage trees rooted
at the strategic nodes are time-consistent. Additionally, it is not
difficult to prove that the model given (1),(2),(3) and (5) is also
time-consistent; in another context, see [21].

Section 4.1 presents the expected conditional stochastic domi-
nance (ECSD) version for controlling the objective function value
(i.e., the overall strategic-operational cost) in the scenario groups
for modeler-driven subset of stages. Section 4.2 presents a sto-
chastic dominance (SD) risk averse functional for controlling the
objective function value (i.e., the overall strategic-operational
cost) in a modeler-driven set of scenario clusters. The conditions
to be satisfied by the SD functional in order to have the time-
consistency property are also given. And Section 4.3 presents the
ECSD version for controlling the lost passenger demand in the
operational scenarios.

4.1 Objective function excess risk reduction
for strategic scenario groups

The risk averse measure ECSD for the Net Present Value (NPV) of
the expected objective function value composed of the expected
investment cost on stations and edges of the new network (for
short, expected strategic cost) and the expected operational cost
of the available infrastructure elements of the new network for
each strategic node in the whole time horizon requires the fol-
lowing additional sets of modeler-driven scenario groups and
profiles:
ESt , subset of stages in set E, whose scenario groups with one-

to-one correspondence with strategic nodes (including the
related operational ones) are to be considered.

Pn , set of profiles for scenario group Ωn , for n ∈ Ne , e ∈ ESt .
For each profile p ∈ Pn , let the following modeler-driven

parameters:
ϕp , objective function (i.e., cost) threshold in the whole time

horizon to consider for any scenario in group Ωn (i.e.,
groupwith one-to-one correspondencewith strategic node
n), where the operational scenarios in set Πn are taken
into account.

s̃p , upper bound of the expected cost excess over threshold
ϕp for any scenario ω in group Ωn .

sp , upper bound of the expected cost excess over threshold
ϕp in group Ωn as a whole.

The profile contents are inspired in the second-order stochas-
tic dominance functional induced by integer-linear recourse for
multistage stochastic problems, see its time-consistent version
in [21].

The variable for pair (ω,p), where ω is a strategic scenario in
group Ωn and p is the index of profile in Pn is as follows:
sω ,p , continuous variable that takes the expected cost excess

over threshold ϕp in strategic scenario ω in group Ωn ,
where the operational scenarios in set Πn are taken into
account.

The objective function (i.e., overall strategic-operational cost)
risk reduction ECSD constraint system can be expressed as:∑

i ∈I

∑
q∈Aω :

teq ≤T−ℓi

1
(1 + k)teq

(aq)i ((x
q)i − (xσ

q
)i)+

∑
q∈Aω

1
(1 + k)teq

|Teq |
∑
π ∈Πq

wπbπyπ − sω ,p ≤ ϕp and

0 ≤ sω ,p ≤ s̃p ∀ω ∈ Ωn, p ∈ Pn, n ∈ Ne , e ∈ ESt∑
ω ∈Ωn

(wω/wn)sω ,p ≤ sp ∀p ∈ Pn, n ∈ Ne , e ∈ ESt .

(3)
Notice that the key element in constraint system (3) is that

those scenario-cross constraints are related to scenarios that
belong to the same group at any stage in set ESt .

4.2 Objective function excess risk reduction
for strategic scenario clusters

A risk reduction functional for the objective function value in
scenario clusters is presented in this sectionwith a similar scheme
as the one presented in the previous section for the scenario
groups with one-to-one correspondence with a modeler-driven
stage subset. So, it has similar notation for the risk reduction
profiles. The difference between both functionals is that, now,
the strategic scenarios to consider are clustered according to
a modeler-driven criterion. So, let C denote the set of scenario
clusters, and Ωc is the set of strategic scenarios in the cluster
indexed with c , for c ∈ C . There is a high flexibility on the
structuring of the clusters, i.e., (a) a scenario could belong to
more than one cluster, and (b) more than one cluster may have
one-to-one correspondence with the same strategic node.

Let Pc denote the set of profiles for scenario cluster Ωc , for
c ∈ C . So, for each profilep ∈ Pc , let the followingmodeler-driven
parameters:
ϕp , Objective function (i.e., cost) threshold in the whole time

horizon to consider for any scenario in cluster Ωc , where
scenario ω, for ω ∈ Ωc includes the strategic nodes in
it ancestor path down to the root node in the strategic
multistage tree, Aω , so that the operational scenarios in
set Πq are taken into account, for q ∈ Aω .

s̃p , upper bound of the expected cost excess over threshold
ϕp for any scenario ω in cluster Ωc .

sp , upper bound of the expected cost excess over threshold
ϕp in cluster Ωc as a whole.

The variable for pair (ω,p), where ω is a strategic scenario in
cluster Ωc and p is the index of profile in Pc is as follows:
sω ,p , continuous variable that takes the expected cost excess

over threshold ϕp in strategic scenario ω in cluster Ωc ,

22

where the operational scenarios in set Πq are taken into
account.

The risk reduction stochastic dominance constraint system
related to the objective function (i.e., overall strategic-operational
cost) can be expressed as:

∑
i ∈I

∑
q∈Aω :

teq ≤T−ℓi

1
(1 + k)teq

(aq)i ((x
q)i − (xσ

q
)i)+

∑
q∈Aω

1
(1 + k)teq

|Teq |
∑
π ∈Πq

wπbπyπ − sω ,p ≤ ϕp and

0 ≤ sω ,p ≤ s̃p ∀ω ∈ Ωc , p ∈ Pc , c ∈ C∑
ω ∈Ωc

(wω/wc)s
ω ,p ≤ sp ∀p ∈ Pc , c ∈ C,

(4)
wherewc =

∑
ω ∈Ωc w

ω for c ∈ C .
Notice that the key element in constraint system (4) is similar

to the one in system (3), here, those scenario-cross constraints
are related to scenarios that belong to the same cluster.

It is worth pointing out that the risk reduction functional given
in system (4) is a time-consistent one, provided that the following
conditions are satisfied:

(1) The scenarios do not overlap in the clusters, i.e.,Ωc∩Ωc ′ =

∅ for any pair c, c ′ ∈ C : c , c ′.
(2) Each scenario cluster Ωc for c ∈ C is included in some

scenario strategic group Ωn , i.e., ∃n ∈ Ne : e ∈ E such
that Ωc ⊆ Ωn, c ∈ C .

It is also worth pointing out that the time-consistency of the
functional does not prevent that any scenario group is partitioned
in several scenario clusters.

4.3 Risk reduction for the lost passenger
demand at selected strategic nodes

The risk averse measure ECSD is specialized in this section for
risk reduction in the operational scenario set Πn, n ∈ N . Here,
the function to consider is (the operational one related to) the
passenger demand lost to the current transport system in the
operational scenarios in the strategic nodes of a subset os stages.

The operational-based ECSD requires the following additional
sets and elements for modeler-driven strategic nodes:

EOp , subset of stages in set E, whose passenger demand lost is
to be reduced. Note: ESt ∩ EOp could be an empty set.

W , passenger groups defined by origin/destination (o/d) pairs.
дπw , number of passengers in groupw , forw ∈W . Notice that

its demand could be lost; it is a parameter that belongs to
the objective function operational vector bπ .

f πw , a 0-1 variable, such that its value 1 means that passen-
ger groupw is lost to the current network in operational
scenario π and otherwise, 0, for w ∈W , π ∈ Πn, n ∈ N .
Note: Variable f πw belongs to operational variables vector
yπ .

Pn , set of profiles that are associated with operational scenario
set Πn , for n ∈ N e , e ∈ EOp , instead of been associated
with strategic scenario group Ωn as it is presented in Sec-
tion 4.1.

For each profile p ∈ Pn , the following parameters are required:
γp , passenger demand lost threshold to consider in any oper-

ational scenario π , for π ∈ Πn .

s̃p , upper bound of the demand lost excess over threshold γp
in any operational node π , for π ∈ Πn .

sp , upper bound of the expected demand lost excess over
threshold γp in set Πn .

The variable for pair (π ,p), where π is an operational node
and p is the index of a profile in strategic node n, for p ∈ Pn, π ∈

Πn, n ∈ N e , is as follows for stage e , for e ∈ EOp :
sπ ,p , continuous variable that takes the passenger demand lost

over threshold γp in operational scenario π , for π ∈ Πn .
The risk reduction ECSD constraint system related to the

(operational) passenger demand lost can be expressed
1

(1 + k)te
|Te |

∑
w ∈W

дπw f πw − sπ ,p ≤ γp and

0 ≤ sπ ,p ≤ s̃p ∀π ∈ Πn, p ∈ Pn, n ∈ N e , e ∈ EOp∑
π ∈Πn

wπ sπ ,p ≤ sp ∀p ∈ Pn, n ∈ N e , e ∈ EOp .

(5)

So, the ECSD model that is proposed in this work can be
expressed as the expected cost (1) to minimize, subject to the
strategic node-based constraint system (2), the one for linking
strategic and operational variables and the operational node-
based constraint system, plus the cross strategic scenario group
and operational set based constraint systems (3) and (5), respec-
tively.

5 SOLUTION APPROACH
Given the problem’s complexity and the huge model’s dimen-
sions (due to the RTND static model as well as the potentially
high number of scenario nodes in the multistage setting), it is
unrealistic to seek for an optimal solution, even by considering
decomposition approaches for problem solving. So, a decom-
position approach is required for obtaining a (hopefully, good)
feasible solution where its optimality gap is guaranteed.

A version of the matheuristic FLAggA (that stands for Fix-and-
Lazy Aggregated / de-aggregated Algorithm) [14] is presented in
the full paper to deal with the risk averse measures represented
in the constraint systems (3), (4) and (5).

6 COMPUTATIONAL EXPERIMENT
This section introduces the computational experiment, whose
results are not detailed due to space limitations. It is based on
the RTN so-called R1, see [29], which has also been used in
[10, 11, 17, 25], among others. It features 9 nodes, 15 edges and 72
passenger groups. All previous efforts for problem solving have
been devoted either to the deterministic or the RN version of the
network.

A broad computational study is performed to compare the per-
formance of FLAggA and the plain use of a state-of-the-art solver
on one hand. And on the other one, a computational analysis is
carried out by comparing the RN version of the model with the
proposed risk averse measures.

Two different scenario trees are considered in the experiment,
namely a proof-of-concept tree and a tree with more realistic
dimensions. The first tree features 3 stages, 7 strategic nodes, 56
operational scenarios and 4 strategic scenarios. The second tree
features 4 stages, 40 strategic nodes, 320 operational scenarios
and 27 strategic scenarios.

The RN solution provides a high variability in many issues,
as for example in the lost passenger demand. For the 40-node
scenario tree case, for illustrative purposes, the differences be-
tween the strategic scenarios is shown in Figure 2. The upper

23

Figure 2: Scenario demand and lost demand

curve in the figure depicts the passenger demand for each of the
strategic scenarios, while the middle and lower curves depict the
expected lost of passenger demand for two latency strategies as
provided by the incumbent solution obtained by the matheuristic
algorithm FLAggA.

Table 1 shows some statistics for the demand and lost demand
in the scenarios. The headings are related to the largest, smallest,
average and its standard deviation. The purpose of the proposed
risk averse functionals is to reduce this level of lost demand with
the same allowed budget for infrastructure investment.

Table 1: Passenger demand statistics for the 27 strategic
scenarios

Demand larдest smallest aver dev

Scenario-based 5828.52 3025.38 4229.25 577.64
Lost for ℓ = 1 3858.39 2391.86 3160.52 325.99
Lost for ℓ = 0 2560.68 1823.13 3221.41 179.47

ACKNOWLEDGMENTS
The work is supported by the Spanish Ministry of Economy and
Competitiveness under Grants numbered TRA2016-76914-C3-3-P
and MTM2015-63710-P.

REFERENCES
[1] U. Aldasoro, L.F. Escudero, M. Merino, J.F. Monge and G. Pérez. A parallel

Branch-and-Fix Coordination based matheuristic algorithm for solving large
sized multistage stochastic mixed 0-1 problems. European Journal of Opera-
tional Research, 258:590-606, 2017.

[2] A. Alonso-Ayuso, F. Carvallo, L.F. Escudero, M. Guignard, J. Pi, R. Puranmalka
and A. Weintraub. On the optimization of copper extraction in mining under
uncertainty in copper prices. European Journal of Operational Research, 233:711-
726, 2014.

[3] A. Alonso-Ayuso, L.F. Escudero, F.J. Martín-Campo and J.F. Monge. On the
strategic multistage scenario tree, tactical multi-horizon graphs in electricity
Transmission / Generation network capacity Expansion Planning, TGEP. EC
COST TD1207-2017, Final Conference, Modena (Italy), 2017. http://www.cost-
td1207conference.unimore.it/ and http://cost-td1207.zib.de/

[4] K. An and H.K. Lo. Service Reliability-based transit network design with
stochastic demand, Transportation Research Record, 2467:101-109, 2014.

[5] K. An and H.K. Lo. A robust transit network design with stochastic demand
considering development density. Transportation Research Part B, 81:737-754,
2015.

[6] K. An and H.K. Lo. Two-phase stochastic program for transit network design
under demand uncertainty. Transportation Research Part B, 81:157-181, 2016.

[7] A. Bärmann, A. Martin and H. Schülldorf. A decomposition method for mul-
tiperiod railway network expansion, with a case study for Germany. Trans-
portation Science, 51:1102âĂŞ1121, 2017.

[8] D. Bertsimas and M. Slim. The price of robustness. Operations Research, 52:35-
53, 2004.

[9] V. Cacchiani, A. Caprara, L. Galli, L. Kroon, G. Maróti and P. Toth. Railway
rolling stock planning: Robustness against large disruptions. Transportation
Science, 46:217-232, 2012.

[10] L. Cadarso and A. Marín. Improved rapid transit network design model:
considering transfer effects. Annals of Operations Research, :1-21, 2015.
doi:10.1007/s10479-015-1999-x, 2015.

[11] L. Cadarso and A. Marín. Combining robustness and recovery in rapid transit
network design. Transportmetrica A: Transport Science, 12:203-229, 2016.

[12] L. Cadarso, A. Marín and G. Maroti. Recovery of disruptions in rapid transit
networks. Transportation Research Part E: Logistics and Transportation Review,
53:15-33, 2013.

[13] L. Cadarso, G. Maroti and A. Marín. Smooth and controlled recovery plan-
ning of disruptions in rapid transit networks. IEEE Transactions on Intelligent
Transportation Systems, 16:2192-2202, 2015.

[14] Cadarso, L., Escudero, L. F., and Marín, A. On strategic multistage operational
two-stage stochastic 0-1 optimization for the Rapid Transit Network Design
problem. European Journal of Operational Research, 271(2):577-593 , 2018

[15] A. Caprara, L. Galli, S. Stiller and P. Toth. Recoverable-robust plataforming
by network buffering. Technical Report ARRIVAL-TR.0157. ARRIVAL project,
http://www.cti.gr/arrival, 2008.

[16] S. Cicerone, G. DâĂŹAngelo, G. Di Stefano, D. Frigioni, A. Navarra, M.
Schachtebeck and A. Schöbel. Recoverable robustness in shunting and
timetabling. In R. Ahuja, R. MÃűhring and C. Zaroliagis (eds.). In Robust
and On-Line Large Scale Optimization, pp. 28-60. Springer, 2009.

[17] E. Codina, A. Marín and L. Cadarso. Robust Infrastructure Design in Rapid
Transit Rail systems. Transportation Research Procedia, 3:660-669, 2014.

[18] D. Dentcheva and A. Ruszczynski. Optimization with stochastic dominance
constraints. SIAM Journal on Optimization, 14:548-566, 2003.

[19] L.F. Escudero, A. Garín and A. Unzueta. Cluster Lagrangean decomposition for
risk averse in multistage stochastic optimization. Computers and Operations
Research, 85:154-171, 2017.

[20] L.F. Escudero and J.F. Monge. On capacity expansion planning under strategic
and operational uncertainties based on stochastic dominance risk averse
management. Computational Management Science, 15:479-500, 2018.

[21] L.F. Escudero, J.F. Monge and D. Romero-Morales. On time-consistent
stochastic dominance risk averse measure for tactical supply chain
planning under uncertainty. Computers and Operations Research,
doi.org/10.1016/j.cor.2017.07.011, 2017.

[22] L.F. Escudero and S. Muñoz. An approach for solving a modification of the
extended rapid transit network design problem. TOP, 17:320âĂŞ334, 2009

[23] M. Fischetti, D. Salvagnin and A. Zanette. Fast approaches to improve the
robustness of a railway timetable. Transportation Science, 43:321-335, 2009.

[24] M. Kaut, K.T. Midthun, A.S. Werner, A. Tomasgard, L. Hellemo and M. Fodstad.
Dual-level scenario trees âĂŞ scenario generation and applications in energy
planning. Computational Management Science, 11:179-193, 2014.

[25] G. Laporte, A. Marín, J.A. Mesa and F.A. Ortega. An integrated methodol-
ogy for the rapid transit network design problem. In F. Geraets, L. Kroon,
A. Schoebel, D. Wagner and C.D. Zaroliagis (eds.). Algorithmic Methods for
Railway Optimization, pp. 187-199. Springer, 2007.

[26] G. Laporte, A. Marín, J.A. Mesa and F. Perea. Designing robust rapid transit
networks with alternative routes. Journal of advanced transportation, 45:54-65,
2011.

[27] G. Laporte and J.A. Mesa. The design of rapid transit networks. In: Laporte
G., Nickel S. and Saldanha da Gama F. (eds). Location Science, pp. 581-594.
Springer, 2015.

[28] C. Liebchen, M. LÃijbbecke, R. Möhring and S. Stiller. The Concept of recov-
erable robustness, linear programming recovery and railway applications. In
R. Ahuja, R. Möhring and C. Zaroliagis (eds). In Robust and Online Large-Scale
Optimization, pp. 1âĂŞ27. Springer, 2009.

[29] A. Marín. An extension to rapid transit network design problem. TOP, 15:231-
241, 2007.

[30] A. Marín and P. Jaramillo. Urban rapid transit network capacity expansion.
European Journal of Operational Research, 191:45-60, 2008.

[31] G.Ch. Pflug and W. Römisch. Modeling, measuring and managing risk. World
Scientific, 2007.

[32] A. Shapiro and A. Pichler. Time and Dynamic Consistency of Risk
Averse Stochastic Programs. Optimization Online http://www.optimization-
online.org/DB HTML/2016/09/5654, 2016.

[33] A.S. Werner, A. Pichler, K.T. Midthun, L. Hellemo and A. Tomasgard. Risk
measures in multihorizon scenarios tree. In R. Kovacevic, G.Ch. Pflug and
M.T. Vespucci (eds.). Handbook of Risk Management in Energy Production and
Trading, Springer, 177-201, 2013.

24

Formulation and Branch-and-cut algorithm for the Minimum
Cardinality Balanced and Connected Clustering Problem

Alexandre Salles da Cunha∗
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
acunha@dcc.ufmg.br

ABSTRACT
Given a graph G = (V ,E), integer bounds l ,u : 0 ≤ l ≤ u and
positive integer weights assigned to the vertices V ofG , the Min-
imum Cardinality Balanced and Connected Clustering Problem
(MCBCCP) consists of finding a minimum cardinality partition-
ing of the vertices ofV so that (a) each set in the partition induces
a connected subgraph of G and (b) the sum of the weights of the
vertices in each set belongs to the interval [l ,u]. In this paper, we
present an integer programming formulation, valid inequalities
and a Branch-and-cut algorithm for MCBCCP. Our computa-
tional experiments suggest that the inequalities investigated here
help the overall performance of the algorithm. In addition to the
one tested here, we discuss other formulations, following differ-
ent modeling arguments. Some of them are based on MCBCCP’s
connections to other combinatorial optimization problems found
in the literature.

KEYWORDS
Combinatorial Optimization, Clustering, Spanning forests, Branch-
and-cut algorithms

1 INTRODUCTION
A K partition of the vertex set of an undirected graphG = (V ,E)
(n = |V |,m = |E |) is a collection {V1, . . . ,VK } of K non-empty
pairwise disjoint subsets ofV such that ∪Kj=1Vj = V . The vertices
in the same partition define a cluster. Assume that positive integer
weights {wi ∈ Z : i ∈ V } are assigned to the vertices of G and
that integer bounds l ,u : 0 ≤ l ≤ u are given. Given S ⊆ V ,
definew (S) as ∑i ∈S wi . If the conditions

l ≤ w (Vj) ≤ u, j = 1, . . . ,K , (1)
are satisfied, the clusters are balanced. Define E (S) = {{i, j} ∈
E : i, j ∈ S } as the edges with both endpoints in S and denote
by C the collection of all connected subgraphs of G, including
those with just a single vertex and no edge incident to it. If
{(Vj ,E (Vj)) ∈ C : j = 1, . . . ,K }, the clustering is connected. If
l ≤ w (Vj) ≤ u and (S ,E (Vj)) ∈ C for every j = 1, . . . ,K the
clustering is balanced and connected. Accordingly, each cluster
Vj is balanced and connected.

TheMinimumCardinality Balanced and Connected Clustering
Problem (MCBCCP) consists of finding a balanced and connected
clustering ofG of minimum cardinality. MCBCCP is an NP-Hard
optimization problem, even for series parallel graphs, but is solv-
able in linear time in case G is a path [13].

Our goal is to solve MCBCCP when G does not belong to
a particular graph class. To that aim, we introduce an integer
∗This research is partially funded by CNPq grants 303928/2018-2, 431369/2016-0
and FAPEMIG grants CEX-PPM-00164/17, APQ-02645-16.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

programming formulation, valid inequalities and an exact solu-
tion approach, of the Branch-and-cut type [21]. These topics are
addressed in Sections 2 and 3. Our preliminary computational ex-
periments reported in Section 4 suggest that the valid inequalities
discussed here were of help to enhance the overall performance
of the Branch-and-cut algorithm. In addition to that, we describe,
at the last section of this paper, several other modeling strate-
gies that may lead to effective MCBCCP exact algorithms. We
also highlight connections between MCBCCP and some network
design problems, that may be explored from a modeling and
algorithmic perspective.

In the remaining of this section, we review some clustering
problems, concentrating mostly on those that closely relate to
MCBCCP, and thus, require clusters to be either balanced or to
satisfy some kind of connectivity constraint.

Graph clustering is a central problem in Operations Research,
Computer Science and Artificial Intelligence. They arise in appli-
cations as diverse as circuit board and micro-chip design, parallel
computation, sparse matrix factorization and data mining [12].
Depending on the objective function and on the similarity cri-
teria used to group vertices, different clustering problems arise.
Not surprisingly, the literature on the topic is vast; a review of
several clustering problems can be found, for instance, in [25].

Ito et al. [13] discussed three problems related to optimal choos-
ing connected and balanced clusters. One of them consists of de-
ciding whether or notG has a balanced and connected clustering
of fixed size p. The other two are MCBCCP and the problem that
maximizes the number of clusters. All of them arise in practical
applications such as political districting, paging systems of oper-
ation systems and image processing. Ito et al. [13] was concerned
with MCBCCPs defined on trees. To that particular input graph
class, the authors presented the first polynomial time algorithm.

A common sense in graph clustering is that similar vertices
should be grouped together, while dissimilar ones should be
separated. Quite often, the similarity of a pair of vertices i, j is
measured by a weight ci j . Therefore, an objective function that
arises frequently in practice, specially for cardinality constrained
clustering problems, is theminimization of the sum of theweights
of the edges connecting vertices in different clusters [1, 8, 11, 12,
15, 23, 24, 27]. Since ∑{i,j }∈E ci j is a constant, an equivalent
problem consists of maximizing the sum of the weights of the
edges connecting vertices in the same clusters. In general, graph
clustering is NP-Hard [9].

The problem of finding optimal balanced clusterings of fixed
cardinality has received substantial attention in the literature.
Jonhson et al. [14] investigated one such problem. In addition to
integer bounds l ,u and weights {wi : i ∈ V }, costs {ci j : {i, j} ∈ E}
are also assigned to the edges of E. The problem thus consists of
finding a K balanced clustering of G that minimizes the function∑K
k=1
∑
{i,j }∈E (Vk) ci j . In that particular problem, input graphs

are not complete and clusters do not need to induce connected
subgraphs of G.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 25 DOI: 10.5441/002/inoc.2019.06

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.06

Clustering under some sort of connectivity requirements has
also been a topic of interest [3, 5, 7, 17]. In Lari et al. [17], the
number of clusters K is defined beforehand. There is a subset
S (K = |S |) of V that plays the role of clusters heads. The re-
maining vertices, those in the set U = V \ S , are denoted unit
vertices. The problem asks for a K-centered connected partition
of G: a partition of the vertices of G into K connected subgraphs
{(Vj ,E (Vj)) : j = 1, . . . ,K }, such that |Vj ∩ S | = 1 for each
j = 1, . . . ,K . One cluster head must be assigned to each cluster
and unit vertices must be assigned to one vertex in S , the head of
one cluster. The cost of assigning a unit vertex u ∈ U to a cluster
head i ∈ S is denoted cui . The cost of a component (or cluster)Vj
is ∑i ∈S∩Vj ∑u ∈Vj∩U cui . Additionally, weights {wv : v ∈ V } are
assigned to each vertex ofG . Lari et al. [17] investigated the prob-
lem of finding K centered connected partitions of G for different
min-max objective functions involving either the assignment
costs or the vertices’ weights. The complexity class of each of
these variants was also investigated.

Brucker [3] investigated the problem of clustering the vertices
of V in K or fewer sets such that each vertex set induces a sub-
graph with diameter at most p; the diameter being the longest
minimum shortest path between two vertices in the subgraph.
The problem was proven to be NP-Complete and remains so even
if K = 3 and all edges’ lengths are taken from the set {0,1}. Deo-
gun et al. [6] investigated the same K clustering problem under
binary edge costs. They introduced approximation results and
algorithms, specialized for certain classes of input graphs.

Edachery et al. [7] introduced the Partition into Distance
p−cliques Problem, another optimization problem whose deci-
sion version was proven to be NP-Complete. A vertex set S ⊆ V
is a distance p−clique if, for any pair of vertices i, j ∈ S , there is a
path in the graph (S ,E (S)) that involves at most p edges (or hops).
The Partition into Distance p−cliques Problem thus consists of
partitioning the vertex set ofV in to the least number of distance
p−cliques. For solving the problem, Edachery et al. [7] introduced
heuristics and addressed their performance on various large scale
graphs found in the telecommunication industry.

Nossack and Pesch [20] investigated the acyclic clustering
problem, a problem defined in terms of a vertex and arc weighted
directed graph D = (V ,A). A feasible solution to the problem is
a K balanced clustering, with one additional property: the graph
obtained by shrinking each cluster into a single vertex and by
merging arcs that start and end at the same pair of inbound and
outbound clusters must be a directed acyclic graph. The objective
function consists of maximizing the sum of the weights of the
arcs with both endpoints in the same cluster.

Finally, Aragão and Uchoa [5] investigated the γ -Connected
Assignment Problem (γ−CAP). Given G = (V ,E), a set of colors
K = {1, . . . ,k }, a vector γ = (γ1, . . . ,γk) of positive integers and
costs {ciq : i ∈ V ,q ∈ K }, the γ -Connected Assignment Problem
consists of finding a minimum cost assignment of colors to the
vertices in such a way that no set of vertices assigned to the same
color q induces a subgraph of G with more than γq connected
components. Applications of the γ−CAP can be seen as variants
of the Contiguity Constrained Clustering Problem [18, 19].

2 MCBCCP FORMULATION
Among other decision variables to be defined shortly, the model
uses an integer variable K to denote the cardinality of the cluster-
ing we are looking for. Assuming that l > 0 holds, feasible values

for K must satisfy
⌈

n
⌊ u
min{wi :i∈V }

⌋

⌉
≤ K ≤

⌊
n

⌈ l
max{wi :i∈V }

⌉

⌋
. Let K

denote an upper bound on the maximum number of balanced
clusters of G. If l > 0, K can be taken as the upper bound in the
previous expression. If l = 0, K = n.

The idea behind the formulation is to find a spanning forest
of G with precisely n − K edges, such that the vertices in each
of its K trees define balanced clusters. Define Ki = min{i,K }.
For a given i ∈ V , the set {1, . . . ,Ki } gives the indexes of con-
nected components where i can be placed in. In addition to K ,
the formulation uses the following decision variables:
• x = {xi j ∈ B : {i, j} ∈ E}. Variable xi j assumes value 1 if
edge {i, j} belongs to the forest and 0 if otherwise applies.
For any subset E ′ ⊆ E, define x (E ′) = ∑{i,j }∈E′ xi j .
• y = {yki ∈ B : i ∈ V ,k = 1, . . .Ki }. Variable yki assumes
value 1 if vertex i belongs to the k−th connected compo-
nent of the forest.
• z = {zk ∈ B : k = 1, . . . ,K }. Variable zk assumes value 1 if
and only if the forest has k or more connected components.

The formulation is:

min
{
K : (K ,x,y,z) ∈ P ∩ (R × Bm × Bσ × BK)

}
, (2)

where σ := ∑ni=1 Ki and P is the polyhedral region defined by:

x (E) + K = n (3)
x (E (S)) ≤ |S | − 1 S ⊂ V , |S | ≥ 2 (4)

x ≥ 0 (5)
Ki∑
k=1

yki = 1 i ∈ V (6)

n∑
i=k

yki ≥ zk k = 1, . . . ,K (7)

n∑
i=k

wiy
k
i ≤ uzk k = 1, . . . ,K (8)

n∑
i=k

wiy
k
i ≥ lzk k = 1, . . . ,K (9)

xi j + y
τ
i +

τ−1∑
k=1

ykj +

Kj∑
k=τ+1

ykj ≤ 2 {i,j }∈E,i<j
τ=1, ...,Ki (10)

Ki∑
k=1

kyki −

Kj∑
k=1

kykj ≥ −Mi j (1 − xi j) {i, j} ∈ E (11)

Ki∑
k=1

kyki −

Kj∑
k=1

kykj ≤ Mi j (1 − xi j) {i, j} ∈ E (12)

K∑
k=1

zk = K (13)

zk ≤ zk−1 k = 2, . . . ,K (14)

yki ≤ zk i ∈V
k=1, ...,Ki (15)

yki ≥ 0 i ∈V
k=1, ...,Ki (16)

Aiming to cope with formulation symmetries, variables yki for
k > Ki are not used; only yki for k = 1, . . .Ki are in place.

Constraints (3)-(5) model the spanning forest with n−K edges
of G. Subtour elimination constraints (SECs) (4) avoid that K is

26

decreased to an infeasible value, by selecting edges in excess of
what an acyclic subgraph (S ,E (S)) of G allows.

Constraints (6) enforce that each vertex must be assigned to
one connected component of G. These constraints make a clear
distinction of the indexes of components that can be assigned to
the vertices. More precisely, they state that vertex i = 1 can only
belong to the first connected component (K1 = {1}). Likewise,
vertex i = 2 either belongs to the first connected component or to
the second, and so on. Constraints (8)-(9) enforce that the sum of
weights of each connected component lies in the desired interval
[l ,u]. Constraints (7) impose that each cluster must include at
least one vertex of V .

Note that inequalities (10) are a lifting of the logical constraints

xi j + y
k1
i + y

k2
j ≤ 2,k1 ∈ Ki ,k2 ∈ Kj ,k1 , k2, {i, j} ∈ E. (17)

The latter, as well as its stronger version (10), enforces that
edge {i, j} cannot belong to the forest if its endpoints are assigned
to two different connected components. Disjunctive constraints
(11) and (12) serve the same purpose, but use different modeling
arguments; they enforce that an edge {i, j} can only be included
in the forest if its endpoints are assigned to the same connected
component index. For these constraints, big-M parameter Mi j
represents the maximum difference between the indexes of the
clusters where vertices i and j are placed in and is given by

Mi j = min{max{i, j},K } − 1.

Note that if xi j = 0, constraints (11) and (12) are trivially
satisfied. However, if xi j = 1, ∑Ki

k=1 ky
k
i =
∑Kj
k=1 ky

k
j must hold.

Because of the discreteness of y and due to (6), yki = ykj must
hold, for a given k = 1, . . . ,min{Ki ,Kj }. Although we do not
have numerical or theoretical evidence showing that constraints
(11) and (12) improve the linear programming bounds, provided
that (10) are in place, they were kept in the model. We decided
to do so, since we empirically found that their inclusion helped
the overall performance of the Branch-and-cut algorithm.

Constraints (13) state that the number of clusters is precisely
the number of variables zk activated. Constraints (15) impose
that a vertex i cannot belong to a cluster k unless the forest has
at least k components.

2.1 Additional valid inequalities
In the remaining of the text, assume thatU (S) denotes the min-
imum number of bins of size u, required to fit the vertices in
S ⊆ V . Accordingly, let U (S) denote any valid lower bound on
U (S). A widely known lower bound onU (S) is ⌈w (S)

u ⌉.
Subtour elimination constraints (4) can be lifted to the capacity

constraints (CC)

x (E (S)) ≤ |S | −U (S), ∀S : S ⊂ V , |S | ≥ 2. (18)

To the best of our knowledge, capacity constraints (18) were
introduced for the Capacitated Vehicle Routing Problem in [16].
In that context, weights {wi : i ∈ V } represent demands that
must be collected by a vehicle of capacity u andU (S) denotes the
minimum number of vehicles of capacity u needed to collect the
total demandw (S) associated to S . Here, these inequalities avoid
that clusters with weights exceeding u induce trees of the forest.
Although such conditions are already granted by constraints (8),
the inclusion of CCs (18) improves linear programming relaxation
bounds. From now on, assume that P+ denotes the intersection
of polytope P with capacity constraints (18).

The formulation can also be strengthened by the capacity
cutset constraints (CCC)

x (δ (S)) ≥ 1 (19)

defined by sets S , ∅,S ⊂ V , satisfying the following conditions:
(1) (S ,E (S)) ∈ C;
(2) w (S) < l .
In inequalities (19), δ (S) = {{i, j} ∈ E : i ∈ S , j < S } stands for

the subset of edges with exactly one endpoint in S ⊂ V . Validity
of inequalities (19) for MCBCCP comes from the following ob-
servations. Let V1 ⊂ V be a balanced and connected cluster such
that S ∩V1 , ∅. Since w (S) < l , it is clear that V1 \ S , ∅ since
otherwisew (V1) < l would hold. Since (V1,E (V1)) is connected,
at least one edge connecting S to V1 \ S must be chosen.

CCCs are also valid for subsets S : w (S) < l whose subgraphs
(S ,E (S)) are not connected. However, for this case, the right
hand side can be lifted to the number of connected components
of (S ,E (S)) and the inequality can be seen as a (weaker) surrogate
version of those defined by the connected subsets contained in
S . For the remaining of the text, assume that P++ denotes the
intersection of P+ with CCCs (19).

3 BRANCH-AND-CUT ALGORITHM
In this section, we describe the main features of the MCBCCP
Branch-and-cut algorithm BC++ based on formulation P++. The
algorithm dynamically separates two classes of MCBCCP valid
inequalities, CCs (18) and CCCs (19). BC++ first solves the Linear
Program (LP)

min
{
K : (K ,x,y,z) ∈ P̂

}
, (20)

where P̂ is the polytope given by the intersection of constraints
(3), SECs (4) defined by sets S = {i, j} ∈ E, (5)-(16) and

x (δ (S)) ≥ 1, S ∈ S, (21)

where S = {S ⊂ V : w (S) < l ,1 ≤ |S | ≤ Max , (S ,E (S)) ∈ C}.
We found advantageous to include all CCCs defined for sets
S : |S | ≤ Max in the very first linear programming relaxation (in
our implementation,Max = 4). CCCs defined by sets with more
than Max vertices are identified on-the-fly, as described in the
sequence.

Assume that the LP (20) is feasible and denote by (K̂ , x̂, ŷ, ẑ)
an optimal solution to it. BC++ then attempts to strengthen the
relaxation P̂ by appending to it some CCs and CCCs, violated by
x̂. The separation procedures for these two sets of valid inequali-
ties makes use of a separation engine designed for the SEC (4)
separation problem, outlined in [2]. The engine comprises heuris-
tic and exact algorithms for the identification of violated SECs.
The idea is to use these SEC separation procedures to provide
candidate sets of vertices for which the violation of CCCs and
CCs can be checked.

More precisely, the SEC separation engine involves a Kruskal
like heuristic and the exact SEC separation algorithm introduced
in [22]. The heuristic first sorts the edges in Ê = {{i, j} ∈ E :
x̂i j > 0}, in a non increasing order of their linear programming
relaxation values {x̂i j : {i, j} ∈ Ê}. In turn, edges in the list are
used to find a maximum cardinality spanning forest of G, in a
Kruskal like fashion. Assuming that e = {i, j} is the edge to be
processed, the heuristic merges the connected components where
i and j are placed into a single subset S of vertices. The lower
bound U (S) = ⌈

w (S)
u ⌉ is computed and the corresponding CC

(18) is checked for violation. The same set S is checked for the

27

identification of a violated CCC (19): whenever w (S) < l , we
check if x̂ (δ (S)) < 1 applies.

Violated CCs and CCCs are stored in two separate lists. At
the end of the application of the heuristic, the most violated
inequality in each list reinforces the relaxation P̂. Remaining
inequalities in the list are only included in P̂ if they are suffi-
ciently orthogonal to the most violated inequality of its class,
found at that separation round. To be more specific, assume that
aT1 x ≥ b1 and aT2 x ≥ b2 are two violated valid inequalities of
the same class, CC or CCC, stored in the list, at that separa-
tion round. Assume as well that the first is the most violated
inequality of that class. Inequality aT2 x ≥ b2 is only added to P̂ if
|⟨a1,a2⟩ |
∥a1 ∥2 ∥a2 ∥2

≤ ϵ , where ϵ ∈ [0,1) is an implementation parameter
that controls the desired level of orthogonality (in our implemen-
tation, ϵ = 0.5). Inequalities that do not satisfy the orthogonality
criteria are discarded.

The exact SEC separation algorithm in [22] is called next, only
if no violated inequalities were found by the SEC separation
heuristic. Without giving much of the details of that procedure,
it suffices to mention that the algorithm solves a series of n − 2
max-flow (min-cut) problems in a conveniently defined directed
network, obtained from x̂ and Ê, in order to find violated SECs.
The optimal set of vertices in each of these min-cut problems
is checked for the violation of CCs and CCCs. Again, the same
orthogonality criteria is applied in order to decide which inequal-
ities stored in the lists are discarded or used to reinforce the
relaxation P̂.

The process outlined above is carried out for each BC++ node,
until no violated inequalities are found by the separation engine.
If the solution to that linear programming relaxation is integer
feasible, the optimal solution to the node under investigation was
found, and the node is pruned by optimality. Being fractional,
BC++ branches on variables, giving preference to branch first on
variables x.

BC++ makes use of the XPRESS mixed integer optimization
package (release 27.01.02) in charge of managing the search tree.
All pre-processing and cutting plane generation procedures em-
bedded in the solver are turned off. No multi-threading is allowed.
Since we still have not implemented MCBCCP primal heuristics
to speed up the search, preference is given to find feasible solu-
tions as early as possible. Thus, BC++ implements a depth-first
search and the solver’s linear programming heuristics are turned
on.

4 COMPUTATIONAL EXPERIMENTS
Our computational experiments were conduced with two sets of
test instances: cb and g. The first one, cb, comprises benchmark
instances for the min-cut problem addressed by Johnshon et al.
[14]. They represent real compiler construction problems, where
each vertex in the (typically very sparse) input graph represent
modules of code that need to be combined to form clusters. In
total, five graphs representing the compiler construction problem
were used. Each of these instances are indicated by cb_id , where
id represents one of the five graphs. In that application, edges’
weights represent the communication cost between modules of
code. In theMCBCCP case, theseweights are not applicable, being
simply ignored. In the application described in [14], clusters are
restricted in their total memory storage. We used the same values
of u ∈ {450,512} considered in [14]. Since in that reference l was
assumed to be zero, we used l = ⌊10%u⌋ and l = ⌊20%u⌋.

The second set of instances considered here, g, represent grid
graphs. These instances were generated here, in an attempt to
address another application of MCBCCP, that of clustering geo-
graphical contiguous areas into political districts. Each grid has
s ∈ {8,12} rows and columns. For each value of s , five instances
were generated. Each instance is identified by the word g_s_id,
where id ∈ {1, . . . ,5} is an integer representing a particular in-
stance of size s . One vertex, placed at the center of each of these
s2 grid cells, represents the cell. The set E includes one edge
{i, j} for each pair of neighboring cells i and j. Integer weights
{wi : i ∈ V } were randomly chosen in the interval [10,100], with
uniform probability. Depending on the values of s , different val-
ues of u were chosen: for s = 8, u = 350 and for s = 12, u = 650.
These values of u account for about 10% ofw (V). The values of l
were chosen as before: l = ⌊10%u⌋ and l = ⌊20%u⌋. Considering
the different values of u and l involved in our experiments, 40
MCBCCP instances were tested. Data for the instances used in
our testings are given in Table 1. That table provides, for each
instance, the corresponding values of n,m, the minimum and the
maximum values ofwi and, finally,w (V).

The algorithms outlined in this paper were implemented in
C and compiled with gcc with optimization flags -O3 turned
on, under Linux OS. Experiments were conducted with a Intel
i7-5820K processor, running at 3.3GHz, with 32Gbytes of RAM
memory.

In Table 2, we present computational results of two Branch-
and-cut implementations: BC++ and BC+. The first one is based
on formulation P++ and, thus, makes use of CCCs (19). The other
one does not, being based on the (weaker) model P+. Therefore,
BC+ neither includes inequalities (21) in its first linear program-
ming relaxation nor calls the procedures for the indentification
of violated constraints (19), within the separation engine we de-
scribed earlier. Apart from that, the two algorithms share every
other implementation strategy.

The first two columns of the table provide the instance and the
value of u under consideration. The table is divided in two sets of
rows; the upper part of the table is dedicated to the l = ⌊20%u⌋
instances, while the bottom reports results for l = ⌊10%u⌋. For
each BC implementation, the table presents: the root node lower
bound (LB), the best lower (BLB) and upper bound (BUB) found at
the end of the search or when the time limit of 1800 seconds was

Table 1: Data for the instances used in the computational
experiments.

Inst. n m min wi max wi w (V)
cb_1 30 47 19 298 2497
cb_2 45 98 14 298 3325
cb_3 47 99 14 298 3425
cb_4 47 101 14 278 3890
cb_5 61 187 15 165 3704
g8_1 64 112 11 99 3472
g8_2 64 112 13 100 3732
g8_3 64 112 10 100 3272
g8_4 64 112 10 100 3411
g8_5 64 112 12 100 3757
g12_1 144 264 10 100 8000
g12_2 144 264 10 99 7999
g12_3 144 264 11 100 8013
g12_4 144 264 10 100 8153
g12_5 144 264 10 100 7997

28

hit, the CPU times (in seconds) needed to obtain these bounds,
t (s), and finally the number of nodes explored by the search trees.
An indication “-” is provided in the CPU time columns, whenever
the time limit was hit and the corresponding BC implementation
either did not prove the instance infeasibility or did not solve it to
proven optimality. Whenever an algorithm did not find a feasible
solution within the time limit,∞ is reported in the corresponding
BUB column entry.

The values of l and u involved in our testings led to 39 feasible
instances out of the 40 available. BC++ managed to prove the
infeasibility of that instance quite fast, right at the root node, in
contrast to BC+, that spent the entire time limit without conclud-
ing so. Considering the 39 feasible instances of our study, better
results were also obtained by BC++. While it managed to solve 24
out of the 39 feasible instances to proven optimality within the
1800 seconds time limit, BC+ solved only 12. Considering the 11
instances solved to optimality by both methods, computational
results also lean in favor of BC++. It was faster than BC+ in 7
out of these 11 cases. BC++ was also capable of delivering higher
quality integer feasible solutions, if our attention now moves to
the 14 instances left unsolved by both methods. In all these cases,
BC++ found sharper upper bounds than BC+. The latter did not
find a feasible solution within the time limit for 14 out of the 39
feasible instances of our test set.

It is worthwhile mentioning that the inclusion of inequalities
(19) resulted in small (if any) increases in the root node linear
programming bounds, for the lowest values of l . That comes as
a result of two aspects. The first is the nature of the objective
function, that involves the minimization of K , while every other
variable has the same null cost. The second is the heuristic nature
of our separation engine for the separation problem associated
to CCs (18) and to CCCs (19). As a consequence of that, there is
no guarantee that the cutting plane algorithm of BC++ delivers a
stronger bound even if, for a particular instance, the optimal so-
lution x++ to the linear programming relaxation defined by P++
does not belong to P+. That explains why, for two cases, BC+
delivered root node lower bounds slightly stronger than those
provided by BC++. Nevertheless, the inclusion of (19) as well as
the lifting (17) of (10) had a positive impact on the performance
of the full search tree. In general, fewer nodes are investigated in
less CPU time.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the Minimum Cardinality Balanced
and Connected Clustering Problem (MCBCCP). We introduced
an integer programming formulation along with valid inequali-
ties for the problem. Additionally, we implemented and tested a
Branch-and-cut algorithm based on that model.

Our preliminary numerical experiments indicated that the
valid inequalities introduced here, the lifting (10) of the logi-
cal constraints (17) and the capacity cutset constraints (19), had
a positive impact on the computational results. In particular,
the Branch-and-cut algorithm that separates capacitated cutset
inequalities (19) obtained more optimality certificates than its
version that does not. It also found higher quality solutions for
those instances left unsolved when the time limit is hit.

The capacity cutset constraints (19) introduced here, alongside
capacity constraints (18), allows the problem to be formulated
without the need of variables y,z. To be more specific, denote by
Px ⊂ Rm+1 the intersection of (3) and (5) alongside the capacity

Table 2: Branch-and-cut algorithm:Computational results
with and without inequalities (19)

l = ⌊20%u⌋
BC++ BC+

Inst. u LB BLB BUB t (s) nodes LB BLB BUB t (s) nodes
cb_1 450 infeasible 0.2 1 7 9 ∞ - 57002
cb_2 450 9 10 10 163.0 7376 8.5 9 ∞ - 26262
cb_3 450 9 10 10 106.6 3517 8.2 9 ∞ - 30337
cb_4 450 9 9 9 439.6 8556 9 9 10 - 16424
cb_5 450 9 9 9 44.9 818 9 9 ∞ - 20373
cb_1 512 6 6 6 0.6 9 5.3 6 6 33.7 7028
cb_2 512 7.5 8 8 80.6 3564 7.3 8 ∞ - 28250
cb_3 512 7 8 8 124.2 3145 7 7 ∞ - 20071
cb_4 512 8 8 8 79.8 2404 8 8 8 119.9 5621
cb_5 512 8 8 8 31.7 468 8 8 8 216.5 9204
g8_1 350 11 11 11 23.4 521 11 11 11 206.4 8891
g8_2 350 11 12 12 254.3 6165 11 12 13 - 16150
g8_3 350 10 10 10 34.1 766 10 10 11 - 24266
g8_4 350 10 11 11 831.3 7625 10 11 11 434.1 4161
g8_5 350 11 11 12 - 8041 11 12 12 207.0 4161
g12_1 650 13 13 15 - 8902 13 13 ∞ - 9912
g12_2 650 13 13 19 - 8558 13 13 ∞ - 9336
g12_3 650 13 13 16 - 6591 13 13 ∞ - 9954
g12_4 650 13 13 15 - 12252 13 13 19 - 11618
g12_5 650 13 13 15 - 6196 13 13 ∞ - 9493

l = ⌊10%u⌋
BC++ BC+

Inst. u LB BLB BUB t (s) nodes LB BLB BUB t (s) nodes
cb_1 450 6.5 8 8 1.5 167 7 8 8 6.1 1069
cb_2 450 9 9 10 - 25546 8.4 9 12 - 23702
cb_3 450 8.3 9 11 - 27518 8.2 9 13 - 23303
cb_4 450 9 9 9 234.3 6198 9 9 9 208.0 5374
cb_5 450 9 9 9 61.5 1531 9 9 12 - 19561
cb_1 512 5.3 6 6 4.0 639 5.2 6 6 12.3 3869
cb_2 512 7.3 8 9 - 29238 7.2 8 10 - 23258
cb_3 512 7 7 8 142.7 6899 7 7 8 - 28586
cb_4 512 8 8 8 24.5 1340 8 8 8 92.2 5426
cb_5 512 8 8 8 29.9 340 8 8 8 42.9 610
g8_1 350 11 11 11 42.8 1275 11 11 11 1775.8 13153
g8_2 350 11.0 12 12 881.8 9273 11.1 12 13 - 14082
g8_3 350 10 10 11 - 9296 10 10 11 - 14329
g8_4 350 10 11 11 1245.9 9267 10 10 11 - 16581
g8_5 350 11 12 12 1399.0 8919 11 12 12 201.8 3141
g12_1 650 13 13 17 - 5432 13 13 ∞ - 4079
g12_2 650 13 13 16 - 7043 13 13 ∞ - 3938
g12_3 650 13 13 18 - 3129 13 13 ∞ - 3723
g12_4 650 13 13 18 - 3747 13 13 ∞ - 4445
g12_5 650 13 13 16 - 4302 13 13 ∞ - 4941

constraints (18) and cutset constraints (19). MCBCCP can be
formulated as min {K : (K ,x) ∈ Px ∩ (R × Bm)}.

A drawback of the formulation introduced here is its symmetry.
To alleviate that, we restricted the indexes of the clusters that can
be assigned to the vertices ofG . The lifting (10) of (17) also helps
in that matter. From an algorithmic perspective, we enforced that
the Branch-and-cut algorithm first branches on x variables.

A promising alternative to deal with symmetry is to use the
concept of representatives [4] to formulate the problem. For the
MCBCCP case, such a formulation involves binary decision vari-
ables v = {vi j ∈ B : i, j ∈ V }. Variable vi j assumes value 1 if

29

vertex j is the representative (or cluster head) of the connected
component where i is placed. Following the strategy to reduce
symmetry and the number of y variables, these variables can
be restricted to {vi j : i, j ∈ V , j ≤ i}, indicating that the repre-
sentative of a cluster is always the vertex with the least index
among those in the same tree of the forest. This formulation
does not involve decision variables y and z and the objective
function, to be minimized, is∑i ∈V vii . In addition to constraints
{vi j ≤ vj j ,i, j ∈ V , j < i}, the model includes constraints akin
to the inequalities defining P++, except to (14) to (7) that have
no meaning in the new variable setting. Preprocessing these v
variables could be carried out as follows. Define D = (V ,A) as
the directed graph obtained by duplicating the edges of E, into
two arcs of opposite directions. Assume that the length of an arc
(i, j) ∈ A is ci j = w j . Whenever the length of the shortest path
connecting i and j exceeds u, the representative of i and j cannot
be the same, and assuming that j < i applies, variable vi j would
not be required.

We also plan to investigate set partitioning formulations for
MCBCCP and Branch-and-cut-and-price algorithms based on
them. One possible formulation along these lines is similar to the
one introduced in [14] for a fixed cardinality clustering problem.
In addition to edge variables x, it uses exponentially many binary
decision variables associated to all balanced subsets of vertices of
V . The master problem is defined by set partitioning constraints
enforcing that every vertex must be included in one of such sub-
set of vertices, constraints (19) and (18), as well as another type of
constraints that couple x and the exponentially many variables of
sets of vertices. Such coupling constraints express the following
idea: an edge {i, j} cannot be selected by the master program unless
its endpoints i and j are included in the same balanced set. Because
of that type of coupling constraints, the associated pricing prob-
lem consists of solving a Constrained Quadratic Binary Problem,
a variation of the Maximum Weight Binary Knapsack Problem
(QKP), where not only knapsack constraintsw (S) ≤ u but also
covering constraintsw (S) ≥ l must be enforced. A nice feature
of this problem is that, due to the sign of the dual variables in
the master program, diagonal entries of the quadratic cost matrix
should be negative while off-diagonal ones should be positive.

MCBCCP also has connections with network design problems
found in the literature, for instance, the Capacited Minimum
Spanning Tree Problem (CMSTP) [10, 26]. Actually, we can re-
formulate MCBCCP as a variation of the CMSTP. To that aim,
consider a directed graph D = (V ∪ {r },A), where the arc set
A involves two arcs, in opposite directions, for every edge in E,
as well as one arc pointing from the artificial root vertex r to
every vertex i ∈ V . Arcs connecting r to i ∈ V cost one while
the remaining ones cost zero. The goal is to find a minimum cost
spanning arborescence of D, rooted out of r , such that the sum
of the weights of the vertices in every tree rooted in i ∈ V satisfy
(1). We plan to investigate models and algorithms for MCBCCP
based on such an idea, including those where the desired arbores-
cence topology is enforced by network flow and set partitioning
constraints.

So far, we have not investigated primal heuristics for the prob-
lem. One possible approach to fill that gap benefits from the
Dynamic Programming algorithm in [13], capable of exactly solv-
ing MCBCCP in polynomial time, when G is a spanning tree.
The idea is to build a spanning tree of G, driven by the linear
programming relaxations {x̂i j : {i, j} ∈ Ê} provided by our BC

algorithms. In turn, that spanning tree is used as an input graph
for the exact MCBCCP algorithm in [13].

These ideas, in full or in part, should complement the mate-
rial presented in this paper and should be presented at the next
International Network Optimization Conference.

REFERENCES
[1] E.R. Barnes. 1982. An algorithm for partitioning the nodes of a graph. SIAM

Journal on Algebraic and Discrete Mathematics 3 (1982), 541–555.
[2] Bicalho, L., da Cunha, A.S and Lucena, A. 2016. Branch-and-cut-and-price

algorithms for the Degree Constrained Minimum Spanning Tree Problem.
Computational Optimization and Applications 63 (2016), 755–792.

[3] P. Brucker. 1978. Optimization and Operations Research. Lecture Notes in
Economics and Mathematical Sciences, Vol. 157. Springer, Chapter On the
complexity of clustering problems, 45–54.

[4] Manoel Campêlo, Ricardo Corrêa, and Yuri Frota. 2004. Cliques, holes and the
vertex coloring polytope. Inform. Process. Lett. 89, 4 (2004), 159 – 164.

[5] Marcus Poggi de Aragão and Eduardo Uchoa. 1999. The γ−connected assign-
ment problem. European Journal of Operational Research 118 (1999), 127–138.

[6] Jitender S. Deogun, Dieter Kratsch, and George Steiner. 1997. An approxima-
tion algorithm for clustering graphs with dominating diametral path. Inform.
Process. Lett. 61, 3 (1997), 121 – 127.

[7] J. Edachery, A. Sen, and F. J. Brandenburg. 1999. Graph drawing. Lecture Notes
in Computer Science, Vol. 1731. Springer, Chapter Graph Clustering Using
Distance-k cliques, 98–106.

[8] J. Falkner, F. Rendl, and H. Wolkowicz. 1994. A computational study of graph
partitioning. Mathematical Programming 66 (1994), 211–224.

[9] M.R. Garey, D.S. Johnson, and L. Stockmeyer. 1976. Some simplified NP-
complete graph problems. Theoretical Computer Science 1, 3 (1976), 237–267.

[10] Bezalel Gavish. 1983. Formulations and Algorithms for the Capacitated Mini-
mal Directed Tree Problem. J. ACM 30, 1 (Jan. 1983), 118–132.

[11] W. Hager and Y. Krulyuk. 2002. Multiset graph partitioning. Mathematical
Methods of OR 55 (2002), 1–10. Issue 1.

[12] William W. Hager, Dzung T. Phan, and Hongchao Zhang. 2013. An exact
algorithm for graph partitioning. Mathematical Programming 137 (2013),
531–556.

[13] Takehiro Ito, Takao Nishizeki, Michael Schröeder, Takeakin Uno, and Xiao
Zhou. 2012. Partitioning a Weighted Tree into Subtrees with Weights in a
Given Range. Algorithmica 62 (2012), 823–841.

[14] Ellis L. Johnson, Anuj Mehrotra, and George L. Nemhauser. 1993. Min-cut
clustering. Mathematical Programming 62 (1993), 133–151.

[15] N. P. Kruyt. 1997. A conjugate gradient method for the spectral partitioning
of graphs. Parallel Comput. 22 (1997), 1493–1502.

[16] Gilbert Laporte, Yves Nobert, and Martin Desrochers. 1985. Optimal Routing
under Capacity and Distance Restrictions. Operations Research 33 (1985),
1050–1073. Issue 5.

[17] Isabella Lari, Federica Ricca, Justo Puerto, and Andrea Scozzari. 2016. Partition-
ing a Graph into Connected Components with Fixed Centers and Optimizing
Cost-Based Objective Functions or Equipartition Criteria. Networks 67 (2016),
69–81. Issue 1.

[18] F. Murtagh. 1985. A Survey of Algorithms for Contiguity-constrained Cluster-
ing and Related Problems. Comput. J. 28 (1985), 82–88. Issue 1.

[19] F Murtagh. 2003. Maximum Split Clustering Under Connectivity Constraints.
Journal of Classification 20 (2003), 143–180.

[20] Jenny Nossack and Erwin Pesch. 2014. A branch-and-bound algorithm for
the acyclic partitioning problem. Computers & Operations Research 41 (2014),
174–184.

[21] M. W. Padberg and G. Rinaldi. 1991. A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM review
33, 1 (1991), 60–100.

[22] M. W. Padberg and L. A. Wolsey. 1983. Trees and cuts. Annals of Discrete
Mathematics 17 (1983), 511–517.

[23] A. Pothen, H. D. Simon, and K. P. Liou. 1990. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11 (1990), 430âĂŞ452.

[24] F. Rendl and H. Wolkowicz. 1995. A projection tecnhique for partitioning the
nodes of a graph. Ann. Oper. Res. 581 (1995), 172–191.

[25] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1
(2007), 27 – 64.

[26] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M Poggi de Aragão, and D.
Andrade. 2008. Robust branch-cut-and-price for the Capacitated Minimum
Spanning Tree problem over a large extended formulation. Mathematical
Programming 112 (2008), 446–472.

[27] H. Wolkowicz and Q. Zhao. 1999. Semidefinite programming relaxations for
the graph partitioning problem. Discrete Appl. Math. 96/97 (1999), 467–547.

30

A Branch-and-Bound Algorithm for the MaximumWeight
Perfect Matching Problem with Conflicting Edge Pairs

Temel Öncan∗
Endüstri Mühendisliği Bölümü

Galatasaray Üniversitesi
İstanbul, TÜRKİYE
ytoncan@gsu.edu.tr

M. Hakan Akyüz
Endüstri Mühendisliği Bölümü

Galatasaray Üniversitesi
İstanbul, TÜRKİYE
mhakyuz@gsu.edu.tr

İ. Kuban Altınel
Endüstri Mühendisliği Bölümü

Boğaziçi Üniversitesi
İstanbul, TÜRKİYE
altinel@boun.edu.tr

ABSTRACT
This paper introduces a branch-and-bound (B&B) algorithm for
the maximum weight perfect matching problem with conflicting
edge pairs which is an NP-hard problem. The proposed B&B
algorithm is based on the relaxation obtained by removing the
cardinality restriction on the feasible matchings and uses a non-
dichotomized branching rule considering exposed vertices in a
relaxed optimum solution. We have performed extensive compu-
tational experiments on randomly generated test instances and
compared the proposed B&B algorithm with two Binary Integer
Linear Programming models solved with an off-the-shelf com-
mercial solver. According to our experiments, we have observed
that the proposed B&B algorithm yields promising performance.

KEYWORDS
Integer Programming,MaximumWeight PerfectMatching, Branch-
and-Bound, Conflicts

1 INTRODUCTION
The well-known Maximum Weight Perfect Matching Problem
(MWPMP) consists of finding a perfect matching with maxi-
mum total weight [9]. The MWPMP is known to be polynomially
solvable and it has several applications in scheduling, facility
location and workforce planning [1]. In this work, we address
an extension of the MWPMP with additional conflicting edge
pair constraints. The so-called conflict constraints are also re-
ferred to as the exclusionary side constraints or the disjunctive
constraints. Hence, the extended problem is named as the Maxi-
mumWeight Perfect Matching Problem with Conflicting Edge Pairs
(MWPMC) which deals with determining a maximum weight
perfect matching such that no two conflicting edges are in the
solution at the same time, namely a maximum weight conflict
free perfect matching. The MWPMC is known to be NP-hard
[7].

As a practical application of the MWPMC, we can mention
the case arising in logistics, where toxic chemical substances
and foods are prohibited to be stored in the neighbor locations.
In a potential extension of the ordinary Symmetric Traveling
Salesman Problem (STSP) there can be an incompatibility relation
between the edges incident with vertices: some of them may not
be selected if a particular edge is in the tour and a tour can consist
of only compatible edges. This scenario is possible due to security
reasons during the routing of an important person. Recall that
a tour for a salesperson is a connected spanning subgraph in
which all points have degree 2. If we drop the connectedness
∗Corresponding author

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

requirement, i.e. the subtour elimination constraints, the STSP
turns into the determination of optimum 2-factors. The 2-factor
problem is a natural extension of the perfect matching problem
and in fact the determination of an optimal 2-factor reduces to
the determination of an optimal perfect matching. In other words,
the MWPMC can be viewed as a relaxation of the mentioned
STSP extension.

In the literature, several combinatorial optimization problems
with conflict constraints have been addressed. Among them we
can mention, the minimum spanning tree problem with conflict
constraints [6, 7, 16, 22, 24], the shortest path problem with con-
flict constraints [7], the transportation problemwith exclusionary
side constraints [10, 13, 23], the knapsack problem with conflict
constraints [3, 4, 19], the bin packing problem with conflict con-
straints [5, 12, 21], the maximum flow problem under conflict
and forcing constraints [20] and the minimum cost non-crossing
flow problem on layered networks [2].

For all we know, the only work addressing the MWPMC is
performed by Darmann et al. [7] where they provide complexity
results of this problem and discuss its approximation hardness.
As a special case, the MWPMC on bipartite graphs has been con-
sidered by Öncan et al. [16] and Öncan and Altınel [15]. In [16],
the authors have introduced some complexity results as well as
polynomially solvable cases. They have also proposed heuristics
and lower bounding procedures. Recently, Öncan and Altınel
[15] have developed two branch-and-bound (B&B) algorithms
with dichotomized branching rules for the MWPMC in bipartite
graphs.

The motivation of this work is to devise an exact solution
approach, namely a specially tailored B&B algorithm, for the
MWPMC in general graphs. Two Binary Integer Linear Program-
ming (BILP) formulations are also proposed for the MWPMC.
Computational experiments are performed on randomly gener-
ated test instances in order to compare the performance of the
proposed B&B algorithm with the ones of the BILP formulations
solved with CPLEX Mixed-Integer Linear Programming (MILP)
solver. We have observed that the proposed B&B algorithm yields
an outstanding performance for most of the cases.

In the next section, we introduce some definitions which are
used throughout the paper and present two BILP formulations for
the MWPMC. Then, in Section 3, we give the outline of the new
B&B algorithm. Section 4 is where we report the experimental
results. Finally, concluding remarks are discussed in Section 5.

2 TWO BINARY INTEGER LINEAR
PROGRAMMING FORMULATIONS

Let G = (V (G),E(G)) be a graph, where V (G) and E(G) stand
for the set of vertices and edges, respectively. We associate non-
negative weightswe for all edges e ∈ E(G) and let δG (v) denote
the subset of edges incident with vertex v ∈ V (G). Then, the
degree of vertex v ∈ V (G) is defined as dG (v) = |δG (v)| where

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 31 DOI: 10.5441/002/inoc.2019.07

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.07

|·| stands for the cardinality of a set. Besides, the complement of
G is defined as the graph G = (V (G),E(G)) where V (G) = V (G)
and E(G) = {{u,v} < E(G) : u,v ∈ V (G),u , v}.

A stable set (independent vertex set) of G is any subset S ⊆
V (G) such that no two vertices in S are adjacent. The Maximum
Cardinality Stable Set Problem (MCSP) consists of finding a stable
set with a maximum number of vertices. This number is so-called
as the stability number of G which is designated as α(G). When
we associate weights to all vertices in V (G), for every subset
S ⊆ V (G) the weightw(S) is computed as the sum of the weights
of vertices in S . TheMaximumWeight Stable Set Problem (MWSP)
tries to find a stable set S ofG with maximum weightw(S) which
is represented as αw (G). Both MCSP and MWSP are well-known
NP-complete combinatorial optimization problems [11].

A matching (independent edge set) M = (V (M),E(M)) of G
is defined as a subset of E(G) where no two edges share the
same vertex. A perfect matching stands for a matching such that
each vertex of V (G) is incident with exactly one of the edges
in the matching [8, 14]. The weight of a matching, i.e.w(E(M)),
is calculated as the sum of the edge weights in the matching.
Formally speaking, MWPMP tries to find a perfect matchingM
of G with maximumw(E(M)).

A clique K = (V (K),E(K)) is a complete subgraph of G. A
clique is maximal if no other vertex v ∈ V (G)⧹V (K) is adjacent
to all vertices in V (K). Clearly, each clique in G corresponds to a
stable set in G. Therefore, the MCSP and the MWSP defined on
G are equivalent to the Maximum Clique Problem (MCP) and the
Maximum Weight Clique Problem (MWCP) on G, respectively.

Now we are at the stage to present two BILP formulations for
the MWPMC. Given a set of conflicting edges with each edge e ∈
E(G), the MWPMC tries to find a perfect matchingM such that
no two conflicting edges e and f are allowed to be in E(M). The
conflicting edge pairs can be represented with a conflict graph
C = (V (C),E(C)) where V (C) ≡ E(G) and each conflicting edge
pair corresponds to an edge in E(C). The set of conflicting edges
with edge e ∈ E(G) is denoted as δC (e) and the degree of vertex e
in the conflict graph C is |δC (e)| = dC (e). In other words, the set
of edges incident with vertex e is represented with δC (e) ⊆ E(C)
in the conflict graph. Note that, when f ∈ δC (e) then e ∈ δC (f)
and for two edges e, f ∈ E(G) such that {e, f } ∈ E(C).

Let the binary decision variable xe be equal to 1 if and only if
edge e ∈ E(G) is in the perfectmatching. Recall thatwe represents
non-negative weight for edge e ∈ E(G). Then we can formulate
the MWPMC as follows:

max z =
∑

{e }∈E(G)

wexe (1)

subject to∑
e ∈δG (v)

xe = 1 for v ∈ V (G) (2)

xe + xf ≤ 1 for e ∈ E(G); f ∈ δC (e) (3)
xe ∈ {0, 1} for e ∈ E(G) (4)

The objective function (1) is to minimize the weight of the
perfect matching, i.e.w(E(M)). Constraints (2) enforce that every
vertex is connected to exactly one of the edges in the solution.
Constraints (3) obviate the conflicting edge pairs to be in the
perfect matching. Constraints (4) are for the binary restrictions
on the decision variables.

Notice that when we aggregate constraints (3) for all f ∈ δC (e)
we obtain the following equivalent inequalities:

∑
f ∈δC (e)

xf + dC (e)xe ≤ dC (e) for e ∈ E(G) (5)

Wewill call the formulationwhich consists of (1)-(4), as STRONG
and the formulation including (1), (2), (4) and (5) as WEAK. Note
that, when we define PS and PW as the polytopes corresponding
to feasible solution sets of the Linear Programming (LP) relax-
ation of the STRONG and WEAK formulations respectively, then
PS ⊆ PW holds.

3 A BRANCH-AND-BOUND ALGORITHM
FOR THE MWPMC

The proposed B&B algorithm employs maximum weight match-
ing with conflicting edge pair (MWMC) relaxation of the MW-
PMC, which is obtained when we replace the equality signs ’=’
in constraints (2) with inequalities ’≤’. Hence, at each node of
the B&B tree, including the root node, we solve the MWMC
relaxation of the MWPMC.

During the exploration of the B&B tree, the solution of the
MWMC relaxation yields a conflict free matching which is not
necessarily perfect, and hence there may exist a set of exposed
vertices in the relaxed optimal solution. Hence, given an exposed
vertex v ∈ V (G), subproblems of the B&B tree are generated by
enforcing one by one the edges incident tov to be in the solution.
Note that the B&B tree is not necessarily a binary tree.

All B&B nodes but the root node, are characterized by a set of
edges. The ones which must be included in the solution and the
edges that must be excluded from the solution. The edges in the
former set are called as included edges and the edges in the latter
one are named as excluded edges. The remaining edges of E(G) are
the free edges. Broadly speaking, during the run of the algorithm,
at each node of the B&B tree, we consider a set of free edges
and enforce them to be included in the solution. Meanwhile, we
prune a B&B node either by comparing its upper bound value
with the best known lower bound value or by making sure that
the current node can not provide a feasible solution, i.e. a conflict
free perfect matching. A formal outline of the proposed B&B
algorithm is depicted with Algorithm 1.

Now we will discuss the details of the B&B algorithm. To this
end, we will introduce some additional notation. Let t be the
B&B node index and let I (t) and X (t) stand for the subsets of
edges which must be included to and excluded from a conflict
free perfect matching at node t of the B&B tree, respectively.
Then the subproblem at node t is denoted byMWPMC(t) which
is the MWPMC solved on the subgraph G(t) = (V (G(t)),E(G(t)))
of the original graph G, with the vertex set V (G(t)) obtained
by deleting the vertices incident with the edges in I (t) and the
edge set E(G(t))= E(G) \ {I (t) ∪ X (t)}. For an upper bound on
the MWPMC(t) we solve its maximum weight matching with
conflicting edge pair relaxation, namelyMWMC(t).

Let us define extended conflict graph C(t) = (V (C(t)),E(C(t))),
at node t of the B&B tree, corresponding to G(t), where V (C(t))
and E(C(t)) are the set of vertices and edges of C(t), respectively.
Vertices of the extended conflict graph C(t) correspond to the
edges of G(t), i.e. E(G(t)). The weights associated with the edges
in E(G(t)) are the weights of the vertices in C(t). On the other
hand, the edges of the conflict graph represent the set of conflict-
ing edge pairs and the set of incident edge pairs in G(t). Further-
more, we define the complement of C(t) as C(t).

32

3.1 Initialization
At the initialization of the proposed B&B algorithm, we set t = 0
and we start with the original graphG(0) = G and its correspond-
ing conflict graph C(0). The best known lower bound z is set to
−∞. The set of active problem list is initialized withMWPMC(0)

and initially, both of the edge subsets I (0) and X (0) are empty.

3.2 Lower Bound
First of all, we check whether

���E(G(t))��� < |V (G) |2 −

���I (t)��� holds in
order to guarantee that the graph G(t) has the potential to yield
a perfect matching. Otherwise we prune node t .

Next, we perform another check at the lower bounding step
right after finding the maximum cardinality conflict free match-
ing on G(t) which is denoted with S(t). Let α(C(t)) be the size of
a maximum cardinality stable set S(t) on C(t). In case α(C(t)) =
|V (G) |

2 −

���I (t)��� holds then we again prune node t since we have

a feasible solution for theMWPMC(t), i.e. a conflict free perfect
matching, which consists of I (t)∪S(t). Here, this feasible solution
gives us a chance to update the best known lower bound z. After
a lower bound is calculated we proceed to perform the upper
bound computation. The determination of α(C(t)) requires the
solution of the NP-hard MCSP at every node of the B&B tree.
However, the use of exact value helps fathoming a larger number
of nodes, which can balance the increase in the computational
cost.

3.3 Upper Bound
At each node t , we compute an upper bound for theMWPMC(t)

by solving the subproblemMWMC(t). In case theMWMC(t) has
an optimum solution with weight z(t) then we have a maximum
weight conflict free matchingM(t) with value z(t). Hence, we de-
termine an upper bound value at node t as z(t)=z(t) +

∑
e ∈I (t) ce .

In case the MWMC(t) has no solution then we set z(t) = −∞
in order to prune current node t . MWMC(t) is actually equiva-
lent to the solution of the NP-hard MWSP on C(t). Hence, the
determination of an upper bound at every node of the B&B tree
has similar negative effect on the overall computational cost of
the B&B algorithm. Again similarly, this can be balanced by the
increasing ability to fathom more nodes because of the tightness
of the upper bound.

3.4 Pruning
At this stage we either prune the current active node t or proceed
to the division operation. Actually, we consider three cases. First,
we check whether the current upper bound value is less than the
best known lower bound value, i.e. z(t) ≤ z holds. In such case the
current active node is not taken into further consideration and
fathomed. In the second case, the solution obtained in the upper
bounding procedure, i.e. matching M(t) which is obtained by
solvingMWMC(t) onG(t), yields a conflict free perfect matching
together with the edge subset I (t). Then, we have a chance to
update the best known lower bound value. For the remaining case,
we have at least one exposed vertex which will be considered in
the division operation.

3.5 Branching Rule for Division
We perform branching operation considering the selected ex-
posed vertex v ∈ V (G(t)). Note that this operation does not

necessarily outputs a dichotomized B&B tree. Recall that, at each
node t of the B&B tree, I (t) and X (t) stand for the set of edges
which must be included to and excluded from a conflict free
perfect matching, respectively. Hence, given M(t) which is the
maximum weight conflict free matching obtained by solving
MWMC(t) on G(t) and v ∈ V (G(t)) be an M(t) exposed vertex,
we create d(t) =dG (t) (v) new subproblems by enforcing one by
one each edge ei incident to v , i.e. ei ∈ δG (t) (v), to be in the so-
lution. Therefore, we generate subproblems with the following
characterizations:


I (t i) = I (t) ∪ {ei }

X (t i) = X (t) ∪ δC (ei)

E(G(t i)) = E(G) \ {I (t i) ∪ X (t i)}

 for i = 1, . . . ,d(t) (6)

3.6 Stable Sets on Extended Conflict Graph
During the run of the B&B algorithm, we try to find a maxi-
mum cardinality conflict free matching and a maximum weight
conflict free matching on G(t) in order to compute lower and up-
per bound values for theMWPMC(t), respectively. To compute
a lower bound for the MWPMC(t), we solve the MCSP on the
extended conflict graph C(t) and find a stable set S(t) with the
stability number α(C(t)). For that purpose, we solve the MCP
on the complement of C(t), namely C(t) by running the exact
algorithm by Östergård [18]. On the other hand, to find an upper
bound for theMWPMC(t) we solve the subproblemMWMC(t)

by transforming it into an equivalent MWCP on C(t). For that
purpose, we employ the MWCP algorithm by Östergård [17].

4 COMPUTATIONAL EXPERIMENTS
We have performed the computational experiments in order to
compare the performance of the proposed B&B algorithm with
two BILP formulations solved by the state-of-the-art MILP solver
CPLEX 12.7.0. All computations are performed on an HPE SRV
DL380 GEN9 Server with a 2.20 GHz E5-2650v4 Processor and 192
GB RAM operating within Windows Server 2016 environment.
To the best of our knowledge, there is no standard test library
for MWMCP hence, we have generated random test instances.

4.1 Test Instances
In Table 1 we report the properties of the randomly generated
instances. The first column includes the name of the instance
sets where each of which contains 5 randomly generated test
problems. The number following the letter “N" stands for the
number of vertices of the corresponding instance set. Besides,
a suffix is added to represent the density of the graph G. For
example, a suffix of “H" is used to represent high edge density of
the graph generated for the test instance.

In Table 1 configurations are presented in the columns two
to six. The second column gives the number of vertices in G, i.e.
|V (G)|, for each instance set. In our test bed, |V (G)| changes from
36 to 58 vertices. The third column incorporates the number of
edges in G, i.e. |E(G)| which varies from 126 to 770 edges. The
fourth column includes the number of conflicting edge pairs inG
or equivalently the number of edges in the conflict graph C , i.e.
|E(C)|. The fifth column stands for the edge density ofG , i.e. d(G),
which is calculated as the number of edges in G divided by the
maximum possible number of edges. We have employed three
levels for edge density of graphs 0.2, 0.5 and 0.8 respectively for

33

Algorithm 1: Branch-and-bound algorithm for solving MW-
PMC using MWMC relaxations
Input: A graph G = (V (G),E(G)) edge weightswe ≥ 0,
conflict graph C = (V (C),E(C));
Output: A maximum weight conflict free perfect matching
M∗ = (V (M∗),E(M∗))
begin
(Initialization): Set t = 0, MWPMC(0)←MWPMC, G(0)= G,
C(0)= C , L = {MWPMC(0)}, I (0)= ∅, X (0)= ∅,z = −∞

(Termination test): If L = ∅, then output E(M∗) and stop.
(Lower bounding): Select and delete a problem from L, say
MWPMC(t),
if

���E(G(t))��� < |V (G) |2 −

���I (t)��� then
there is no conflict free perfect matching of G with edges
in I (t) ∪ E(G(t)). Set z(t) = −∞, to prune MWPMC(t) and
go to Pruning
else

Find the maximum cardinality conflict free matching in
G(t), which is S(t) and let its size be α(C(t))
if α(C(t)) < |V (G) |2 −

���I (t)��� then
there is no conflict free perfect matching of G with
edges in I (t) ∪ E(G(t)).
Set z(t) = −∞ to prune MWPMC(t) and go to Pruning

else
if α((t)) = |V (G) |2 −

���I (t)��� then
I (t) ∪ S(t) are the edges of a conflict free perfect
matching;
if w(I (t) ∪ S(t)) > z then
Update the lower bound and incumbent by setting
z = w(I (t) ∪ S(t)), E(M∗) ← I (t) ∪ S(t) and
go to Upper bounding

end if
end if

end if
end if
(Upper bounding): Solve MWMC(t) relaxation on G(t)

if MWMC(t) has a solution then
Let M(t) be a maximum weight conflict free matching
on G(t) and z(t) be its optimal value.
Set z(t) = z(t) +w(I (t))

else
Set z(t) = −∞

end if
(Pruning):

i. If z(t) ≤ z, then go to Termination test.
ii. If there is no M(t)-exposed vertex in G(t) (i.e. M(t) is a

perfect matching in G(t) and I (t) ∪ E(M(t)) are the edges
of a perfect matching of G) and z(t) < z then set z(t) = z

and E(M∗) ← I (t) ∪ E(M(t)) go to Termination test
iii. If there is anM(t)-exposed vertex in G(t)(i.e.M(t) is not

a perfect matching in G(t)) then go to Division.
(Division): Select anM(t)-exposed vertex v ofG(t) and create
i = 1, 2, . . . ,d(t) =dG (t) (v) subproblems.
Let {MWPMC(t i)} obtained from {MWPMC(t)} by enforcing
edge ei to be in the perfect matching for ei ∈ δG (t) (v). Add
them to the active node list L with z(t i)=z(t) for
i = 1, 2, . . . ,d(t) and go to Termination test
end

low (L), medium (M) and high (H) edge density. The last column
is for the density of the conflict graph, namely d(C).

Instance generation process of the MWPMC is not straightfor-
ward and hence must be carefully handled. For that purpose, an
initial perfect matching is arbitrarily generated and it is kept to
guarantee the feasibility of the MWPMC test instance. Therefore,
|V (G)/2| edges which correspond to the initial perfect matching
and some more edges are randomly generated, summing up to
|E(G)| edges. The generation of edges are performed such that
each vertex has a degree of at least two in order to avoid trivial
solutions. Besides, |E(C)| conflicting edge pairs are randomly
selected among possible edge pairs excluding the edge pairs of
the initial perfect matching. Finally, the edge weights we are
randomly generated such that we ∈ [10, 900] is satisfied. The
process is repeated for each instance and we have generated a
total of 110 test instances in 22 sets reported in Table 1.

4.2 Computational Results
In Table 2 we present the results obtained with the proposed B&B
algorithm. Table 3 includes the results output by the solution of
STRONG and WEAK formulations with the CPLEX MILP solver.
All experiments are performed with a CPU time limit of 600 secs.

In Table 2 and Table 3, the rows correspond to the average
values for the instance sets. In the last rows, the overall averages
of the corresponding columns are given. The act column includes
the average number of active nodes remaining in the B&B node
list L when the B&B algorithm stops. The LB and UB columns
incorporate the average lower and upper bound values output
by the B&B algorithm, respectively. In the CPU(s) column we
provide the average CPU time required in seconds. The rightmost
column, i.e. column exp, reports the average number of explored
nodes during the run of the B&B algorithm.

Table 3 introduces the results obtained with the solution of the
BILP formulations via CPLEX MILP solver with default options
with a CPU time limit of 600 secs. The last row denotes the overall
average values of the corresponding columns. The values under
Bound columns are the average solution values obtained with
CPLEX MILP solver. The columns CPU(s) are for the average
CPU times is seconds required by the CPLEX MILP solver.

Considering the results reported with Table 2 and Table 3, we
can observe that the B&B algorithm is more efficient than solving
the BILP formulations via CPLEX MILP solver. Observe that, the
overall average CPU time requirement of the B&B algorithm
is 34.76 secs. compared to the ones by STRONG and WEAK
formulations which are 97.12 secs. and 61.20 secs., respectively.
Furthermore, we should state that, all instances except the ones in
the set N56-M are solved to optimality by both the B&B algorithm
and CPLEX MILP solver within the CPU time limit of 600 secs.

Last but not least, we should report that, the B&B algorithm
could not yield the optimum in only 2 instances in the set N56-M.
On the other hand, the STRONG and WEAK formulations solved
with CPLEX MILP solver could not output the optimum in 3 and
2 cases in the set N56-M within the CPU time limit, respectively.

5 CONCLUDING REMARKS AND
DISCUSSION

We have proposed an exact solution procedure and two math-
ematical programming formulations for the MaximumWeight
Matching Problem with Conflicting Edge Pairs (MWPMC). Con-
sidering our preliminary computational experiments on ran-
domly generated test instances we can state that the proposed

34

Table 1: Instance properties
|V (G)| |E(G)| |E(C)| d(G) d(C)

N36-H 36 504 80000 0.8 0.74
N36-L 36 126 5000 0.2 0.73
N36-M 36 315 30000 0.5 0.71
N38-H 38 563 90000 0.8 0.67
N38-L 38 141 7500 0.2 0.85
N38-M 38 352 40000 0.5 0.75
N42-H 42 689 110000 0.8 0.56
N42-L 42 173 12000 0.2 0.89
N42-M 42 431 60000 0.5 0.74
N44-L 44 190 14000 0.2 0.86
N44-M 44 473 70000 0.5 0.71
N46-L 46 208 16000 0.2 0.82
N46-M 46 518 80000 0.5 0.68
N48-L 48 226 18000 0.2 0.78
N48-M 48 564 73800 0.5 0.65
N52-L 52 266 22000 0.2 0.70
N52-M 52 663 104000 0.5 0.55
N54-L 54 287 24000 0.2 0.65
N54-M 54 716 108000 0.5 0.49
N56-L 56 309 26000 0.2 0.61
N56-M 56 770 112000 0.5 0.45
N58-L 58 331 28000 0.2 0.58
Average 45.73 400.68 51377.27 0.40 0.69

B&B algorithm outperforms the MILP solver. It should be borne
in mind that in its current form of the B&B algorithm two NP-
hard problems have to be solved at every search node, which
can be bound to pay a very high computational price with the
increase of instance size and conflict density. However, it can
be possible to compute upper bounds to both α(C(t)) and the
optimum value ofMWMC(t) using heuristics and further relax-
ations with considerably lower costs, which remains as a part of
our future investigations. Furthermore, efficient heuristics and
as well as meta-heuristics for the solution of MWPMC can be
another fertile research avenue.

ACKNOWLEDGMENTS
This work is supported by the Galatasaray University Scientific
Research Project (Grant No: 18.402.009) and the Scientific and
Technical Research Council of Turkey - TÜBİTAK (Grant No:
217M477)

Table 2: Performance of the B&B Algorithm
act LB UB CPU (s) exp

N36-H 0 537.2 537.2 1.5 1043.4
N36-L 0 485.2 485.2 0.0 34.2
N36-M 0 560.2 560.2 0.3 436.6
N38-H 0 815.6 815.6 6.7 3608.8
N38-L 0 851.2 851.2 0.0 15.2
N38-M 0 455.8 455.8 0.2 335.8
N42-H 0 1032.4 1032.4 129.8 48724.8
N42-L 0 631.4 631.4 0.0 8.8
N42-M 0 491.6 491.6 0.5 442.4
N44-L 0 981.4 981.4 0.0 12
N44-M 0 932.6 932.6 0.7 557.2
N46-L 0 1025.6 1025.6 0.0 23.2
N46-M 0 840.4 840.4 1.7 1101.4
N48-L 0 760.2 760.2 0.0 31.8
N48-M 0 991.0 991.0 2.0 1102.8
N52-L 0 906.2 906.2 0.0 99.6
N52-M 0 1041.8 1041.8 38.7 15486.8
N54-L 0 874.6 874.6 0.1 137.8
N54-M 0 1051.4 1051.4 88.4 28790
N56-L 0 945.6 945.6 0.1 242.2
N56-M 16.4 1092.6 1096.8 491.5 130753
N58-L 0 1095.0 1095 0.2 293.4
Average 0.75 836.32 836.51 34.67 10603.67

Table 3: Performance of the BILP Formulations
STRONG WEAK

Bound Cpu (s) Bound Cpu (s)
N36-H 537.2 7.8 537.2 17.9
N36-L 485.2 0.3 485.2 0.2
N36-M 560.2 1.3 560.2 1.5
N38-H 815.6 77.5 815.6 174.5
N38-L 851.2 0.3 851.2 0.3
N38-M 455.8 2.5 455.8 1.9
N42-H 1032.4 363.0 1032.4 293.3
N42-L 631.4 0.5 631.4 0.3
N42-M 491.6 2.7 491.6 6.1
N44-L 981.4 0.7 981.4 0.5
N44-M 932.6 5.0 932.6 8.4
N46-L 1025.6 1.1 1025.6 2.2
N46-M 840.4 35.5 840.4 9.4
N48-L 760.2 1.4 760.2 0.5
N48-M 978.6 159.3 978.6 15.1
N52-L 906.2 1.6 906.2 1.1
N52-M 1041.8 316.0 1041.8 190.1
N54-L 874.6 1.7 874.6 1.1
N54-M 1051.4 572.8 1051.4 238.0
N56-L 945.6 1.7 945.6 1.4
N56-M 974.2 581.7 1092.6 381.2
N58-L 1095.0 2.1 1095.0 1.3
Average 830.37 97.12 835.75 61.20

REFERENCES
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network

Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs,
N.J.

[2] İ. Kuban Altınel, Necati Aras, Zeynep Şuvak, and Z. Caner Taşkın. 2018.
Minimum Cost Non-crossing Flow Problem on Layered Networks. Discrete
Appl. Math. (2018). https://doi.org/10.1016/j.dam.2018.09.016

[3] Mariem Ben Salem, Raouia Taktak, A. Ridha Mahjoub, and Hanene Ben-
Abdallah. 2018. Optimization Algorithms for the Disjunctively Constrained
Knapsack Problem. Soft Comput. 22, 6 (March 2018), 2025–2043. https://doi.

35

org/10.1007/s00500-016-2465-7
[4] Andrea Bettinelli, Valentina Cacchiani, and Enrico Malaguti. 2017. A Branch-

and-Bound Algorithm for the Knapsack Problem with Conflict Graph. IN-
FORMS J. Comput. 29, 3 (2017), 457–473. https://doi.org/10.1287/ijoc.2016.0742

[5] Renatha Capua, Yuri Frota, and Luiz SatoruOchi. 2018. A Study on Exponential-
size Neighborhoods for the Bin Packing Problem with Conflicts. J. Heuristics
24, 4 (August 2018), 667–695. https://doi.org/10.1007/s10732-018-9372-2

[6] Francesco Carrabs, Raffaele Cerulli, Rosa Pentangelo, and Andrea Raiconi.
2018. Minimum Spanning Tree with Conflicting Edge Pairs: a Branch-and-Cut
Approach. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-2895-y

[7] Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J. Woegin-
ger. 2011. Path, Trees and Matchings under Disjunctive Constraints. Discrete
Appl. Math. 159, 16 (September 2011), 1726–1735. https://doi.org/10.1016/j.
dam.2010.12.016

[8] Ran Duan and Seth Pettie. 2014. Linear-Time Approximation for Maximum
Weight Matching. J. Assoc. Comput. Mach. 61, 1 (January 2014), 1–23. https:
//doi.org/10.1145/2529989

[9] Jack Edmonds. 1965. Maximum Matching and a Polyhedron with 0,1-Vertices.
J. Res. Natl. Bur. Stand. 69B, 1 and 2 (1965), 125–130.

[10] Annette M. Ficker, Frits C.R. Spieksma, and Gerhard J. Woeginger. 2018.
Transportation Problem with Conflicts. Ann. Oper. Res. (2018), 1–21. https:
//doi.org/10.1007/s10479-018-3004-y

[11] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: a
Guide to the Theory of NP-Completeness. W. H. Freeman, New York.

[12] Michel Gendreau, Gilbert Laporte, and Frederic Semet. 2004. Heuristics and
Lower Bounds for the Bin Packing Problem with Conflicts. Comput. Oper. Res.
31, 3 (March 2004), 347–358. https://doi.org/10.1016/S0305-0548(02)00195-8

[13] Dries Goossens and Frits C.R. Sieksma. 2009. The Transportation Problem
with Exclusionary Side Constraints. 4OR-Q. J. Oper. Res. 7, 1 (March 2009),
51–60. https://doi.org/10.1007/s10288-007-0067-z

[14] Chien-Chung Huang and Telikepalli Kavitha. 2017. New Algorithms for
Maximum Weight Matching and a Decomposition Theorem. Math. Oper. Res.
42, 2 (May 2017), 411–426. https://doi.org/10.1287/moor.2016.0806

[15] Temel Öncan and İ. Kuban Altınel. 2018. A Branch-and-Bound Algorithm
for the Minimum Cost Bipartite Perfect Matching Problem with Conflict
Pair Constraints. Electron. Notes Discrete Math. 64 (February 2018), 5–14.
https://doi.org/10.1016/j.endm.2018.01.002

[16] Temel Öncan, Ruonan Zhang, and Abraham P. Punnen. 2013. The Minimum
Cost Perfect Matching Problem with Conflict Pair Constraints. Comput. Oper.
Res. 40, 4 (April 2013), 920–930. https://doi.org/10.1016/j.cor.2012.10.022

[17] Patric R.J. Östergård. 1999. A New Algorithm for the Maximum-Weight
Clique Problem. Electron. Notes Discrete Math. 3 (May 1999), 153–156. https:
//doi.org/10.1016/S1571-0653(05)80045-9

[18] Patric R.J. Östergård. 2002. A Fast Algorithm for the MaximumClique Problem.
Discrete Appl. Math. 120 (August 2002), 197–207. https://doi.org/10.1016/
S0166-218X(01)00290-6

[19] Ulrich Pferschy and Joachim Schauer. 2009. The Knapsack Problem with
Conflict Graphs. J. Graph Algorithms Appl. 13, 2 (2009), 233–249. https:
//doi.org/10.7155/jgaa.00186

[20] Ulrich Pferschy and Joachim Schauer. 2013. The Maximum Flow Problem
with Disjunctive Constraints. J. Comb. Optim. 26, 1 (July 2013), 109–119.
https://doi.org/10.1007/s10878-011-9438-7

[21] Ruslan Sadykov and François Vanderbeck. 2013. Bin Packing with Conflicts:
a Generic Branch-and-Price Algorithm. INFORMS J. Comput. 25, 2 (2013),
244–255. https://doi.org/10.1287/ijoc.1120.0499

[22] Phillippe Samer and Sebastian Urrutia. 2015. A Branch and Cut Algorithm
for Minimum Spanning Trees under Conflict Constraints. Optim. Lett. 9, 1
(January 2015), 41–55. https://doi.org/10.1007/s11590-014-0750-x

[23] Minghe Sun. 2002. The Transportation Problem with Exclusionary Side Con-
straints and Two Branch-and-Bound Algorithms. Eur. J. Oper. Res. 140, 3
(August 2002), 629–647. https://doi.org/10.1016/S0377-2217(01)00239-9

[24] Ruonan Zhang, Santosh N. Kabadi, and Abraham P. Punnen. 2011. The Min-
imum Spanning Tree Problem with Conflict Constraints and its Variations.
Discrete Optim. 8, 2 (May 2011), 191–205. https://doi.org/10.1016/j.disopt.2010.
08.001

36

Minimum-Cost Virtual Network Function Resilience
Yannick Carlinet

Orange Labs Networks
Chatillon, France

yannick.carlinet@orange.com

Nancy Perrot
Orange Labs Networks

Chatillon, France
nancy.perrot@orange.com

Anderson Alves-Tzitas
Univ. Federal de Minas Gerais

Brazil
andersontzitas02@gmail.com

ABSTRACT
In the future 5G networks, a wide range of new services with
strong requirements will be delivered in the form of chains of
service functions on independent virtual networks. These virtual
networks will be deployed on demand, each one adapted to the
specific service requirements. For infrastructure providers a real
challenge consists in providing and setting up the required virtual
networks (network slices) while guaranteeing strict Service Level
Agreements. One of the major stakes is to be able to provide
failure protection for the service function chains at minimal cost.
In this work, we consider a set of deployed service chains, and
we study the best strategy to protect them at minimal cost. We
propose mathematical formulations that provide optimal backup
functions placement over a network, and the associated backup
paths for each VNF of all the chains. We develop an efficient
ILP-based heuristic relying on a separation of the problem into
smaller ones to solve large scale instances. We show that our
heuristic is competitive, both regarding the solution quality and
the solving time.

1 INTRODUCTION
1.1 Telecom context
Network operators face the challenge of making their network
more flexible and cost-effective. They also have to plan the evo-
lution of their networks for the incoming 5G networks. Indeed,
some 5G services, such as the Ultra-Reliable Low Latency (URLL),
require the network functions to be executed as close as possi-
ble to the end-user. This means that the operators will have to
split and distribute the network functions over multiple network
nodes. Thanks to the maturity of virtualization technologies, Vir-
tual Network Functions (VNF) have the capability to run inside
Virtual Machines (VM) or containers on commodity hardware.
In addition, the concept of Network Slicing will bring even more
flexibility, as it allows several virtual networks to run on a unique
physical infrastructure, provided by one or several infrastructure
providers. This flexibility brings the following benefits:
• On-Demand Network. Network Functions can be deployed
and updated remotely, as opposed to manually installing
and plugging a hardware equipment to the network. Net-
work capacity can also be scaled down or up on-the-fly,
depending on the current demand.
• Cost-effectiveness. Maintenance and exploitation of the
physical infrastructure are mutualized between the service
providers.
• Automatization. Operations on software are easily autom-
atized, enabling scaling, healing, reduced delays to market
new services, among others.

A Network Slice could be seen as a set of VNFs that are or-
ganized into Service Function Chains (SFC), that specifies the

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

sequence of VNFs crossed by the traffic for a specific service.
Figure 1 shows an example of a Service Function Chain taken
from a use-case defined at IETF (Internet Engineering Task Force)
[10]. The provided service is video optimization and it consists
of three basic Virtual Network Functions: the Steering Proxy,
which is able to redirect HTTP traffic, a DPI-based (Deep Packet
Inspector based) controller, which checks for video traffic, and
an optimizer, which transcodes the video into a suitable format
for the user terminal.

Figure 1: Example of Service Function Chain (SFC).

However, this shift in the networking paradigm comes with
many technological obstacles to overcome. One of them concerns
the resilience of the slices and the associated services.

1.2 Problem Statement
To operate a service, the VNFs of the service chains must be
installed in some network nodes, and the traffic routed through
the installed VNFs. Some of the VNFs could possibly be shared
among several different chains to reduce the exploitation costs,
while the capacity limitations and security requirements are met.
Figure 2 illustrates a small example of two different SFCs to be
routed between an origin-destination pair (1, 6). SFC1 (respec-
tively SFC2), in red color (resp. blue color), corresponds to a
service that requires the functions VNF1 and VNF3 (resp. VNF1,
VNF2 and VNF4). A SFC routing and VNF placement solution is
illustrated. VNF1 is installed in node 2 and shared by both SFCs.

Figure 2: Example of deployed Service chains

For a commercially exploited network, having a resiliency
scheme for each failure scenario is mandatory. Figure 3 illustrates
a rerouting scenario of the previous example in case of a failure of
the node 2, assuming that a backup of VNF1 has been previously
installed on node 3. In this example both SFCs are to be rerouted
through the backup node 3.

The aim of this paper is to answer the question of how to make
the Service Function Chains resilient to node and link failures.
More specifically, the goal is to protect all the Service Function
Chains already deployed against a single node or link failure, at
minimum cost. It means that all the Virtual Network Functions

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 37 DOI: 10.5441/002/inoc.2019.08

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.08

that compose the Service Chains must be protected. We assume
that a backup VNF can be used as a backup VNF for several
nominal VNFs. Similarly, nominal VNFs with spare capacity can
be used as backup VNF. The new routes to the backup VNFs must
be disjoint from the corresponding nominal route, to protect
from link failure, while satisfying the same latency and capacity
constraints as for the nominal path.

Figure 3: Example of node and routing back-up

Considering routing and placement of nominal and backup
SFCs jointly would yield better solutions, as it would allow a bet-
ter usage of network resources. However, in operational settings,
realistic scenarios are likely to consider a two-phase deployment.

1.3 State of the Art
In [1], Allybokus et al. consider the problem of VNF placement for
the composition of Service Function Chains. Resiliency is taken
into account to a certain extent with the addition of anti-affinity
rules in the model.

The ETSI (European Telecommunications Standards Institute)
has studied the issue of reliability in Network Function Virtual-
ization and has given a comprehensive list of features and models
for end-to-end reliability [4]. In [6], Hmaity et al. solve the prob-
lem of the placement of primary VNFs and backup VNFs, so that
the service chains are protected against node and/or link failure.
In the end-to-end protection scheme, the backup path does not
use any link or node from the primary path. In this scheme, the
service chains are resilient against the failure of all the links and
all the nodes. In [11], Qu et al. aim at finding the best service
chain embedding and routing, for minimizing the overall net-
work bandwidth consumption. The problem considers reliability
of the service chains with constraints to guarantee that there are
enough backup VNF for a given target reliability. In [8], Kong et
al. determine the number of VNF replicas required to guarantee
the availability of the SFC, and place these replicas on the routing
path. In [3], Engelmann and Jukan study the reliability of SFCs
with flow parallelism. They evaluate the number of backup VNF
necessary to reach a certain service reliability. They also study
various placement strategy for the backup VNF. In [13], Wang
and Doucette present an algorithm that aims at maximizing the
network availability with the approach offered by Shared-Backup
Path Protection (SBPP).

We observe that in the cited work, the backup path is disjoint
from the working path. In practice, this level of resilience is
often too costly and hardly needed since the event of all nodes
and all links failing at the same time should seldom occur (if at
all). The practical approach for network resiliency is to protect
the network operations from a certain number of simultaneous
failures. In this paper, we propose and solve a problem that is
more relevant to the practical cases of network resiliency design.
In addition, our approach is to help network architects to design

a resilient network, in a cost-efficient manner. This is why we
seek to minimize the cost of deployment, by contrast to the cited
works.

2 THE VIRTUAL NETWORK FUNCTION
RESILIENCE PROBLEM (VNFR)

2.1 Problem Definition
The network is represented by a directed graph G(V ,A), where
V is the set of network nodes andA the set of arcs. Each network
nodeu corresponds to a site in which a network function could be
executed, either by running it on existing server or by opening a
new site. Opening a new site has a high costmu and corresponds
to setting up a new small DC on an eligible site. We assume that
the nominal service chains are already deployed in the network.
This assumption corresponds to many planned real use-case,
in particular when protecting service chains related to critical
virtualized functions like vEPC (virtual Evolved Packet Core,
[9]) or vRAN (virtual Radio Access Network, [2]). The nominal
functions already in place in the network can be shared and used
to protect other service chains, and the residual capacity Cu ∈ N
of used servers can be used to install new functions.

Each arc (uv) of G is characterized by a weight luv that is a
function of the transmission delay between nodes u and v , by a
maximal bandwidth capacity Buv , and by a unitary usage cost
euv .

The set of all the VNFs to be protected against failure is denoted
by F . Each virtual function is characterized by a type f ∈ F ,
and a maximal flow rate tf the function is able to process. The
placement cost of a new function of type f in a node u is denoted
h
f
u .
A service chain k ∈ K is composed of an ordered set of virtual

network functions, and an associated routing path Pk . It is char-
acterized by a traffic demand between origin-destination nodes,
named respectively ok and dk . Without loss of generality, we de-
compose each service chain k into micro chains i, i = 1, . . . , |Fk |
composed of one function each, of type f ik ∈ F .

Then, from now, a section (i,k) corresponds to a unique func-
tion between an origin node oik and a destination node dik along
the routing path Pk of the global service chain. Then, oik is the
node where f i−1

k is placed if i ≥ 2, ok otherwise, and dik the node
where f i+1

k is placed if i ≤ n − 1, dk otherwise. The paths of
these micro chains are sections Sik of the path Pk . An example
of nominal service chain path is given in Figure 4. The repre-
sented SFC is routed along a path P1 from the source node o1 to
the destination one d1, and the flow runs 3 functions f i1 , with
i = 1, 2, 3. The three corresponding sections Si1, with i = 1, 2, 3
are respectively represented in figures 5, 6 and 7.

Figure 4: A service function chain path P1, composed of 3
functions

The service chain sections deployed in the network are defined
by two set of parameters:

38

• p
ikf
u that has value 1 is a VNF of type f in section i of
service chain k is installed on u, 0 otherwise, and
• qikuv whose value is 1 if the traffic in section i of service
chain k is routed along arc (uv), 0 otherwise.

Figure 5: First section of Path P1, S1
1

Figure 6: Second section of Path P1, S2
1

Figure 7: Third section of Path P1, S3
1

All the notations previously introduced in this section are
summarized in Table 1.

2.2 Problem Formulation
The Virtual Network Function Resilience (VNFR) Problem can
be formulated as an integer linear program. The four types of
decision variables are :
• Routing variables

r ikuv =

{
1 if (u,v) is used to re-route section i,k
0 otherwise

• Function placement

y
ikf
u =


1 if backup function of f for section i of k is

placed on node u
0 otherwise

• Number of instances of a same type of the backup function
f installed on node u

x
f
u ∈ N

• Opening of a new site

zu =


1 if the node u is newly used to install at least
one back up function

0 otherwise
Then, a compact formulation for the problem is as follows :

min
∑
u ∈V

∑
f ∈F

h
f
ux

f
u +

∑
u ∈V \N

muzu +
∑
(uv)∈A

∑
k ∈K

∑
i ∈Sk

euvbkr
ik
uv

(1)

subject to

∑
(uv)∈A

r ikuv −
∑

(v ′u)∈A

r ikv ′u =


1 if u = oik
− 1 if u = d ik
0 otherwise

∀i ∈ Sk , ∀k ∈ K,
∀u ∈ V .

(2)∑
k∈K

∑
i∈Sk

r ikuvbk ≤ Buv ∀(u, v) ∈ A (3)∑
f ∈F

x fu ≤ Cu ∀u ∈ V (4)∑
(uv)∈A

r ikuv luv ≤ Lik ∀k ∈ K, ∀i ∈ Sk (5)∑
k∈K
i∈Sk

[
bky

ikf
u −

∑
k′∈K\k
i∈Sk′

pik
′f

u (tf − bk′)
]
≤ tf x

f
u ∀u ∈ V , ∀f ∈ F

(6)

pikfu ≤
∑

u′∈V \u

yikfu′ ∀u ∈ V , ∀k ∈ K, ∀f ∈ F , ∀i ∈ Sk (7)

r ikuv + q
ik
uv ≤ 1 ∀k ∈ K, ∀(u, v) ∈ A, ∀i ∈ Sk (8)∑

f ∈F

x fu ≤ Cuzu ∀u ∈ V \N (9)

yikfu ≤
∑
(uv)∈A

(
r ikuv + r

ik
vu

)
∀u ∈ V , ∀k ∈ K, ∀f ∈ F , ∀i ∈ Sk

(10)

r ikuv ∈ {0, 1} ∀k ∈ K, ∀(u, v) ∈ A, ∀i ∈ Sk
yikfu ∈ {0, 1} ∀f ∈ F , ∀k ∈ K, ∀u ∈ V , ∀i ∈ Sk
x fu ∈ N ∀f ∈ F , ∀u ∈ V
zu ∈ {0, 1} ∀u ∈ V

The objective (1) of the problem consists in minimizing the
whole cost of protecting the service chains against a single failure.
The first term refers to the installation cost of a function f in a
site u, the second one to the cost of opening a new site u, and
finally the last one refers to the cost of re-routing the traffic of
section i , of demand k , on the arc (u,v).

The first set of constraints (2) are the flow conservation con-
straints, to ensure the flow continuity on the back up routes for
all the demands on all the network nodes. The constraints (3) are
to ensure that the sum of the flows routed on each arc are less or
equal to the bandwidth limit capacity. The constraints (4) are the
node capacity constraints and (5) the latency constraints all along
the backup routes of all the demands. The maximal flow rates
that can be processed by a function f on a node u is expressed
in (6) : the capacity of a function being the capacity of the new
installed function instances in addition to the residual capacity
of the functions f already installed for the nominal chains.

The placement constraints (7) are to ensure that each nominal
function f has a back up function installed on another node, while
constraints (8) are to ensure the disjunction between nominal
and backup paths. The constraints (9) are to define the opening of
a site : if at least one function f is installed on a siteu ∈ V \N , ie a
site where no function has been installed yet. Finally, constraints
(10) are to link the backup functions to the backup routes for all
the functions.

2.3 A variant with protection sharing
A shared protection model can easily be obtained from this model,
considering that just one VNF failure can occur at a given time,
in the same geographical area. The shared protection consists

39

Table 1: Indexes, Sets, Constants, and Variables

Indexes

f Virtual Network Function types
u Nodes
k Service Function Chains
i Sections of a service chain
(u,v) Arcs

Sets

V Set of nodes
A Set of arcs
F Set of VNF types
K Set of service chains to protect
S Set of all sections of all chains
N Set of open nodes i.e. hosting at least one VNF

Constants

Graph notation

Cu Max number of VNF that can be hosted on u
mu Cost of opening node u
luv Latency of arc (u,v)
Buv Bandwidth capacity of arc (u,v)
euv Cost per traffic unit on arc (u,v)

Service chains

Pk Nominal path of service chain k
ok Source node for service chain k
dk Destination node service chain k
bk Bandwidth necessary for service chain k
Fk Set of VNFs in service chain k
Sk the set of sections in path Pk
tf Maximum rate of f
h
f
u Cost of installing f in node u

Service chain sections

sik Source node of the section i of service chain k

S f The set of sections containing function f
dik Destination node of the section i of service chain k

nik Backup node for backup section i of service chain k

f ik VNF type in the section i of service chain k

Lik Max. latency for section i of service chain k

p
ikf
u Binary indicator of nominal VNFs placement
qikuv Binary indicator of nominal arc usage

in reserving, in each node, a free capacity space to run only the
VNF with the largest capacity requirement, so that any single
VNF could be run.

Thus, the capacity constraint Equation (6) becomes :

max
k ∈K
i ∈Sk

(bky
ikf
u) ≤ tf x

f
u +

∑
k ∈K
i ∈Sk

∑
k ′∈K\k
i ∈Sk′

p
ik ′f
u (tf − bk ′)

∀u ∈ V ,∀f ∈ F
And the bandwidth constraint (3) becomes :

max
k ∈K
i ∈Sk

(bk r ikuv) ≤ Buv ∀(u,v) ∈ A

This alternate formulation is referred to as PS-VNFR (Protec-
tion Sharing VNFR) in the following.

Table 2: Compact formulation

|V | |A| |F | |S | Time (s) Var. Constr.
30 198 20 400 1820 319,830 892,258
50 538 40 500 >3600 1,271,050 3,568,138
100 2030 40 400 >3600 2,416,100 6,474,630

2.4 Problem Formulation Analysis
These formulations have been solved to optimality using the
commercial solver Cplex 12 ([7]). The largest generated instances,
described in section 4.1, couldn’t be solved within one hour. An
illustration of the size of the formulation (number of variables
and constraints) of VNFR is given in Table 2; where |V | and |A|
refers to the graph size, |F | to the number of function types,
and |S | is the number VNF instances, i.e. the number of chain
sections to be protected against failure. From the formulation of
the problem, we can compute the number of variables as

|S | |A| + |S | |F | |V | + |F | |V | + |V | (11)

and the number of constraints as

|A| + 2|V | + |S | + |V | |S | + 2|F | |V | + 2|S | |A| + 3|V | |S | |F | (12)

We can observe from Equation (11) that for a given graph (i.e.
with given V and A), the factor for the number of function types
is |V | and the factor for the number of sections is |A|. In typical
production networks, the number of arcs is much greater than
the number of nodes, i.e. |V | ≪ |A|. The same reasoning applies
for the number of constraints, in Equation 12. Therefore, we
conclude that the size of the formulation is particularly sensitive
to the number of sections, for a given graph.

3 ILP-BASED HEURISTIC
For some instances, solving the ILP (Integer Linear Program) to
optimality might not be feasible in a reasonable time. For this
reason, we have designed a heuristic called DC-VNFR (Divide
and Conquer in the VNFR problem). This heuristic is based on
the principle of dividing the original problem into a set of smaller
problems. The approach is to process the backups for each type
of VNF, one type at a time. More specifically, the set of all the
sections S is divided into subsets S f such that S f contains all the
sections that contain a VNF of type f .

The VNFR problem is then solved for each S f separately. The
order of resolution is by decreasing λf , with λf =

∑
(i,k)∈S f bk .

In other words, we determine the backups for the type of VNF
with the largest traffic first.

The heuristic DC-VNFR is detailed in Algorithm 1.
As the heuristic consists in fixing a set of variables at each

iteration, it may not find a feasible solution for some instances.
In that case, the algorithm stores the rejected backups in a set
R and carry on the processing. However, over all our numerical
experiments the heuristic has always terminated with a feasible
solution.

4 RESULTS
4.1 Random Instances Creation
In order to evaluate the performance of our model, we have
designed a random instance generator, that allows us to generate
arbitrarily large instances. It is implemented with python3 and
the networkX package [12].

40

Algorithm 1: The DC-VNFR heuristic
Input :An instance of the VNFR problem (cf. 2), with

S =
⋃ |F |
f =1 Sf , with S f the set of all sections with

function type f

Output :A solution to the VNFR problem (i.e. x̄ fu , ȳ
ikf
u , z̄u ,

r̄ ikuv), the total cost ct , and the set of rejected
demands R

1 Compute all the λf =
∑
(i,k)∈S f bk for f ∈ F

2 Sort the sets S f by decreasing λf
3 for f← 1 to |F | do
4 Solve VNFR to optimality with S f instead of S
5 if there is a solution then
6 Update variables x̄ fu , ȳ

kf
u , z̄u , r̄kuv

7 Update total cost ct
8 Update capacities of arcs and nodes
9 for all u such that zu = 1 do

10 N ← N ∪ {u}

11 end
12 else
13 R ← R ∪ {S f }

14 end
15 end

The inputs for the random instance generator are the number
of nodes in the graph, the number of types of VNF and the number
of sections. The other parameters are randomly and uniformly
chosen in-between an input interval given in Table 3.

The arcs are added as follows. First a path that connects all the
nodes is added, so as to ensure that the graph is connected. Then,
arcs are chosen randomly and added until a certain percentage
of the maximum number of arcs in the graph is reached. In the
following, we name the graphs that have 20% of the maximum
number of arcs type A and the graphs at 80% type B (cf. Table 3).
These values were selected in order to assess the impact of the
graph density on performance.

Table 3: Parameters for random instances

Intervals
Cu [1, 3]
luv [1, 20]
Buv [100, 500]
tf [1000, 2000]
bk [1, 20]
Lk [100, 500]
euv [1, 5]
h
f
u [10, 100]

mu [100, 300]
Graphs

type A 20% complete
type B 80% complete

The nominal Service Function Chains are placed as follows:
first the origin and destination nodes of each section are randomly
selected, then a node is randomly selected on the shortest path
to host the VNF. The type of the VNF is also randomly selected.

4.2 Numerical Results
We have generated random instances with varying numbers of
nodes and varying number of sections. For a given set of input
parameters, we have generated 10 random instances. Then, we
have solved all the instances, first with the ILPs (Integer Linear
Programs) described in section 2 and then with the DC-VNFR
heuristic described in section 3. The ILPs were implemented in
Python3 with the Pyomo library [5] and the heuristic was also
developed with Python3. We have recorded the execution time
in terms of CPU time, and recorded the relative gap between the
optimal solution and the solution given by DC-VNFR.

First, it is interesting to note that the two ILPs presented in
section 2 yield to the same results (both in terms of objective
function and execution time). Therefore, in the following we refer
simply to the optimal solution as the ILP. This is due to the fact
that, in the random instances we have generated, the parameter
tf (maximum rate processed by a function) was high enough
not to need to instantiate two of them in a node. In addition,
the capacity of the links were not saturated. In consequence,
since both constraints (3) and (6) were not saturated, there is
no difference with the model that relaxes them. We could check
that, on the instances where one or both these constraints were
actually saturated, the objective was lower with the PS-VNFR
variant.

Figures 8 and 9 show the CPU Time needed for the resolution
of the ILP and the execution of the heuristic, when varying re-
spectively the number of nodes in the graph and the number of
sections K . The y-axis scale is logarithmic so it appears from the
figures that there is almost always at least an order of magnitude
in the performance of the heuristic and the exact resolution.

Figures 10 and 11 represent the relative gap between the DC-
VNFR solution and the optimum. The relative gap is defined as
(β −α)/α with α the minimum cost and β the cost of the solution
provided by DC-VNFR. When varying the number of nodes, the
relative gap is always below 0.6%.

4.3 Discussion
The results given in section 4.2 first show that the performance
gain with the proposed algorithm over the exact resolution is
very good, irrespective of the number of nodes in the graph or
the number of sections to protect. It is also noteworthy that the
type B instances take more time to solve, in average, than the
type A instances. This is because the combinatorial exploration
is larger when the graph is more connected.

The results also show that the proposed algorithm yields high-
quality solutions, in the sense that whatever the number of nodes
in the graph, the gap to optimality stays under 0.6%. In fact, the
heuristic is always optimal when the node capacities are not
saturated. This is due to the fact that, in that case, the problems
of finding the backups for each VNF type are independent from
one another. Since in DC-VNFR the optimal solution is found
for each VNF type separately, the combined solution remains
optimal. We have also observed that when the node capacities
are less saturated, the solutions of DC-VNFR tends to be closer
to the optimal solutions, which seems quite natural.

However, when varying the number of sections, two opposite
trends appear. With type A instances, the gap to optimality in-
creases with the number of sections (after 100 sections). This is
due to the fact that, for sparse graphs, there is a limited number
of nodes to choose from, for the selection of the backup node
(because of the latency constraints). In consequence, the node

41

Figure 8: CPU Time vs. Number of Nodes

Figure 9: CPU Time vs. Number of Sections

Figure 10: Gap vs. Number of Nodes

Figure 11: Gap vs. Number of Sections

capacities are more often saturated, leading to sub-optimal place-
ment of backup VNfs. In contrast, with type B instances, the gap
decreases (cf. Figure 11). This is because in that case, there is a
larger number of choices for the backup node, which means they
are less prone to reach their capacity, which allows the heuristic
to lead to a near-optimal solution.

In conclusion, the DC-VNFR heuristic allows to take advantage
of the mutualization of the backups of each particular VNF types.
It is a good compromise between the optimal resolution of the
ILP and a reasonable computation time.

5 CONCLUSION
In this work, we have studied how to improve the resiliency of
a set of given Service Function Chains, in a practical and cost-
effective manner. The aim is to deploy a backup VNF and an
associated backup path for each VNF of all the chains. Since the
goal is to protect against a single failure, the backups can be
mutualized for several nominal VNFs, and also a nominal VNF
with spare capacity can be used as backup. The formulation that
we proposed allows to solve this problem at minimal cost, and an
ILP-based heuristic, relying on a separation of the problem into
smaller ones, is provided in order to solve large scale instances.
Empirical results on instances representative of real use-cases
show the benefits of this approach.

ACKNOWLEDGMENTS
This work is supported by the french Agence Nationale de la
Recherche (ANR), Project MAESTRO-5G ANR-18-CE25-0012.

REFERENCES
[1] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin. 2018. Virtual

Function Placement for Service Chaining with Partial Orders and Anti-Affinity
Rules. Networks 71 (2018), 97–106.

[2] C. J. Bernardos, A. Rahman, and A. Mourad. 2018. Service Function Chain-
ing Use Cases in Fog RAN. Internet-Draft draft-bernardos-sfc-fog-ran-
04. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-bernardos-sfc-fog-ran-04 Work in Progress.

[3] A. Engelmann and A. Jukan. 2017. A Reliability Study of Parallelized VNF
Chaining. CoRR abs/1711.08417 (2017). arXiv:1711.08417 http://arxiv.org/abs/
1711.08417

[4] ETSI. 2016. Network Functions Virtualisation (NFV) ; Reliability ; Report on
Models and Features for End-to-End Reliability. ETSI GS NFV-REL 003 V1.1.2
(2016).

[5] W. E. Hart, C. D. Laird, J.P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, and J. D. Siirola. 2017. Pyomo–optimization modeling in python
(second ed.). Vol. 67. Springer Science & Business Media.

[6] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina. 2016. Virtual
Network Function placement for resilient Service Chain provisioning. 2016
8th International Workshop on Resilient Networks Design and Modeling (RNDM)
(2016), 245–252.

[7] IBM ILOG. 2015. IBM ILOG CPLEX V12.6: User’s manual for CPLEX.
[8] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi, and

J. P. Jue. 2017. Guaranteed-Availability Network Function Virtualization with
Network Protection and VNF Replication. GLOBECOM 2017 - 2017 IEEE Global
Communications Conference (2017), 1–6.

[9] S. Matsushima and R. Wakikawa. 2016. Stateless user-plane architecture for
virtualized EPC (vEPC). Internet-Draft draft-matsushima-stateless-uplane-
vepc-06. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-matsushima-stateless-uplane-vepc-06 Work in Progress.

[10] J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro. 2018. Service Function
Chaining Use Cases in Mobile Networks. Internet-Draft draft-ietf-sfc-use-case-
mobility-08. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-ietf-sfc-use-case-mobility-08 Work in Progress.

[11] L. Qu, C. M. Assi, K. B. Shaban, and M. J. Khabbaz. 2017. A Reliability-Aware
Network Service Chain Provisioning With Delay Guarantees in NFV-Enabled
Enterprise Datacenter Networks. IEEE Transactions on Network and Service
Management 14 (2017), 554–568.

[12] D. A. Schult. 2008. Exploring network structure, dynamics, and function using
NetworkX. In In Proceedings of the 7th Python in Science Conference (SciPy.
11–15.

[13] W. Wang and J. Doucette. 2018. Availability optimization in shared-backup
path protected networks. IEEE/OSA Journal of Optical Communications and
Networking 10, 5 (May 2018), 451–460. https://doi.org/10.1364/JOCN.10.000451

42

Valid constraints for time-indexed formulations of job
scheduling problems with distinct time windows and

sequence-dependent setup times
Full Paper

Bruno Ferreira Rosa
Federal Center of Technological

Education of Minas Gerais
Divinópolis, MG, Brazil
brunorosa@cefetmg.br

Marcone Jamilson Freitas
Souza

Department of Computing, Federal
University of Ouro Preto
Ouro Preto, MG, Brazil
marcone@ufop.edu.br

Sérgio Ricardo de Souza
Federal Center of Technological

Education of Minas Gerais
Belo Horizonte, MG, Brazil
sergio@dppg.cefetmg.br

Zacharie Ales
ENSTA ParisTech/UMA

Paris, France
zacharie.ales@ensta-paristech.fr

Philippe Yves Paul Michelon
University of Avignon

Avignon, France
philippe.michelon@univ-avignon.fr

ABSTRACT

This paper addresses the single machine scheduling problem

with distinct time windows, sequence-dependent setup times

(SMSPETP) which consists in minimizing the total weighted ear-

liness and tardiness of a set of jobs. We propose a time-indexed

mathematical formulation for representing the problem, new

valid constraints families for this formulation, as well as separa-

tion algorithms. Computational experiments show that the use

of these algorithms in a cutting-plane enable to significantly im-

prove the linear relaxation.

1 INTRODUCTION

This paper addresses the single machine scheduling problem

with distinct timewindows and sequence-dependent setup times.

Such problem consists of determining the time at which jobs

must be performed in order to minimize the weighted sum of

earliness and tardiness penalties, and is hereafter denoted by SM-

SPETP.

The SMSPETP is a difficult problem which has numerous ap-

plications, such as Just-in-Time manufacturing, chemical pro-

cessing, video on demand services, among others. As a conse-

quence, many resolution algorithms have been introduced to

solve this problem [3, 5]. Nevertheless, the job scheduling prob-

lem with the characteristics considered in this work has not re-

ceived the deserved attention. The SMSPETP has mainly been

treated by heuristic procedures that divide the problem into two

subproblems: (i) job sequencing, and (ii) determining the opti-

mal time for completion of each job in a given sequence. This

work tackles the SMSPETP from a perspective not yet consid-

ered in the literature i.e., with a cutting plane algorithm.

The SMSPETP has the following characteristics:

• A single machine must process a set I of n jobs;

• Themachine can perform only one job at a time and, once

the process is initiated, it cannot be interrupted;

• All jobs are available for processing starting from date 0;

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 9th
International Network Optimization Conference (INOC), June 12-14, 2019, ISBN
978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

• Between two consecutive jobs x and y ∈ I , a setup time

of Sxy is required. It is assumed that the time for setting

up the machine in order to process the first job in the

sequence is equal to 0;

• Idle time between the execution of two consecutive jobs

is allowed.

• For each job x ∈ I , there is a processing time Px and a time

window [Ex ,Tx] in which the job x should preferably be

completed. Ex indicates the earliest due date, and Tx is

the tardiest due date;

• If job x is completed before Ex , then there is a cost of αx
per unit of earliness time. In the case that the job is com-

pleted after Tx , there is a cost of βx per unit of tardiness

time. Jobs completed within their time windows do not

incur costs;

The objective of the problem is to determine the starting dates of

the jobs, so that theweighted sum of their earliness and tardiness

is minimized, i.e.,

min
∑
x ∈I

(αxex + βx tx), (1)

where Cx represents the completion time of job x ∈ I and ex =

max(0, Ex−Cx) and tx = max(0,Cx−Tx) represent the earliness

and tardiness times of x , respectively.

In this paper, a time-indexed formulation for representing the

SMSPETP is presented. In addition, five families of valid con-

straints for time-indexed SMSPETP formulations are proposed

in order to obtain better lower bounds.

The rest of this article is organized as follows. The time-indexed

formulation for the SMSPETP is presented in Section 2, while

the five families of valid constraints for time-indexed SMSPETP

formulations are showed in Section 3. Section 4 proposes sep-

arations algorithms for these families of constraints. Section 5

presents and discusses the computational results. Finally, Sec-

tion 6 concludes this work.

2 THE PROPOSED TIME-INDEXED
FORMULATION

In [6, 7] were introduced time-indexed formulations of the sin-

gle machine scheduling problem with distinct deadlines and no

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 43 DOI: 10.5441/002/inoc.2019.09

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.09

setup times. We adapt these formulations and use the valid con-

straints of [1] in order to represent the SMSPETP.

Let Hx =
{
sLBx , s

LB
x + 1, . . . , s

UB
x

}
be the set of possible start-

ing dates of job x ∈ I . Let lxh be decision variables such that

∀ x ∈ I and ∀h ∈ Hx ,

lxh =

{
1, if job x begins at date h;

0, otherwise.

In the rest of this work the following notations are used: ⌊λ⌋x =

max(sLBx , λ) and ⌈λ⌉x = min(λ, sUB
x), for all job x ∈ I and for all

number λ ∈ R.
As introduced in [7], the cost incurred by the earliness or tar-

diness of a job x ∈ I started at date h can be determined by the
function

дx (h) = αx ·max(Ex − h − Px , 0) + βx ·max(h + Px −Tx , 0), ∀ h ∈ Hx (2)

Therefore, a time-indexed formulation for the SMSPETP, de-

noted by TIF, is given by

(TIF) min
∑
x∈I

∑
h∈Hx

дx (h) · lxh

s.t.
∑
h∈Hx

lxh = 1, ∀x ∈ I (3)

⌈h⌉x∑
k=⌊h−Px −Sxy+1⌋x

lxk +

⌈h⌉y∑
k=⌊h−Py−Syx +1⌋y

lyk ≤ 1, ∀x, y ∈ I, x , y,

∀h ∈ Hx ∪ Hy (4)

lxh ∈ {0, 1}, ∀x ∈ I, ∀h ∈ Hx (5)

The objective function seeks tominimize the weighted sum of
the earliness and tardiness. Constraints (3) assure that each job
will be executed only once. Constraints (4) ensure that there is
sufficient time to execute a job and prepare the machine before
starting the next job. Note that Constraints (4) assume the validy
of the triangle inequality given by

Sxy ≤ Sxz + Pz + Szy , ∀ x, y, z ∈ I, x , y, x , z and y , z . (6)

3 NEW VALID CONSTRAINTS

This section introduces new families of valid constraints for time-

indexed formulations to the SMSPETP.

Before presenting the new valid constraints, it is observed

that the constraints given by Proposition 3.1 of [1] are also valid

for the time-indexed formulations of SMSPETP. These constraints

are used to prove the validity of the first family of valid con-

straints.

Proposition 3.1 ([1]). Given a subset I ′ ⊆ I such that |I ′| ≥ 2,
for all h ∈

⋃
x ∈I ′ Hx , we have

∑
x∈I ′

⌈h⌉x∑
k=

⌊
h−Px − min

y∈I ′\{x }
Sxy+1

⌋
x

lxk ≤ 1. (7)

Note that Constraints (4) are obtained from Constraints (7) by

considering only the subsets I ′ ⊂ I such that |I ′ | = 2.

The first family of valid constraints is inspired by [6]. In this

work, the authors propose the set of Constraints (8) for time-

indexed formulations of scheduling problemswithout setup time

between jobs:

⌈h+∆−1⌉x∑
k=⌊h−Px +1⌋x

lxk +
∑

y∈I \{x }:Py≥∆

⌈h⌉y∑
k=⌊h−Py+∆⌋y

lyk ≤ 1, ∀x ∈ I,

∀h ∈
⋃

y∈I \{x }

Hy, ∀∆ ∈ {2, 3, . . . , max
y∈I \{x }

Py } (8)

Proposition 3.2 generalizes Constraints (8) to scheduling prob-

lems with setup times between jobs. The family of constraints

that satisfies Proposition 3.2 is named here “Family 1”.

Proposition 3.2 (Family 1). Let I ′ ⊆ I be a subset of jobs such
that |I ′| ≥ 2. Given a job x ∈ I ′, for all h ∈

⋃
y∈I ′\{x } Hy and all

∆ ∈
{
2 − Px − miny∈I ′\{x } Sxy , . . . ,maxy∈I ′\{x }

(
Py + Syx

)}
,

we have

⌈h+∆−1⌉x∑
k=⌊h−Px −S

min
x +1⌋x

lxk

︸ ︷︷ ︸
εx

+

∑
y∈I ∗

⌈h⌉y∑
k=⌊h−Py−S

min
y +∆⌋y

lyk

︸ ︷︷ ︸
ϵy

≤ 1, (9)

where:

• I ∗ = {y ∈ I ′ \ {x } | Py + Syx ≥ ∆},

• Smin
x = miny∈I ∗ Sxy and

• Smin
y = min

(
Syx , ∆− 1+minz∈I ∗\{y} Syz

)
for all y ∈ I ∗

(
if I ∗ = {y },

then Smin
y = Syx

)
.

Proof. As job x must be processed once, we have εx ≤ 1.

Moreover, we have from Proposition 3.1 that∑
y∈I ∗ ϵy ≤ 1. Suppose there is a feasible scheduling π of I in

which εx = 1 and
∑
y∈I ∗ ϵy = 1 for a given h′ and a given ∆

′.

Thus, there is a job y′ ∈ I ∗ such that ϵy′ = 1. Consequently,h′ −

Px −Sxy′+1 ≤ sπx ≤ h′+∆′−1 andh′−Py′−Sy′x+∆
′ ≤ sπy′ ≤ h′,

where sπx is the starting date of job x in scheduling π , i.e., there

is overlap between jobs x and y′ in scheduling π . �

Note that Constraints (7) are contained in Family 1. In fact,

they are obtained by only setting ∆ = 1 in Family 1.

The following lemma provides a new set of valid constraints.

Lemma 3.3. For any subset I ′ ⊆ I , we have

∑
x∈I ′

©­­­«

⌈h+ min
y∈I ′\{x }

(Py+Syx)−1⌉x∑
k=⌊h⌋x

lxk

ª®®®¬︸ ︷︷ ︸
ϵx

≤ 1, ∀h ∈
⋃
x∈I ′

Hx . (10)

Proof. As every job must be processed once, we have ϵx ≤ 1,

∀x ∈ I ′ and ∀h ∈
⋃
x ∈I ′ Hx . Suppose there is a feasible schedul-

ing π of I such that
∑
x ∈I ′ ϵx > 1 for a given h′. Therefore, there

are two jobs x1,x2 ∈ I ′ such that ϵx1 = ϵx2 = 1. Consequently,

h′ ≤ sπx1 ≤ h′+Px2+Sx2,x1−1 and h
′ ≤ sπx2 ≤ h′+Px1+Sx1,x2−1,

where sπx is the starting date of job x in scheduling π , that is, the

machine performs jobs x1 and x2 in scheduling π simultaneously.

This contradicts the fact that π is a feasible scheduling of I . �

Proposition 3.4 provides another family of valid constraints,

named “Family 2”. This family contains Constraints (10).

Proposition 3.4 (Family 2). Let I ′ ⊆ I be a subset of jobs such
that |I ′ | ≥ 2. Given a job x ∈ I ′, for all h ∈

⋃
y∈I ′\{x } Hy and

all ∆ ∈
{
2−miny∈I ∗

(
Py +Syx

)
, . . . , Px +maxy∈I ′\{x } Sxy

}
, we

have:
⌈h+PSmin

x −1⌉x∑
k=⌊h−∆+1⌋x

lxk

︸ ︷︷ ︸
εx

+

∑
y∈I ∗

⌈h+PSmin
y −∆⌉y∑

k=⌊h⌋y

lyk

︸ ︷︷ ︸
ϵy

≤ 1, (11)

where:

• I ∗ = {y ∈ I ′ \ {x } |Px + Sxy ≥ ∆},

• PSmin
x = miny∈I ∗

(
Py + Syx

)
and

• PSmin
y = Px + Sxy , if I

∗
= {y }, or PSmin

y = min
(
Px + Sxy , ∆ − 1 +

minz∈I ∗\{y}
(
Pz + Szy

))
for all y ∈ I ∗ , otherwise.

44

Proof. Since job x must be performed only once, we have

εx ≤ 1. Besides it, from Constraints (10) we have
∑
y∈I ∗ ϵy ≤ 1.

Suppose there is a schedule π from I such that εx = 1 and∑
y∈I ∗ ϵy = 1 to a given date h′ and a given ∆

′. Therefore, there

is y′ ∈ I ∗ such that ϵy′ = 1. Consequently, h′ − ∆
′
+ 1 ≤ sπx ≤

h′ + Py′ + Sy′x − 1 and h′ ≤ sπ
y′
≤ h′ + Px + Sxy′ − ∆

′, where

sπx is the starting date of job x in scheduling π , that is, the ma-

chine performs jobs x and y′ in schedule π simultaneously. This

contradicts the fact that π is a feasible schedule of I . �

Constraints (10) are obtained from Family 2when considering

∆ = 1. Propositions 3.5, 3.6 and 3.7 provide three more families

of valid constraints, which will be named “Family 3”, “Family 4”

and “Family 5” respectively.

Proposition 3.5 (Family 3). For any subset I ′ ⊆ I such that
|I ′ | ≥ 2, we have:

∑
x∈I ′

⌈
min

y∈I ′\{x }
(sLBy +Py+Syx)−1

⌉
x∑

k=sLBx

lxk

︸ ︷︷ ︸
ϵx

≤ 1. (12)

Proof. According to what has already been discussed, ϵx ≤

1,∀x ∈ I ′. Suppose there is a scheduleπ of I such that
∑
x ∈I ′ ϵx >

1. Therefore, there are two jobsx1,x2 ∈ I
′ such thatϵx1 = ϵx2 = 1.

Consequently, sLBx1 ≤ sπx1 ≤ sLBx2 + Px2 + Sx2,x1 − 1 and sLBx2 ≤

sπx2 ≤ sLBx1 + Px1 + Sx1,x2 − 1, where s
π
x is the starting date of job

x in scheduling π , i.e., the machine performs jobs x1 and x2 in

scheduling π simultaneously. This contradicts the fact that π is

a feasible scheduling of I . �

Proposition 3.6 (Family 4). Given a subset of jobs I ′ ⊆ I such

that |I ′| ≥ 2, if TPT I ′

min
denotes the lowest total time required to

process all jobs in I ′ and sLB
I ′
= minx ∈I ′ s

LB
x , then

∑
x∈I ′

sU B
x∑

h=

⌊
sLB
I ′\{x }

+T PT
I ′\{x }
min

+ min
y∈I \{x }

Syx

⌋
x

lxh

︸ ︷︷ ︸
ϵ

≥ 1. (13)

Proof. Suppose there is a feasible scheduling π of I such that

ϵ is equal to 0. Let sπx be the starting date of job x in scheduling π

and x ′ ∈ I ′ be the last job processed in π . Thus,

sπ
x ′
< sLB

I ′\{x }
+ TPT

I ′\{x ′}
min

+ miny∈I\{x ′ } Syx ′ and there is a

scheduling of I ′ \ {x ′} whose total processing time is lower than

TPT
I ′\{x ′}
min . This contradicts the fact that TPT

I ′\{x ′}
min

is the low-

est total time required to process all jobs in I ′ \ {x ′}. �

Proposition 3.7 (Family 5). Given a pair of distinct jobs x and

y in I , for all h ∈
{
max

(
sLBx , s

LB
y

)
, . . . ,min

(
sUB
x , s

LB
y + Py +

Syx − 1
)}
∩ Hx , we have

sUB
y∑

k=h+Px+Sxy

lyk

︸ ︷︷ ︸
ϵ

≥ lxh . (14)

Proof. Suppose there is a feasible scheduling π of I such that

ϵ < lxh for a given h (i.e., such that lxh = 1 and ϵ = 0). So, sπx = h

and sLBy ≤ sπy < h+Px +Sxy , where s
π
x denotes the starting date

of job x in scheduling π . Since sLBy ≤ h ≤ sLBy + Py + Syx − 1,

it follows that sπx + Px + Sxy > sπy and sπy + Py + Syx > sπx ,

contradicting the fact that π is a feasible scheduling of I . �

4 SEPARATION ALGORITHMS FOR THE
FAMILIES OF PROPOSED CONSTRAINTS

Except Family 5, all families of constraints proposed in Section 3

have an exponential number of constraints (2n or greater). This

fact makes it impossible to fully include these families in the

formulations. However, they can be used in cutting-plane algo-

rithms [8]. In short, cutting-plane algorithms are procedures that

start from the solution of the linear relaxation of a formulation

in which a limited number of constraints are considered and it-

eratively adds new valid constraints to the problem and solve it,

until one stopping criterion is satisfied.

Let PPM be the mathematical programming problem based

on time-indexed variables that is updated iteratively in a given

cutting-plane algorithm. Consider that l⋆ represents an optimal

solution of the linear relaxation of the current PPM . Note that

l⋆ consists of an array of values assigned to the variables lxh ,

∀x ∈ I and ∀h ∈ Hx . Due to the large number of constraints

in Families 1–4, the simple fact of checking which constraints

are violated by l⋆ is still an impractical process. The problem of

finding, in a set of constraints, those that are violated by l⋆ is

called a “separation problem”.

The separation problem associated with Family 5 is solved ex-

actly by checking all constraints, one by one. On the other hand,

the separation problems of Families 1–4 are solved heuristically.

Moreover, the separation algorithms seek only the constraint

which are the most violated by l⋆. Constraints whose violation

by l⋆ is small are discarded. A constraint of type A × l ≤ b is

violated by l⋆ for at least δ > 0 units if A × l⋆ ≥ b + δ .

The algorithms proposed to solve the separation problems as-

sociated with the families of constraints presented in Section 3

are described in the following subsections. Let δ represents the

minimum violation accepted. Given a solution l⋆ for the cur-

rent PPM , let hmin
x = min{h ∈ Hx : l⋆

xh
> 0} and hmax

x =

max{h ∈ Hx : l⋆
xh
> 0}, ∀x ∈ I . Furthermore, for each job

x ∈ I , let Ix =
{
y ∈ I \ {x} : hmax

y + Py + Syx > hmin
x or

hmax
x + Px + Sxy > hmin

y

}
.

4.1 Separation Heuristic for Family 1

The proposed separation heuristic algorithm for Family 1 is de-

scribed in Algorithm 1. In this algorithm, Ω1 represents the set

of constraints violated by l⋆. lhsx,h, I ′,∆(l
⋆) represents the nu-

merical value of the expression εx +
∑
y∈I ∗ ϵy related to Propo-

sition 3.2 applied to l⋆, for the respective x , h, I ′ and ∆.

The jobs are sorted in ascending order by the values of hmin
x .

Themaximum number of constraints returned by the separation

heuristic of Family 1 is given by
∑
x ∈I (h

max
x − hmin

x + 1).

4.2 Separation Heuristic for Family 2

Let Ω2 be a subset of Family 2 composed of constraints which are

violated by l⋆. If lhsx,h, I ′,∆(l
⋆) represents the numerical value

of the expression εx +
∑
y∈I ∗ ϵy of Proposition 3.4 applied to l⋆,

then the proposed heuristic algorithm for the separation prob-

lem of Family 2 is analogous to Algorithm1. The only differences

are the range of ∆ and the function lhsx,h, I ′,∆(l
⋆), which, in this

case, are based on Proposition 3.4.

45

Input: I ; hmax
x , hmin

x , Ix , lhsx,h, I ′,∆(l
⋆) ∀x ∈ I ; l⋆; δ ∈ R.

Ω1 ← ∅;

for x ∈ I do

for h = hmax
x , hmax

x − 1, · · · , hmin
x do

I ′ ← {x};

lhs0← −∞;

Update← FALSE;

while I ′ , Ix ∪ {x} do
y∗ ← −1;

lhs∗← −∞;

for y ∈ Ix \ I
′ do

I ′ ← I ′ ∪ {y};

for ∆ = Py + Syx , Py + Syx − 1, · · · , 2 −

Px −minz∈I\{x } Sxz do

if lhsx,h, I ′,∆(l
⋆) ≥ 1 + δ then

Ω1 = Ω1 ∪ {lhsx,h, I ′,∆(l) ≤ 1};

Update← TRUE;

Exit the current loop;
if lhsx,h, I ′,∆(l

⋆) > lhs∗ then
lhs∗← lhsx,h, I ′,∆(l

⋆);

y∗ ← y;
if Update = TRUE then

Exit the current loop;

else
I ′ ← I ′ \ {y};

if Update = TRUE then
Exit the current loop;

if lhs∗ > lhs0 then
lhs0← lhs∗;

else
Exit the current loop;

I ′← I ′ ∪ {y∗};
Return Ω1;

Algorithm 1: Separation Heuristic for Family 1.

4.3 Separation Heuristic for Family 3

The proposed heuristic algorithm for the separation problem of

Family 3 is detailed in Algorithm 2. Ω3 represents the set of con-

straints violated by l⋆ found by this algorithm. Let lhsI ′(l
⋆) rep-

resents the numerical value of the expression
∑
x ∈I ′ ϵx of Propo-

sition 3.5 applied to l⋆, for the respective subset I ′ ⊆ I .

As in the separation heuristics of Families 1 and 2, the order of

investigation of the jobs x ∈ I is always given in the increasing

order of hmin
x . The maximum number of constraints returned by

the separation heuristic of Family 3 is equal to n.

4.4 Separation Heuristic for Family 4

Before presenting the proposed separation for Family 4, it is ob-

served Constraint (13) of Proposition 3.6 is equivalent to Con-

straint (15) for all subset I ′ ⊆ I .

∑
x∈I ′

⌈
sLB
I ′\{x }

+TPT
I ′\{x }
min

+ min
y∈I \{x }

Syx −1

⌉
x∑

h=sLBx

lxh

︸ ︷︷ ︸
ϵ ′
I ′

− |I ′ | ≤ −1. (15)

Let Ω4 be a subset of Family 4 composed of constraints that

are violated by l⋆. Let lhsI ′(l
⋆) be the numerical value of expres-

sion ϵ ′
I ′
− |I ′| of Constraint (15) applied to l⋆, for the respective

subset I ′ ⊆ I .

Input: I ; Ix , lhsI ′(l
⋆) ∀x ∈ I ; l⋆; δ ∈ R.

Ω3 ← ∅;

for x ∈ I do
I ′ ← {x};

lhs0 ← −∞;

Update← FALSE;

while I ′ , Ix ∪ {x} do
y∗ ← −1;

lhs∗← −∞;

for y ∈ Ix \ I
′ do

I ′ ← I ′ ∪ {y};

if lhsI ′(l
⋆) ≥ 1 + δ then

Ω3 = Ω3 ∪ {lhsI ′(l) ≤ 1};

Update← TRUE;

Exit the current loop;
if lhsI ′(l

⋆) > lhs∗ then
lhs∗← lhsI ′(l

⋆);

y∗ ← y;
I ′ ← I ′ \ {y};

if Update = TRUE then
Exit the current loop;

if lhs∗ > lhs0 then
lhs0← lhs∗;

else
Exit the current loop;

I ′← I ′ ∪ {y∗};
Return Ω3 ;

Algorithm 2: Separation Heuristic for Family 3.

The heuristic algorithm proposed for the separation problem

of Family 4 is similar to that of Family 3. The only difference is

in the function lhsI ′(l
⋆), which, in this case, is based on Con-

straint (15). In addition, instead of the exact value of TPT I ′

min, a

lower bound is used for that value. The lower bound used is pro-

vided by Corollary 4.1, which follows from the results proposed

in [4].

Corollary 4.1. For every subset I ′ ⊆ I , the shortest total time

required to perform all jobs of I ′, that is TPT I ′

min , is such that

T PT I ′

min ≥
∑
x∈I ′

Px +max

(∑
x∈I ′

min
y∈I ′\{x }

Syx −max
x∈I ′

min
y∈I ′\{x }

Syx ,

∑
x∈I ′

min
y∈I ′\{x }

Sxy −max
x∈I ′

min
y∈I ′\{x }

Sxy

)
.

4.5 Separation Algorithm for Family 5

The separation of Family 5 is solved exactly.

The proposed algorithm for the separation problem of Family

5 is detailed in Algorithm 3. Ω5 represents the set of constraints

violated by l⋆ found by this algorithm.

5 COMPUTATIONAL RESULTS

This Section presents the computational results obtained with

the time-indexed formulation for the SMSPETP presented in Sec-

tion 2, as well as with the different families of constraints pro-

posed in Section 3. The separation algorithms described in Sec-

tion 4 are used in a cutting plane framework in order to experi-

ment how much they enable to improve the linear relaxation.

Themathematical formulationswere implemented and solved

through the C++ Concert Technology tool and the IBM ILOG

CPLEX Optimization Studio 12.6.2 solver. The separation heuris-

tics used for testing the proposed families of constraints were

46

Input: I ; sLBx , sUB
x ∀x ∈ I ; l⋆; δ ∈ R.

Ω5 ← ∅;

for x ∈ I do

for y ∈ I \ {x} do

for h = max(sLBx , s
LB
y), max(sLBx , s

LB
y) +

1, · · · , min(sUB
x , s

LB
y + Py + Syx − 1) do

if
∑sUB

y

k=h+Px+Sxy
l⋆
yk
≤ l⋆

xh
− δ then

Ω5 = Ω5 ∪
{∑sUB

y

k=h+Px+Sxy
lyk ≥ lxh

}
;

Return Ω5;

Algorithm 3: Separation Algorithm for Family 5.

also implemented in C++ language. The experiments were re-

alized on a computer Intel® Xeon(R) CPU E5620 @ 2.40GHz ×

16, with 48 GB of RAM and CentOS Linux 7 operation system.

CPLEX was configured to use only one thread and the other pa-

rameters were not changed. In addition, the algorithms were not

optimized for multiprocessing.

A set of instances of [5], involving up to 20 jobs and satisfying

the triangle inequality, was used in order to test the proposed

formulations. This set contains 16 instances of each value of n.

For each job x ∈ I , the bounds sUB
x and sLBx used for determining

the parameter values of each mathematical formulation are the

same than in [4].

The cutting-plane algorithm described in Algorithm 4 was

used in order to obtain lower bounds to the SMSPETP. The strat-

egy that was used is based on the Variable Neighborhood De-

scent – VND [2] procedure. It uses a subsequencing ofm sepa-

ration algorithms proposed in Section 4, where 1 ≤ m ≤ 5,.

PPM ← PPM0;

l⋆ ← solution of PPM;

δ ← 0.8;

while δ ≥ 0.1 do
i ← 1;

while i ≤ m do
Solve the separation problem related to the i-th

family of constraints for l⋆ and δ ;

if there are constraints that are violated by l⋆

then
Add these constraints to the current PPM ;

l⋆← solution of the current PPM ;

Eliminate from the current PPM the

constraints satisfied by l⋆ with non-zero

slack;

i ← 1;
else

i ← i + 1;
δ ← δ ÷ 2;

Return l⋆;

Algorithm 4: Lower Bound obtained withm families of

constraints.

In Algorithm 4, the initial PPM is provided by the PPM0 for-
mulation, defined by Equations (16)–(18).

(PPM0) min
∑
x∈I

∑
h∈Hx

дx (h) · lxh (16)

s.t.
∑
h∈Hx

lxh = 1 ∀ x ∈ I (17)

lxh ∈ [0, 1] ∀x ∈ I and ∀h ∈ Hx (18)

Equation (16) represents the objective function of SMSPETP.

Constraints (17) ensure that each job must be executed once.
Given an instance of the problem, the gap of a given lower

bound LB with respect to a given integer solution value f ⋆ is
determined by Equation (19):

дap =
f ⋆ − LB

f ⋆
× 100. (19)

The lower the value of the gap, the better the lower bound LB

is. We consider the best integer solutions from [5] to compute

the gaps.

The results are reported in Table 1. In this table, the first col-

umn indicates the number of jobs of each set consisting of 16

instances. Columns “TIF” present the results using the linear

relaxation of the proposed time-indexed formulation. Columns

“Family 1”, “Family 2”, . . . , “Family 5” report the results by apply-

ing Algorithm 4 with the corresponding separation algorithm.

Columns “Family 1–5” show the results by applying the Algo-

rithm 4 with the five proposed separation algorithms in this or-

der: Families 1, 2, 4, 3 and 5. For each set of instances, columns

“gap” and “time” show, respectively, the average gap of the lower

bounds (in %) and the average time, in seconds, required for each

strategy over the 16 corresponding instances.

According to Table 1, the smallest average gaps obtained with

only one family of constraints are Family 1, followed by Families

2, 4, 3 and 5, in this order (this justifies the choice of this sequence

of separation algorithms when using all the constraint families).

The difference between the average gaps of the lower bounds ob-

tained with Family 1 and the average gaps obtained with Family

2 is relevant. The same happens with the difference between the

average gaps of the lower bounds constructed with Families 2

and 4. The larger average times were also observed when using

Family 1, followed by the average times required with Family 2.

The average times required by Families 3, 4 and 5 were less than

2 seconds. However, the average gaps of the lower bounds con-

structed with these families of constraints were greater than or

equal to 72.00 %.

Also according to Table 1, the average times required to ob-

tain the lower bounds with the Families 1–5 were always higher

than the average time required for solving the linear relaxation

of the TIF formulation. However, the average gaps of the lower

bounds resulting from the application of Algorithm 4 are sig-

nificantly lower than the average gaps obtained with linear re-

laxation. The lower gaps of the average gaps obtained with the

linear relaxations of the TIF formulation are greater than 37%,

while the average gaps obtained by Families 1–5 are less than

6%. The average gap of the lower bounds obtained with the fam-

ilies 1–5 for the instances with 6 jobs are null, that is, the Algo-

rithm 4 has found the optimal whole solutions of these problems.

Although it is not shown in Table 1, the Algorithm 4 has found

the optimal integer solutions of a total of 87 instances, among

them an instance with 20 jobs.

6 CONCLUSIONS

In this work a time-indexed formulation, named TIF, for solving

the Single Machine Scheduling Problem with distinct time win-

dows and sequence-dependent setup times (SMSPETP) is pro-

posed. Five new families of valid constraints for time-indexed

formulations as well as separation algorithms for these families

are also introduced.

47

Table 1: Results obtained when applying the Algorithm 1 in the instances.

TIF Family 1 Family 2 Family 3 Family 4 Family 5 Families 1-5

n gap time gap time gap time gap time gap time gap time gap time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

06 37.85 0.25 0.06 0.68 1.59 1.49 84.90 0.06 72.00 0.08 87.83 0.08 0.00 0.65

07 49.03 0.47 0.17 2.95 4.26 5.31 83.77 0.10 74.81 0.10 87.87 0.09 0.02 2.79

08 55.46 0.67 0.44 7.08 8.26 7.86 83.07 0.11 73.74 0.09 86.03 0.12 0.24 7.15

09 56.69 1.01 1.58 14.70 13.01 11.51 89.06 0.13 80.10 0.13 91.92 0.14 1.29 14.88

10 58.47 1.82 0.87 25.63 9.34 27.92 90.86 0.20 82.12 0.18 92.29 0.20 0.46 26.66

11 64.28 2.17 2.60 47.07 14.72 39.07 92.97 0.25 85.59 0.25 94.44 0.27 1.90 50.40

12 68.74 2.83 3.26 77.21 18.58 55.36 89.98 0.39 81.83 0.36 92.37 0.38 2.21 89.28

13 63.79 3.66 3.25 83.64 22.02 54.27 88.43 0.50 83.52 0.44 90.95 0.48 2.80 94.84

14 64.79 6.12 2.16 153.44 17.84 94.49 91.16 0.58 85.64 0.56 92.87 0.57 1.71 171.17

15 70.10 7.35 4.20 195.47 24.44 127.44 91.35 0.81 87.23 0.82 93.87 0.84 3.18 231.52

16 71.55 8.41 5.42 362.04 25.90 187.69 90.84 0.71 87.15 0.74 92.87 0.82 4.94 372.63

17 73.08 11.43 5.24 415.57 26.62 253.60 90.91 0.97 86.98 1.06 92.56 1.07 4.88 470.41

18 69.07 15.26 4.22 516.20 24.91 279.38 92.66 1.26 88.95 1.33 93.84 1.44 3.92 578.00

19 71.70 16.32 4.23 726.58 25.83 397.62 92.51 1.61 89.85 1.63 94.06 1.70 3.79 829.96

20 74.54 23.81 6.34 887.28 26.65 558.24 93.51 1.79 90.08 1.86 94.87 1.99 5.89 1031.59

CPLEX solver was used to solve the linear relaxation of the

proposedmathematical formulation applied to instances with up

to 20 jobs.

The main contribution of this work is the proposition of five

families of valid constraints for SMSPETP formulations based

on time-indexed variables. The proposed separation heuristics

for these families were also used to obtain lower bounds for in-

stances with up to 20 jobs. The lower bounds obtainedwith these

heuristics are significantly better than those obtained with the

linear relaxation of the mathematical formulation presented in

this work. Although the times required to generate such lower

bounds are greater than those required by CPLEX to solve linear

relaxation, the lower bounds obtained are close, or even equal,

to the values of the optimal integer solutions.

It is important to note that the valid constraints proposed for

the time-indexed SMSPETP formulations can also be used in

many other types of scheduling problems involving sequence-

dependent setup times.

ACKNOWLEDGEMENTS

The authors thank Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brazil (CAPES) - Finance Code 001, Fundação

de Amparo à Pesquisa do Estado deMinas Gerais (FAPEMIG),Con-

selho Nacional deDesenvolvimentoCientífico e Tecnológico (CNPq),

Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-

MG) and Universidade Federal de Ouro Preto (UFOP) for support-

ing this research.

REFERENCES
[1] Pasquale Avella, Maurizio Boccia, Carlo Mannino, and Igor Vasilyev. 2016.

Valid Inequalities for Time-Indexed Formulations of the Runway Schedul-
ing Problem. In Supplementary Proceedings of the 9th International Con-
ference on Discrete Optimization and Operations Research and Scientific
School (DOOR 2016), Vladivostok, Russia, September 19 - 23, 2016. 787–790.
http://ceur-ws.org/Vol-1623/paperapp14.pdf

[2] P. Hansen and N. Mladenović. 2001. Variable neighborhood search: Principles
and applications. European Journal of Operational Research 130, 3 (2001), 449–
467. https://doi.org/10.1016/S0377-2217(00)00100-4

[3] A. Janiak, W. A. Janiak, T. Krysiak, and T. Kwiatkowski. 2015. A survey on
scheduling problems with due windows. European Journal of Operational Re-
search 242, 2 (2015), 347 – 357. https://doi.org/10.1016/j.ejor.2014.09.043

[4] B. F. Rosa, , M. J. F. Souza, S. R. de Souza, P. Y. P. Michelon, and Z. Ales. 2016.
Mathematical formulations for the job scheduling problem with due windows

and setup times (in portuguese). In Proceedings of the XLVIII Brazilian Sympo-
sium of Operational Research – XLVIII SBPO. Vitória, Brazil, 4140–4151.

[5] B. F. Rosa,M. J. F. Souza, S. R. de Souza,M. F. de França Filho, Z. Ales, and P. Y. P.
Michelon. 2017. Algorithms for job scheduling problems with distinct time
windows and general earliness/tardiness penalties. Computers & Operations
Research 81 (2017), 203 – 215. https://doi.org/10.1016/j.cor.2016.12.024

[6] J. P. Sousa and L. A. Wolsey. 1992. A time indexed formulation of non-
preemptive single machine scheduling problems. Mathematical Programming
54, 1 (1992), 353–367. https://doi.org/10.1007/BF01586059

[7] Shunji Tanaka. 2012. An Exact Algorithm for the Single-Machine
Earliness-Tardiness Scheduling Problem. In Just-in-Time Systems,
Roger Z. Ríos-Mercado and Yasmín A. Ríos-Solís (Eds.). Springer Op-
timization and Its Applications, Vol. 60. Springer New York, 21–40.
https://doi.org/10.1007/978-1-4614-1123-9_2

[8] L. A. Wolsey. 1998. Integer programming. Wiley-Interscience, New York, NY,
USA.

48

Smart Grid Topology Designs∗

Paula Carroll†

College of Business
Dublin, Ireland

paula.carroll@ucd.ie

Cristina Requejo
Universidade de Aveiro

Aveiro, Portugal
crequejo@ua.pt

ABSTRACT

This paper addresses supports for evolving design demands of
electricity low voltage networks in urban areas. Innovations in
how electricity is generated and supplied are required to support
transformation of energy systems in response to climate change.
We describe a MIP model to support grid upgrade decisions in
the context of an energy community in an existing urban setting.
We evaluate the MIP model on an adaption of an IEEE radial
network benchmark instance augmented with geographic data.
We present interesting computational results which suggest ad-
ditional arcs to be added. Our results highlight potential research
opportunities for the network optimisation community to facil-
itate the desired energy systems transformation challenge.

1 INTRODUCTION

Themethods of electrical energy production and distribution are
changing in response to climate change concerns and as tech-
nological innovations create new opportunities. Consumers can
now generate electricity through rooftop photovoltaic (PV) pan-
els, and small rooftop wind turbines [2]. End-users equipped
with renewable energy generation are turning pro-active in the
distribution system and becoming a so called “prosumer”. In fu-
ture electricity distribution models, any member of the network
could potentially generate electricity. We consider the context of
an energy community, a geographically close grouping in an ur-
ban setting, who wish to collaborate together to share electricity
in their local area.

Many challenges and opportunities exist to achieving a trans-
formation of the energy system. In this paper we focus on the
problem of deciding how to upgrade an existing local low volt-
age network to facilitate the operation of the energy community.
We contribute a MIP formulation to determine which additional
edges could be added to upgrade a distribution system tree topol-
ogy to form a meshed topology.

We evaluate our model on a 37 node IEEE radial test feeder
system [7] under a number of scenarios. We augment the test
system with geographic information to create realistic renew-
able energy test instances. Our results show that the problem
becomes more challenging as more prosumers participate in the
energy community.

2 ENERGY SYSTEM TRANSFORMATION

The EU Commission’s “Clean Energy for All Europeans” pack-
age aims to drive a transformation of the energy system to en-
sure clean, secure and e�cient energy in response to the needs

∗Low Voltage Smart Grid Topologies in urban Areas
†UCD Energy Institute & UCD Centre for Business Analytics

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

for climate change mitigation actions [4]. Demand for electric-
ity by an end user is currently managed in many jurisdictions
through their relationship with an electricity (energy) supplier.
Suppliers meet their own total needs by buying from a centrally
managed pool. Electricity generators sell the output of their plants
to the pool, the electricity can be generated by renewable sources
such as wind, or from fossil or nuclear fuels. The electricity is
transported from the generators’ sites over the transmission sys-
tem and �nally over the distribution system to the end-users
buildings. Approximately 8 - 15% of the power generated is lost
through heat loss during transport and distribution This moti-
vates the desire to locate generation nearer to demand sites. The
move to more sustainable practices further motivates the focus
on increasing the use of Renewable Energy Sources (RES), and
decreasing the reliance on fossil and nuclear fuels.

The future decentralised distribution networkwill be required
to facilitate new market practices where certain end-users be-
come electricity generators. Therefore if formerly all the end-
users were consumers, now some of them are becoming pro-
sumers. One concept being explored is that of an energy collec-
tive to allow participants a more proactive role in power system
operation. An energy collective can be viewed as a community-
based electricity market structure where prosumers are allowed
to share energy at community level [9]. Prosumers may generate
more electricity than their needs at some times and may wish to
make their excess electricity available to either to their supplier,
or in this case, to the local energy community network. At other
times they may be self satis�ed, or may not produce enough and
need to buy electricity from their supplier, or preferably to buy
the excess renewable electricity of their neighbours in the en-
ergy community network.

The connection topology of traditional centrally controlled
electricity grids are generally tree distribution networks. Fig-
ure 1 shows the IEEE 37 node radial test feeder topology. The
symbol adjacent to node 799 is a type of transformer which acts
as on/o� switch. The symbol between nodes 709 and 775 is a
transformer to control voltage levels. We have added a compass
rose to show how we interpret the direction orientation of the
test network.

As community energy collectives evolve, upgrade of the local
low voltage distribution network may be warranted. The evolu-
tion of electricity grid tree topologiesmirrors that of telecommu-
nications networks, when connectivity constraints were added
to meet reliability concerns. In turn ring bounds can be consid-
ered to limit �ow (and loss) in network cycles [3, 6]. Many of
the (telecommunications) network design models and solution
techniques are transferable to address the needs of smart grid
topology design. Similar ideas in adapting network topology de-
sign models are used in wind farm cabling problems in [5].

An additional challenge to understanding the requirements of
future local electricity networks is the move toward the electri�-
cation of heat and transport in climate changemitigation actions.
These demands will push the demand for electricity upwards

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 49 DOI: 10.5441/002/inoc.2019.10

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.10

Figure 1: IEEE 37 node radial test network.

and may require signi�cant network reinforcement. In contrast,
retro�tting of building with modern (thermo) e�cient materi-
als and the use of more e�cient white goods counter balance
somewhat to decrease electricity (and total energy) demand. Es-
timates of the uptake of RES further complicate estimates of fu-
ture network needs. An understanding of potential electricity
�ow in energy collectives will provide increased understanding
for transmission and distribution system operators.

3 SMART GRID LOW VOLTAGE UPGRADE
MIP MODEL

Consider an existent electricity low voltage distribution network
in an urban area modelled as G = (N ,A) for a set of n loca-
tions N = {1, . . . ,n} such that the topology is a tree rooted at a
substation n0. Electricity �ows according to the laws of physics
and can be controlled by controller devices. Historically electric-
ity �owed from the substation in response to consumer demand
so that graphs were considered to be directed. We make some
simplifying assumptions to handle nonlinear alternating current
�ow. Smart wire technology in development may make these as-
sumptions realistic in the near future [8].

Consider that the setN \n0 is partitioned into setsC of the end-
users who remain consumers and set P of the new prosumers.
Electricity can �ow from the prosumer back into the distribution
network without the need for additional arcs, the �ow can be
controlled and monitored by switching devices. Hence we can
assume the existent network is modelled by Ḡ = (N ,E)

We consider a time horizon T . Each end-user i ∈ N \ n0 con-
sumes a certain amount ECt

i
of energy at time t . We treat the

substation root node as a prosumer in the sense that they can
both provide and accept electricity. Each prosumer i ∈ P gener-
ates a certain amount EGt

i
of energy at time t . At each time t ,

the energy demand Qt
i for each consumer i ∈ C is Qt

i = −ECt
i .

At each time t , the energy demand Qt
i for each prosumer i ∈ P

isQt
i
= EGt

i
− ECt

i
.If this value is zero the prosumer is self satis-

�ed. IfQt
i
> 0 the prosumer has an excess of electricity and sells

electricity to the community network. If Qt
i < 0 the prosumer

has insu�cient electricity and buys electricity, preferably from
the community network but otherwise from their supplier.

We assume that the community network needs can be satis-
�ed. Therefore at each time, the substation node n0 either pro-
vides or accepts energy:∑

i ∈N \{n0 } Q
t
i < 0 or

∑
i ∈N \{n0 } Q

t
i > 0, respectively.

Set Qt
n0
=

∑
i ∈N \{n0 } Q

t
i . Set Q̄ = maxt ∈T

∑
i ∈N |Qt

i | to be
the maximum amount of electricity transported in any connec-
tion.

We take possible energy losses into account. The overall losses
between the substation and consumers can bemodelled by a per-
centage loss factor L ∈ [8, 15]%.

To obtain the MILP model consider the following decision
variables:

Topological binary integer variables xi j indicate whether the
arc (i, j) is selected to be included in the new decentralised net-
work. Flow variables yt

i j
indicate the amount of electricity trans-

ported from location i to location j at time t . Let the constants
ai j take value 1 if arc (i, j) ∈ E, meaning that it is already in-
stalled and belongs to the distribution network, or take value 0
if the arc (i, j) < E, it is not installed.

min
∑

(i, j)∈A

ci jxi j +
∑

t ∈T

∑

(i, j)∈A

yti j (1)

subject to
∑

i ∈N

(ai j + xi j) ≥ 1 j ∈ C (2)

∑

i ∈N

(ai j + xi j) ≥ 1, j ∈ P (3)

∑

i ∈N

(aji + xji) ≥ 1, j ∈ P (4)

∑

i ∈N

yti j + (1 + L)Q
t
j =

∑

i ∈N

ytji , j ∈ N , t ∈ T (5)

yti j ≤ Q̄(ai j + xi j), (i, j) ∈ A (6)

ai j + xi j + aji + xji ≤ 1, i, j ∈ N (7)

xi j ∈ {0, 1}, (i, j) ∈ A (8)

yti j ≥ 0, (i, j) ∈ A, i ∈ T (9)

Let ci j be the cost of installing additional arc ij ∈ A in the up-
grade network. Eq (1) is the objective function which minimises
the cost of additional edges in the upgrade as well as minimis-
ing the overall �ow of electricity. This will have the e�ect of
fostering �ow between geographically close neighbours, which
in turn reduces transmission losses. Inequality (2) ensures all
consumers are connected to the network to receive energy over
an existing arc, and possibly through an additional new arc. In-
equalities (3) and (4) ensure all prosumers are connected to the
network by an existing arc and possibly through an additional
new arc. Prosumers have the possibility of both receiving elec-
tricity, and of o�ering their excess to the network. Equalities (5)
are the �ow conservation constraints and take into account pos-
sible energy losses by a percentage factor L, 0.08 ≤ L ≤ 0.15.
Inequalities (6) are the variables linking constraints and limit
for a maximum �ow in any connection of the network. Inequal-
ities (7) say we do not install a new arc between two locations
if there is an existing link in the network, this means we restrict
to one the number of connections between any two locations.
Finally constraints (8) and (9) de�ne the variables domain.

50

In addition, we can add clique inequalities for any subset of
consumers. For any clique of size three, C3 = {i, j,k} ⊆ C , the
following is valid:∑

{l,m }∈C3
(alm + xlm) ≤ |C3 | − 1 = 2.

These inequalities say that for any clique Cc ⊂ C the num-
ber of connections is restricted to |Cc | − 1. Restricting the num-
ber of locations in the clique avoids cycles between any set of
consumers. The clique inequalities are inserted for subsets of
consumers where the existing arcs are su�cient to ensure the
energy �ow distribution. Recall that the existing topology is a
tree. New arcs are added to improve the energy �ow mainly for
prosumers that must have the opportunity to distribute their en-
ergy in the network. In the case of prosumers, a cycle is allowed
in the solution.

4 TEST INSTANCES AND SCENARIOS

We augment the IEEE 37 node test instances with geographic
information for two locations; Dublin, Ireland and Aveiro, Por-
tugal. We simply overlay the IEEE system on geographic maps
and extract GPS coordinates of the locations. This give us two
test instances where we can estimate distances between nodes
using the haversine formula as a proxy for ci j .

Dublin, Ireland lies at latitude 53.4◦C N and longitude 6.3◦C
W. It has a temperate climatewith pronounced variation between
the number of hours of daylight in winter and summer. Hence
the amount of electricity generated by PV per season is quite
variable [1]. In addition, the east-west orientation of some build-
ings o�ers less potential than those with southerly facing as-
pects.We evaluate two potential seasonal scenarios for theDublin
location; one in summer (with daylight hours 7.00 - 20.00), and
the other in winter (with daylight hours 9.00 - 16.00). We create
representative load pro�les for Dublin using data from the Retail
Market Design Service [10] allowing a proportion of the nodes
to act as prosumers. Sample pro�les are shown in Figure 2.

Figure 2: Reference Load Pro�les for Ireland.

We follow a similar approach for Aveiro located at 40.6◦C N
and 8.6◦CWand generate sample load pro�les informed by [11].
Aveiro o�ers more consistent daylight hours and sunlight than
Dublin, so we test just one reference load pro�le.

5 RESULTS AND ANALYSIS

The MIP model was implemented in Mosel and computational
tests were run using XpressMP 8.5 on a Dell 64 bit Windows 8
machine with Intel i5 3.2 GHz processor and 8GB of Ram. We
test the instances varying the estimated transmissions losses L,
and the proportion of prosumers in the community. We assume
a 2kW PV panel for each prosumer with generation during day-
light hours of diminishing output depending on the prosumer’s
orientation.

We performed computational experiments to assess the per-
formance of the compact model and the quality of the obtained
solutionswith andwithout the clique constraints for sets of three
consumers. The use of these valid inequalities greatly improves
the solution quality, but at a slight expense in computational
time. For example, for the instance Aveiro with L = 8% and
P = 25% theGap = (BestMIP − BestBound)/BestMIP improves
from 0.39 to 0.17. Therefore we use the IP model with the clique
valid inequalities for all sets of consumers of size three. We al-
lowed a maximum run time of 3 hours for the more challenging
instances.

Table 1 shows sample results. From left to right we show the
information about the problem instance (Name of the instance,
Loss percentage, Prosumers percentage), followed by details of
the IP model B&B search obtained for a time limit of three hours
(problem status, BestBound value corresponds to the best lower
bound obtained, BestMIP value corresponds to the best feasible
integer solution, the corresponding Gap value, the number of
the nodes in the B&B search procedure, the computational time
in seconds and the number of new arc �ows to be installed de-
termined by the best MIP solution).

Figure 3 shows sample solution topologies. Existing edges are
show in black, and proposed additional arcs in red. We see the
evolution from tree tomore resilient meshed networks. Figure 3a
shows the best solution found for Aveiro with 30% Prosumers,
and a loss factor of 15%. Figure 3b shows the best solution found
for Dublin with 25% Prosumers, and a loss factor of 8%.

We see that problem instances with a low percentage of pro-
sumers are solved to optimality in relatively short run times. As
the proportion of prosumers increases the test instances become
more di�cult to solve. There is an increase in the solution val-
ues as the loss factor increases. The initial LP relaxation is quite
weak. The DublinWinter instances are solved to optimality, and
re�ect the low availability of excess electricity from prosumers.
In contrast, the Aveiro and Dublin Summer instances are more
challenging problems when excess electricity from prosumers is
availably to satisfy consumers in the community, or to return to
the grid via the substation root node.

6 CONCLUSIONS

In this paper we have described a smart grid topology problem
which focuses on augmenting the grid topology in order to take
into account new demands as some energy consumers become
energy producers: prosumers. We propose a MIP model to aug-
ment the existent grid topology and identify which potential
arcs could be added to support new electricity �ows. The com-
putational results show that the run times are short when the

51

(a) Aveiro, 30% Prosumers, loss 15%.

(b) Dublin, 25% Prosumers, loss 8%

Figure 3: Sample Smart Grid Solutions.52

Table 1: Smart Grid Computational Results

Name Loss% %Prosumer Status Bestbound BestMIP Gap Nodes Time (s) ♯New Flows

Aveiro 8 20 Optimum 2115 2115 0.00 1 69 2
Aveiro 15 20 Optimum 2219 2219 0.00 0 74 2
Aveiro 8 25 Un�nished 3575 4333 0.17 7548 10885 7
Aveiro 15 25 Un�nished 3673 4320 0.15 9271 10876 5
Aveiro 8 30 Un�nished 3927 5263 0.25 5532 10838 7
Aveiro 15 30 Un�nished 4034 4883 0.17 6700 11200 8

DublinSummer 8 20 Optimum 2305 2305 0.00 265 250 3
DublinSummer 15 20 Optimum 2416 2416 0.00 217 279 3
DublinSummer 8 25 Un�nished 3520 3983 0.12 16750 10836 8
DublinSummer 15 25 Un�nished 3592 4085 0.12 19103 10872 8
DublinSummer 8 30 Un�nished 3731 4367 0.15 14798 10982 13
DublinSummer 15 30 Un�nished 3813 4684 0.19 10216 11095 10
DublinWinter 8 20 Optimum 2994 2994 0.00 1157 956 3
DublinWinter 15 20 Optimum 3159 3159 0.00 2213 1223 3
DublinWinter 08 25 Optimum 4141 4141 0.00 1815 1579 7
DublinWinter 15 25 Optimum 4298 4298 0.00 1929 1786 7
DublinWinter 8 30 Optimum 4351 4351 0.00 3803 5025 8
DublinWinter 15 30 Optimum 4506 4506 0.00 5231 6291 8

percentage of prosumers and Loss factor are low. The problem
instances get harder as these parameter values are increased.

OurMIPmodel yields interesting results that could be used by
distribution system operators and energy collectives to explore
the potential of solar PV to meet RES targets and sustainabil-
ity objectives. Our models could be used to perform cost bene�t
analysis of upgrades, or to understand potential electricity ex-
change �ows in the network, and to understand where devices
to control and record the electricity �ows may need to be added.

There is potential for future work to improve the MIP model
with additional valid inequalities. Other variants of the model
could focus on rewarding prosumers with a higher price for ex-
cess electricity shared among the energy community, compared
with excess returned to the grid via the substation root node, or
alternatively new reverse arcs from prosumers to the substation
may not be considered. In our computational experiments, we
used a distance measure as a proxy for the arc installation costs
ci j in Eq (1), and no �nancial penalty or reward for �ows within
the community network. Further evaluation of the model could
test weightings and alternative costs of the objective function
components. In addition, since the arc installation costs substan-
tially exceed network �ow costs, a hierarchical model could pro-
vide a useful alternative to evaluate potential scenarios.

In our computational tests, we allowed a certain proportion of
the nodes to act as prosumers and assumed a 2kWpanel/prosumer.
In further testing we may choose to only allow those nodes with
high potential for solar PV to act as prosumers, i.e., those nodes
with south orwest facing orientations should be selected to serve
the energy community, rather than those with east-west orien-
tations, and decisions on the size of the PV panel could be con-
sidered. Such choices are of interest to policy makers and give
rise to questions on the social acceptance of energy community
designs.

Finally, as noted, the resulting meshed networks are more
resilient, but give rise to more complex management problems
such as those seen in works on bounded rings in telecommunica-
tions networks. A research agenda in the network optimisation
community to share and exploit its learnings on network design

and evolution could help advance the energy transformation and
provides many interesting research opportunities.

ACKNOWLEDGMENTS

The research of C. Requejo was partially supported by the Fun-
dação para a Ciência e a Tecnologia (FCT), project:

UID/MAT/04106/2019 (CIDMA).

REFERENCES
[1] LM Ayompe, Aidan Du�y, SJ McCormack, and Michael Conlon. 2011. Mea-

sured performance of a 1.72 kW rooftop grid connected photovoltaic system
in Ireland. Energy conversion and management 52, 2 (2011), 816–825.

[2] FrancescoBalduzzi, Alessandro Bianchini, Ennio Antonio Carnevale, Lorenzo
Ferrari, and Sandro Magnani. 2012. Feasibility analysis of a Darrieus vertical-
axis wind turbine installation in the rooftop of a building. Applied Energy
97 (2012), 921 – 929. https://doi.org/10.1016/j.apenergy.2011.12.008 Energy
Solutions for a Sustainable World - Proceedings of the Third International
Conference on Applied Energy, May 16-18, 2011 - Perugia, Italy.

[3] Paula Carroll, Bernard Fortz, Martine Labbé, and Seán McGarraghy. 2013. A
branch-and-cut algorithm for the ring spur assignment problem. Networks
61, 2 (2013), 89–103.

[4] COM. 2016. Clean Energy For All Euro-
peans. Technical Report 860. European Union.
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0885&rid=4
accessed January 2018.

[5] Martina Fischetti and David Pisinger. 2018. Optimal wind farm cable rout-
ing: Modeling branches and o�shore transformer modules. Networks (2018).
https://doi.org/10.1002/net.21804

[6] Bernard Fortz, Martine Labbé, and Francesco Ma�oli. 2000. Solving the Two-
Connected Network with Bounded Meshes Problem. Operations Research 48,
6 (2000), 866–877.

[7] William H Kersting. 1991. Radial distribution test feeders. IEEE Transactions
on Power Systems 6, 3 (1991), 975–985.

[8] Frank Kreikebaum, Debrup Das, Yi Yang, Frank Lambert, and Deepak Divan.
2010. SmartWires âĂŤ A distributed, low-cost solution for controlling power
�ows and monitoring transmission lines. In 2010 IEEE PES Innovative Smart
Grid Technologies Conference Europe (ISGT Europe). IEEE, 1–8.

[9] F. Moret and P. Pinson. 2018. Energy Collectives: a Community and Fairness
based Approach to Future Electricity Markets. IEEE Transactions on Power
Systems (2018), 1–1. https://doi.org/10.1109/TPWRS.2018.2808961

[10] Retail Market Design Service (RMDS). 2019. Standard Load Pro�les. Technical
Report. RMDS. https://rmdservice.com/standard-load-pro�les/ Accessed
February 2019.

[11] Daniel Wiesmann, InÃłs Lima Azevedo, Paulo FerrÃčo, and John E. FernÃąn-
dez. 2011. Residential electricity consumption in Portugal: Findings from
top-down and bottom-up models. Energy Policy 39, 5 (2011), 2772 – 2779.
https://doi.org/10.1016/j.enpol.2011.02.047

53

On Optimization of Semi-stable Routing
in Multicommodity Flow Networks

Artur Tomaszewski

Institute of Telecommunications,

Warsaw University of Technology

Warsaw, Poland

a.tomaszewski@tele.pw.edu.pl

Michał Pióro

Institute of Telecommunications,

Warsaw University of Technology

Warsaw, Poland

m.pioro@tele.pw.edu.pl

Davide Sanvito

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano

Milan, Italy

davide.sanvito@polimi.it

Ilario Filippini

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano

Milan, Italy

ilario.filippini@polimi.it

Antonio Capone

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano

Milan, Italy

antonio.capone@polimi.it

ABSTRACT
Ideally, the network should be dynamically reconfigured as traffic

evolves. Unfortunately, even in SDN paradigm, network recon-

figurations cannot be too frequent due to a number of reasons

related to route stability, forwarding rules instantiation, individ-

ual flows dynamics, traffic monitoring overhead, etc.

In this paper, we focus on the fundamental problem of deciding

whether, when, and how to reconfigure the network during traf-

fic evolution. We consider a problem of optimizing semi-stable

routing in the capacitated multicommodity flow network when

one may use at most a given maximum number of routing con-

figurations (called clusters) and when each routing configuration

must be used for at least a given minimum amount of time.

We propose a solution method based on cluster generation

that provides a good lower bound on the minimum network delay

(i.e., the total of link delays) and scales well with the size of the

network.

1 INTRODUCTION
The dynamic nature of network traffic caused by daily fluctu-

ations is the origin of a crucial trade-off between routing opti-

mality and frequency of network reconfiguration. Nevertheless,

network operators have traditionally privileged routing stabil-

ity by resorting to approaches, like oblivious routing [1] and

robust routing [9, 15, 16], that apply static routing designs based

on“worst case” traffic conditions. This unavoidably creates over-

provisioning and suboptimal utilisation of network capacity.

Recently, Software-Defined Networking (SDN) has provided

tools for making online network reconfiguration a potentially

viable solution: dynamic routing reconfigurations can be applied

at the network devices to optimize performance as the traffic

evolves [4, 7, 8, 12]. However, reconfiguring the network too

frequently can in general affect its stability since reprogramming

flow rules can take longer than the reconfiguration period.

A group of hybrid approaches [2, 5, 13, 14, 17], often referred to

as semi-stable routing, have been recently proposed to combine

static and dynamic routing. Considering a limited set of routing

configurations, each designed and activated during specific time

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the

International Network Optimization Conference (INOC), June 12-14, 2019:

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

intervals, allows for reducing the penalty of using the “worst

case” traffic conditions, and, simultaneously, for controlling the

reconfiguration frequency. As a result, the optimization problem

of selecting a sequence of routing configurations, and timepoints

when the consecutive routing configurations must be activated,

arises.

In this paper we consider the problem of optimizing routing in

the capacitated multicommodity flow network, in which demand

volumes change periodically over an ordered set of timepoints.

Following the semi-stable routing approach, we analyse a specific

version of the problem where one may use at most a given maxi-

mum number of routing configurations and where each routing

configuration must be used for at least a given minimum num-

ber of consecutive timepoints, in order to meet the maximum

network reconfiguration frequency constraint. Referring to a set

of consecutive timepoints as a (timepoint) cluster, we name this

problem the semi-stable routing cluster design problem (SSR-

CDP). In SSRCDP the optimization objective is to minimize the

network delay, i.e., the sum of timepoint delays (over all time-

points) where for a single timepoint its delay is defined as the

sum of the link delays. Although we have chosen the delay met-

ric, the solution method we propose is general enough to cope

with other types of the congestion metric.

The works on semi-stable routing available in the literature

usually exhibit one of the following limitations: (i) they ignore the

time domain by not providing any limit on the reconfiguration

rate [2, 14, 17], (ii) the number of created clusters is limited and

reconfiguration timepoints are arbitrary [2, 5]. Other semi-stable

approaches have more recently been proposed to overcome these

limitations [3, 11]. In particular, the techniques presented there

compute a set of routing configurations that can be combined

together to generate a routing configuration for a new traffic

realization. However, combining multiple configurations may

generate a large number of paths and flow split ratios that might

not be feasible to handle by network devices.

For SSRCDP we propose a solution method based on cluster

generation that delivers provably near-optimal solutions, i.e.,

it also provides a good lower bound of the network delay. In

addition, this method scales well with the size of the network

and can be effectively applied to networks of large sizes. The

problem formulation, the solution method, and an illustrative

realistic numerical example are presented below.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 54 DOI: 10.5441/002/inoc.2019.11

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.11

2 PROBLEM FORMULATION
The notation used in the paper, summarized in Table 1, is as

follows. Let the capacitated multicommodity flow network be

modeled with a graph G = (V, E,D), where V is the set of

nodes and E is the set of (directed) links (where c(e) ≥ 0, e ∈ E,
is the capacity of link e). D is the set of (directed) demands,

where o(d), t(d), d ∈ D, are the originating and terminating

node, respectively, of demand d . Next, let P(d) be a given set

of (routing) paths in graph G that are admissible for demand

d, d ∈ D, (each path p ∈ P(d) connects the demand’s origin

o(d) with its termination t(d)). (Below, P will denote the set of

all admissible paths, i.e., P :=
⋃
d ∈D P(d).) Additionally, let

Q(e,d) ⊆ P(d), e ∈ E,d ∈ D, denote the set of admissible paths

of demand d that use link e . Finally, let T := {0, 1, . . . ,T − 1} be
the set of consecutive timepoints, and let h(d, t) ≥ 0, d ∈ D, t ∈
T , be the volume of demand d to be realized at timepoint t .

We assume that a routing configuration is defined by vector

x := (xdp)d ∈D,p∈P(d), where xdp is the fraction (i.e., xdp ∈
[0, 1]) of the volume of demand d that is assigned to path p. The
following condition must thus hold:∑

p∈P(d) xdp = 1 d ∈ D . (1)

Then, if routing configuration x is used at timepoint t ∈ T , the
utilizationwt

e (x) of link e at t is defined as:

wt
e (x) :=

1

c(e)
∑
p∈Q(e ,d) h(d, t)xdp e ∈ E . (2)

Note that the quantity

∑
p∈Q(e ,d) h(d, t)xdp in the right-hand

side of definition (2) expresses the load of link e at timepoint

t . Further, let F : [0,+∞) → [0,+∞) be an increasing convex

piece-wise linear function with F (0) = 0. We will call F (w) the
delay function (see [6, 10]) as it is supposed to measure the packet

delay on a link for a given link utilizationw . Finally, the quantity

zt (x) :=
∑
e ∈E F (w

t
e (x)) (3)

will be called the timepoint delay at timepoint t .
We may now introduce the notion of a cluster C(t, l) with pa-

rameters t (timepoint in which the cluster starts) and l (length of

the cluster). Namely, C(t, l) is the set of l consecutive timepoints

that starts at timepoint t . Hence, C(t, l) := {t, t ⊕1, . . . , t ⊕(l−1)},
where ⊕ denotes addition modulo T (i.e., the timepoints are

counted modulo T). For a given cluster C = C(t, l), let t(C) = t
and l(C) = l denote, respectively, the start and the length of C.

Suppose that the same routing configuration (denoted by

x(C) = (x(C)dp)d ∈D,p∈P(d)) is used for all timepoints of cluster

C. Then, we will call C a (stable) routing cluster. For a routing
cluster C and a given routing configuration x , the quantity

z(C, x) :=
∑
t ∈C z

t (x) (4)

will be referred to as cluster delay (of cluster C under routing con-

figuration x). The minimum cluster delay (i.e., the value of z(C, x)
minimized over all routing configurations x will be denoted by

Z (C).
The semi-stable routing cluster design problem (SSRCDP) we

consider is this: given G, P, D, T , and a pair of positive integer

numbers N ≤ T and L ≤ T , find a partition R of the set of time-

points T into at most N (non-empty) routing clusters, each of

length at least L (i.e., |R | ≥ L, R ∈ R), and find a routing configu-

ration x(R) for each routing cluster R ∈ R, so as to minimize the

network delay Z (R) :=
∑
R∈R Z (R). In the following, the min-

imum value of the total maximal network utilization resulting

from SSRCDP will be denoted by Z ∗. Note that the assumptions

on N , L,T imply that N ≤ T
L , and hence N ≤ ⌊TL ⌋.

3 SOLUTION METHOD
3.1 The fixed partition subcase
We start with the following observation. If the sets forming a

partition R of set T were given and fixed, SSRCDP would reduce

to finding a routing configuration x(R)minimizingZ (R) for each
cluster R ∈ R, and this could be done independently for each

cluster. Thus, we first analyse the problem of finding an optimal

routing configuration for a given cluster. We aim, in particular,

at deriving some properties that can be useful in formulating and

solving the original semi-stable routing cluster design problem.

Finding an optimal routing configuration for a given set of

(not necessarily consecutive) timepointsU ⊆ T is identical to

a well-known problem of finding an optimal routing configura-

tion for a given set of traffic matrices. Such a routing problem
(denoted by RP(U)) consists in finding a single routing config-

uration x(U) that minimizes the sum of timepoint delays overU:

Problem RP(U)

Z (U) = min

∑
t ∈U

(∑
e ∈E z

t
e
)

(5a)∑
p∈P(d) xdp = 1 d ∈ D (5b)

wt
e ≥

1

c(e)
∑
p∈Q(e ,d) h(d, t)xdp t ∈ U, e ∈ E (5c)

zte ≥ a(k)wt
e + b(k) t ∈ U, e ∈ E, k ∈ K (5d)

xdp ∈ [0, 1] d ∈ D, p ∈ P(d) (5e)

zte ,w
t
e ∈ R t ∈ U, e ∈ E . (5f)

Above, variables xdp , d ∈ D, p ∈ P(d), define a routing

configuration x(U) common for all timepoints inU, variables

wt
e , t ∈ U, e ∈ E, express link utilizations at the timepoints inU,

and variables zte , t ∈ U, e ∈ E, specify the corresponding link

delays. In (5d), parameters a(k),b(k), k ∈ K := {1, 2, . . . ,K}, de-
fine the delay function F (z) := max{a(k)z+b(k) : k ∈ K}, where
b(1) = 0 > b(2) > . . . > b(K), 0 < a(1) < a(2) < . . . < a(K).

Note that RP(U) is a linear programming (LP) problem in a

non-compact formulation that can be easily solved to optimality

(even for large networks) using the column (path) generation

approach based on a shortest path algorithm: to generate a new

pathp ∈ P(d) for demandd ∈ D and price out a new variablexdp
one has to find a shortest path in graph G between the end nodes

of d , with the costs of links equal to
1

c(e)
∑
t ∈U h(d, t)π te , e ∈ E,

where π te are optimal dual variables associated with constraint

(5c). A path is added to the problem if its cost is less than λd –

optimal dual variable associated with constraint (5b). Observe

that RP(U) can alternatively be formulated as an LP problem

in a compact way, using the node-link notation with link flows

(instead of path flows) that does not require column generation.

We end this section with the following observation.

Remark 1. For any two sets U ′,U such that U ′ ⊆ U ⊆ T ,
the inequality

Z (U ′) ≤
∑
t ∈U′ z

t (x∗(U)) (6)

holds, where x∗(U) and is the optimal routing configuration re-
sulting from RP(U), and zt (x∗(U)), t ∈ U, are defined by (2).
The reason is that if Z (U ′) would be larger than

∑
t ∈U zt (x∗(U)),

then the routing configuration x∗(U), when applied toU ′, would
decrease the value of Z (U ′). Clearly, whenU = U ′ then the right
hand side of (6) is equal to Z (U ′).

55

Table 1: Notation

Notation Description

G = (V, E, D) network graph, V – set of nodes, E – set of (directed) links, D – set of (directed) demands

T = {0, 1, . . . ,T − 1} set of timepoints

c(e) capacity of link e (e ∈ E)
h(d , t) volume of demand d to be realized in timepoint t (d ∈ D, t ∈ T)
o(d), t (d) originating node and terminating node, respectively, of demand d ∈ D
P(d) set of admissible (routing) paths for demand d ∈ D
Q(e , d) set of paths in P(d) that contain link e (e ∈ E, d ∈ D)

P =
⋃
d∈D P(d) set of all admissible paths

x = (xdp)d∈D,p∈P(d) routing configuration (vector of path flows)

w t
e (x), F (w

t
e (x)) utilization of link e at timepoint t and the corresponding delay

zt (x) timepoint delay (sum of link delays at timepoint t ∈ T) implied by routing configuration x
C (routing) clusters composed of timepoints

t (C), l (C) starting timepoint and length (respectively) of cluster C (t (C) ∈ T, l (C) ∈ {1, 2, . . . ,T })
C(t , l) cluster with t (C) = t , l (C) = l , C(t , l) = {t , t ⊕ 1, . . . , t ⊕ (l − 1)} (⊕ denotes addition modulo T)
C family of (routing) clusters (C ∈ C)

x (C) routing configuration used in routing cluster C

z(C, x) =
∑
t∈C zt (x) cluster delay for cluster C with routing configuration x

Z (C) cluster delay of C minimized over all routing configurations x (Z (C) is a solution of RP(C))

Z (C |∞) =
∑
t∈C Z ({t }) a lower bound for Z (C)

R family of routing clusters forming a partition of the set of timepoints T into at most N
(1 ≤ N ≤ T

L) routing clusters, each of length at least L (|R | ≥ L, R ∈ R)

z(R) =
∑
R∈R z(R, x (R)) network delay for partition R (with routing configurations x (R), R ∈ R)

Z (R) =
∑
R∈R Z (R) minimum network delay for partition R

SSRCDP semi-stable routing design problem

Z ∗ minimum of Z (R) over all partitions R (Z ∗ is the optimal solution value of SSRCDP)

RP(U) routing problem for U ⊆ T (finding routing configuration realizing Z (U))
APP(C) approximative partitioning problem using control cluster family C
R(C) family of routing clusters solving APP(C)

Y (C) minimum objective value of APP(C) (lower bound for SSRCDP)

CGA cluster generation algorithm

B, Z+, R+ B = {0, 1}, Z+ = {0, 1 . . . }, R+ non-negative real numbers

3.2 Approximation problem
The suboptimal approach to SSRCDP presented below consists

in formulating an optimization problem that determines a sub-

optimal partition of the set of timepoints T into a family R of

clusters, where for each R ∈ R, an optimal routing configuration

x∗(R) will then be found by solving problem RP(R).

Let ut (t ∈ T) be a binary variable that equals 1 if, and only

if, t is a start of a routing cluster, and 0 otherwise, and let yt

(t ∈ T) be a continuous variable that approximates (from below)

the minimum timepoint delay at t . Let C be a fixed subfamily

of the family of all timepoint clusters (below the family C will

be called a control family of control clusters), and let Z (C|∞) :=∑
t ∈C Z ({t}) for each C ∈ C .

The approximate partitioning problem APP(C) of finding a

partition R of the set of timepoints T into routing clusters that

minimizes the approximated network delay is as follows:

Problem APP(C)

Y (C) = min

∑
t ∈T y

t
(7a)∑

t ∈T u
t ≤ N (7b)∑

0≤k≤L−1 u
t ⊕k ≤ 1 t ∈ T (7c)

U C=
∑
1≤k<l (C) u

t (C)⊕k C ∈ C (7d)

Y C=
∑
t ∈C y

t C ∈ C (7e)

yt ≥ Z ({t}) t ∈ T (7f)

Y C ≥ Z (C) +
(
Z (C|∞) − Z (C)

)
·U C C ∈ C (7g)

ut ∈ B, yt ∈ R+ t ∈ T (7h)

U C ∈ Z+, Y
C ∈ R+ C ∈ C . (7i)

Constraints (7b) and (7c) guarantee that each feasible binary

vector u := (ut)t ∈T specifies a partition of the set of timepoints

T which contains at most N clusters, each of length at least L.
Let us denote such a partition by R. Then, constraint (7d) defines

integer variables U C that specify with how many clusters in

family R a given cluster C from family C intersects. Note that

whenU C = 0 then C intersects with only one cluster in R, when

U C = 1 then C intersects with exactly two clusters in R, and so

on. Additionally, constraint (7e) defines an approximated cluster

delay for each control cluster C.

Constraints (7f) and (7g) specify two kinds of valid inequalities,
i.e., inequalities that are satisfied by the maximal link utilizations

zt (x(R)), R ∈ R, t ∈ R, determined (through definition (3)) by

any partition R and any set of routing configurations x(R), R ∈
R (satisfying condition (1)).

The inequality in constraint (7f) holds since Z ({t}), as the
optimal solution of RP({t}), provides the absolute lower bound
on the timepoint delay for any given t ∈ T . Thus, (7f) is a valid
inequality. Note also, that (7f) implies that

∑
t ∈C y

t ≥ Z (C|∞).
Now observe that the right hand side of inequality in (7g)

defines an affine function of variableU C (defined by (7d)). Let us

denote this function by A. Since Z (C) ≥ Z (C|∞) (by definition

of Z (C|∞)), function A is non-increasing, and in fact strictly

decreasing whenZ (C) > Z (C|∞). SinceA(0) = Z (C), forU C = 0

the inequality in (7g) reduces to

∑
t ∈C y

t ≥ Z (C). Moreover,

conditionU C = 0 means that C ⊆ R for some R ∈ R, and hence,

56

by Remark 1, implies inequality

∑
t ∈C z

t (x(R)) ≥ Z (C). This

means that forU C = 0 the inequality in (7g) is valid.

Next, since A(1) = Z (C|∞), for U C = 1, inequality in (7g)

reduces to

∑
t ∈C y

t ≥ Z (C|∞), which, as mentioned above, is

already implied by (7f). This means that in this case (7g) is valid

as well. Moreover, since A is non-increasing, A(U) ≤ A(1) for

U > 1 and this means that (7g) is valid for allU C > 1. Thus, (7g)

is valid for all possible values ofU C , and this finally implies that

APP(C) is a relaxation of SSRCDP so that its optimal solution

value Y (C) is a lower bound for the minimum network delay Z ∗.
Observe that the reason for using the particular form of the

inequality in (7g) is that it is stronger than inequality∑
t ∈C y

t ≥ Z (C)
(
1 −U C

)
C ∈ C (8)

as far as the linear relaxation of APP(C) is concerned.

In order to find a (suboptimal) solution of SSRCDP we can

first solve APP(C) for a given control family C , for example for

the family of all clusters with length not greater than L. Then,
we can solve the routing problem RP(R) for each R ∈ R(C),
where R(C) denotes the partition of T resulting from solving

APP(C), and determine Z (R(C)), i.e., the minimum of the net-

work delay for partition R(C). An issue is, however, how to find

a way for extending the current family C in order to decrease

the so obtained Z (R(C)). The following three basic properties
of formulation APP(C) will help to resolve this issue.

Property 1. Let C be an arbitrary family o clusters for the set
of timepoints T . For any partition R of T into at most N routing
clusters with length at least L each, there exists a feasible solution
u = (ut)t ∈T ,y = (y

t)t ∈T of problem APP(C) that defines the
partition R and such that for each R ∈ R, yt = zt (x(R)), t ∈ R,
i.e., yt is equal to the timepoint delay at t implied by the routing
scheme x(R) of the routing cluster R.

Proof. For each t ∈ T we put ut = 1 if t = t(R) for some

R ∈ R; otherwise, we put ut = 0. Clearly, the so obtained vector

u satisfies constraints (7b), (7c) and uniquely defines the partition

R. Also, the vector y specified in the thesis of the proposition

is feasible for APP(C) since, as explained above, inequalities (7f)

and (7g) are valid for any routing family R in question. �

Property 2. Let R(C) be the family of clusters determined by
an optimal solution of APP(C), i.e., by u∗. Then,

Y (C) ≤ Z ∗ ≤ Z (R(C)), (9)

where Y (C) =
∑
t ∈T y

t∗ is the optimal objective of APP(C), Z ∗ is
the optimal objective of SSRCDP (i.e, the minimum network delay),
and Z (R(C)) =

∑
R∈R(C)) Z (R).

Proof. Inequality Y (C) ≤ Z ∗ holds because APP(C) is a re-

laxation of SSRCDP. The second inequality (Z ∗ ≤ Z (R(C)) holds
because partition R(C) with optimized clusters’ routing config-

urations is a feasible solution of SSDRP. �

Property 3. Let R(C) denote an optimal partition resulting
fromAPP(C) and suppose thatR(C) is a subset ofC . ThenZ (R(C))
is an optimal solution of SSRCDP.

Proof. Consider the vectorsu,y defined for partitionR(C) as
in Proposition 1, where x(R) is a routing configuration optimized

for each routing cluster R ∈ R(C) by means of RP(R). By Propo-

sition 1, the solutionu,y is feasible for APP(C). We will show that

it is also optimal. Consider an arbitrary routing clusterR ∈ R(C)
and note that among the inequalities in (7g) that involve vari-

ables yt , t ∈ R, the one corresponding to C = R is satisfied

tightly since, by assumption,

∑
t ∈R y

t = Z (R). Since for each
C′ ⊂ R (whether or not C′ is in C), the inequality

∑
t ∈C′ y

t ≥

Z (C′) holds (by Remark 1), we conclude that vector y is optimal

for APP(C), and hence Y (C) =
∑
t ∈T y

t =
∑
R∈R

∑
t ∈R y

t =∑
R∈R Z (R). Thus, by (9), Z (R(C)) = Z ∗. �

3.3 Cluster generation algorithm
The above properties suggest the following algorithm for solving

SSRCDP.

CGA: cluster generation algorithm
Step 0: Specify an initial family of clusters C .

Step 1: Solve APP(C) to obtain R(C) and Y (C). Compute

Z (R(C)) by solving RP(R) for each R ∈ R(C).

Step 2: If R(C) ⊆ C or
Z (R(C))−Y (C)

Y (C) ≤ ε then stop:

R(C) is suboptimal (or even optimal) family of routing

clusters solving SSRCDP (where for each R ∈ R its rout-

ing is optimized by RP(R)).

Step 3: C ← C ∪R(C) and go to Step 1.

If in Step 2 the condition R(C) ⊆ C is fulfilled then the routing

family R(C) delivered by CGA is optimal and Z (R(C)) is the

optimal objective value. The same is true when
Z (R(C))−Y (C)

Y (C)
equals 0. Clearly, the delivered family can be optimal even when

R(C) \C , ∅ and Z (R(C))−Y (C)
Y (C) > 0 as in this case the optimal-

ity will be proven in the next CGA iteration.

Finally observe that CGA will stop even if ε = 0 is assumed

(and then return an optimal partition R(C) for SSRCDP) in a

finite number of steps, because the number of all clusters is finite.

This, however, can take an excessive computation time.

3.4 An efficient heuristic
In this section we describe a heuristic consisting in solving only

one iteration of the CGA algorithm but using a modified version

of APP(C). Consider a partition R defined by a binary vector

u = (ut)t ∈T feasible for APP(C), i.e., fulfilling (7b) and (7c).

Property 4. Let C = C(τ , l) be a control cluster with l ≥ 2

that has a non-empty intersection with exactly two (neighboring)
clusters from R (i.e., U C = 1). Let us also define the following
quantity:

Z (C|1) := min
1≤k≤l−1

{
Z (C(τ ,k)) + Z (C(τ ⊕ k, l − k))}. (10)

Then the inequality ∑
t ∈C y

t ≥ Z (C|1) (11)

is valid.

Proof. Suppose that C ⊆ R ′∪R ′′, where R ′ and R ′′ are two

neighboring (and disjoint) clusters from family R specified by u.
Then C = C(τ ,k)∪C(τ ⊕k, l−k) for some 1 ≤ k ≤ l−1. Let C′ =
C(τ ,k) ∩ R ′ and C′′ = C(τ ⊕ k, l − k) ∩ R ′′. Since, by Remark 1,

Z (C′) ≤
∑
t ∈C′ z

t (x∗(R ′)) and Z (C′′) ≤
∑
t ∈C′′ z

t (x∗(R ′′)).
Thus,

∑
t ∈C′ z

t (x∗(R ′))+
∑
t ∈C′′ z

t (x∗(R ′′)) ≥ Z (C′)+Z (C′′) ≥
Z (C|1), which shows that (11) is a valid inequality. Note that

when in an optimal solution of APP(C), C′ = R ′ and C′′ = R ′′

and inequality (11) becomes tight. �

Clearly, forU C = 1, inequality (11) is tighter than the inequal-

ity implied by constraint (7g) (recall that Y C :=
∑
t ∈C y

t
) since

in general Z (C|1) > Z (C|∞) (see Remark 1). Thus, substituting

constraint (7g) in (7) with

57

Y C ≥ Z (C) +
(
Z (C|1) − Z (C)

)
·U C C ∈ C (12)

will result in amodified version of APP(C) (referred to asMAPP(C))

with stronger linear relaxation than the original one.

Observe however, that forU C ≥ 2, inequality (12) is in general

not valid. For example, forU C = 2, the value of Z (C)+
(
Z (C|1)−

Z (C)
)
· 2 can be greater than the proper value given by the

following formula (analogous to (10)):

Z (C|2) := min
1≤k1<k2≤l−1,k2−k1≥L

{
Z (C(τ ,k1))+

+Z (C(τ ⊕ k1,k2 − k1)) + Z (C(τ ⊕ k2, l − k1 − k2))}.
(13)

It follows that MAPP(C) is correct only when the control family

C is a subfamily of C (L + 1) – the family of all clusters of length

at most L + 1 – since only then it is guaranteed thatU C ≤ 1 for

all C ∈ C , and thus inequality in (12) is valid. Thus, the modified

problem cannot be used in the CGA algorithm, as in general the

family R(C) contains clusters with length larger than L + 1 and
such sets cannot be added to the control cluster family C when

MAPP(C) is applied; therefore its use in CGA is limited to just

one iteration. As we will see in Section 4, even this (non-iterative)

solution gives very good results when applied to SSRCDP.

3.5 Improvements
The efficiency of the CGA algorithm described in Section 3.3 can

be improved in two complementary ways.

First, the linear relaxation of formulation (7) can be strength-

ened (by improving, i.e., increasing, the lower bound delivered by

its linear relaxation) in order to speed up the branch-and-bound

algorithm (used to solve APP(C) in Step 1 of CGA)) and also to

decrease the gap
Z (R(C))−Y (C)

Y (C) between the integer solution and

the relaxed solution. The lower bound computed through the

linear relaxation of formulation (7) can be increased by improv-

ing valid inequalities specified in constraint (7g). In fact, these

valid inequalities are tight only for the case U C = 0, i.e., when

the control cluster C is contained in a cluster of the constructed

family of routing clusters R. (Recall that in this case the inequal-

ity in question takes the form

∑
t ∈C y

t ≥ Z (C).) ForU C ≥ 1 the

inequalities implied by (7g) are weaker than the inequality in (7f),

which, as already mentioned, implies that

∑
t ∈C y

t ≥ Z (C|∞),
and this inequality is in general not tight.

A tight valid inequality generalizing (7g) can be obtained

by constructing, for each C ∈ C , a piece-wise linear function

GC(U), 0 ≤ U ≤ M(C), where M(C) := ⌈
l (C)−1

L ⌉ is an up-

per bound for U C , and for integer values of the argument U ,

GC(U) = Z (C|U), where Z (C|0) := Z (C), Z (C|1) is defined by

(10), Z (C|2) by (13) and Z (C|U), U ≥ 3, are defined analogously.

Then, the valid inequality in (7g) should be replaced with the

tight valid inequality Y C ≥ GC(U). (Such an inequality is not lin-

ear but can be transformed, using additional binary variables and

linear constraints, to a form appropriate for a MIP formulation.)

Second, on top of the family of clusters R(C) that is added
to the control family C in Step 2 of CGA, we may seek to add

extra control sets C′ for which constraints (7g) are broken to the

largest extent by the the current optimal values y∗.

4 NUMERICAL EXPERIMENT
Below we describe a numerical experiment illustrating the effi-

ciency of the proposed APP(C)-based approach for a network

linking 47 cities in an European Union country. The network

consists of 47 nodes linked with 140 directed links (each of capac-

ity 4 Gbps), and 47 × 46 = 2162 traffic demands corresponding

to all ordered pairs of nodes. The demand volumes used in the

calculations are derived from real traffic measurements (obtained

from a network operator) taken every 15 minutes on a selected

weekday (a Wednesday in 2018). Thus, the number of considered

timepoints equals 96 (T − 1 = 95). We set the maximal number of

clusters to N = 8 and the minimum cluster length to L = 8. This

means that we accept at most 8 changes of the routing configu-

ration during 24 hours and require that a routing configuration

change can occur after the hold-off time of at least 2 hours.

In the experiment reported below, for solving the semi-stable

routing cluster design problem (SSRCDP) we used formulation

MAPP(C) in the way described in Section 3.4. The procedure

was implemented using the platform: Lenovo Thinkpad, Intel

i7-6500U, 8GB RAM, Windows 10 x64, ILOG CPLEX Studio 12.8,

ILOG Concert library, C# language, CPLEX 12.8 solver, 2 threads.

For the control family C we used all the clusters of length

L and L + 1. There are 2T = 192 of such clusters, and thus, in

the preprocessing phase, for each of them we need to calculate

the values Z (C) and Z (C|1) according to formulae (5a) and (11),

respectively. For that, the routing problem RP(U) (5) is solved

8T = 768 times, i.e., for all clusters of length between 2 and 9.

In RP(U) the delay function F (z) := max{0.1z, z − 0.45, 10z −
8.5} (with K = 3 linear pieces) was used, i.e., b(1) = 0,b(2) =
−0.45,b(3) = −8.5 and a(1) = 0.1,a(2) = 1,a(3) = 10. Thus, F (z)
grows from 0 to 0.05 in the interval [0, 0.5], from 0.05 to 0.5 in the

interval [0.5, 0.9], and from 0.5 to +∞ in the interval [0.9,+∞].

The results of our experiment are presented in Table 2. For

each task of the solution procedure, the corresponding row of

the table first gives the determined lower bound (column lb) and

the upper bound (column ub) for the optimal objective function

value, and the current gap between the two (column gap). Next,

column t shows the total execution time of the task. Then, col-

umn nclusters gives the number of clusters that we analyze in

the task, i.e., clusters for which we solve the routing problem,

and in brackets, if applicable, the number of clusters that are

contained in the control set of the partitioning problem. Finally,

column npaths first shows (in brackets, with the plus sign) the

total number of paths that we have generated while solving rout-

ing problems in the task, and (not in brackets) the final size of

the set of paths P obtained in the routing problem.

In the row static routing, the case when only one rout-

ing cluster, i.e., T , is applied. Then an optimized single routing

scheme gives the optimal objective equal to Z (T) given in the

column ub, as this value is the upper bound for the true SSDRP

optimal solution value. The row dynamic routing corresponds

to the case when each timepoint is considered as a cluster, i.e.,

the routing scheme is optimized individually for each timepoint.

Hence, the column lb in this row indicates

∑
t ∈T Z ({t}) which

is clearly the cheapest solution value to SSRCDP (the case when

the partition to the routing clusters is unconstrained). The value

in column gap, equal to
ub-lb

lb
× 100% (ub taken for static rout-

ing and lb taken for dynamic routing), is indicated. The row

preprocessing contains information concerning preparation of

the control cluster family C and initial routing paths (recall the

RP(U) is solved through path generation). Next, the row par-

titioning LR shows the results of solving the linear relaxation

of the modified APP(C) formulation, i.e., of problem MAPP(C)

described in Section 3.4. The so obtained value of lb happens

to be the same as for dynamic routing, although in general

it could be larger. Further, the solution of the MIP formulation

58

Table 2: Performance of the solution procedure

task lb ub gap t nclusters npaths

static routing - 563.65 - 5m7s 1 (+4461) 6623

dynamic routing 545.47 - 3.33% 1m23s 96 (+89) 6712

preprocessing - - - 1h1m16s 768 (+1298) 8010

partitioning LR 545.47 - 3.33% 1s (192) -

partitioning MIP 550.50 - 2.43% 2s (192) -

routing - 551.86 0.25% 1m16s 8 (+1) 8011

MAPP(C) is described in the row partitioning MIP. The lb

value delivered by this solution is increased with respect to the

preceding row and hence the gap value is decreased. Finally,

the row routing shows the results for the partitioning R(C)
obtained with the MIP formulation MAPP(C) with the routing

scheme optimized for each of the resulting routing clusters R. In

particular, ub gives the value of Z (R(C)). Observe that the gap
between this feasible SSRCDP solution and the best lower bound

obtained with partitioning MIP is very small and equals 0.25%.

In the final solution, the optimal routing cluster family R(C)
is composed of five 8-element, one 13-element, one 15-element,

and one 28-element clusters.

The results indicate that already the simplified version of the

proposed method, without any special tuning, is capable of find-

ing a suboptimal solution of SSRDCP in a reasonable time within

the optimality gap as small as 0.25%.

5 CONCLUSIONS
In this paper we propose a scalable solution to the problem of

designing clusters of the semi-stable routing in multicommod-

ity flow networks. Although the problem can be approached

directly using a compact mixed-integer formulation it cannot be

just solved with a solver, even for small-size networks, due to

an excessive number of binary variables and poor linear relax-

ation. Thus we were considering a number of exact and hybrid

approaches (as in [13]) that aimed at separating the design of

a partition of the time horizon into clusters from the design of

traffic routing for those clusters.

Although there are just O(T 2) clusters with length between

1 and T (where T is typically between 96 and 288 as the traffic

measurement period is either 5 or 15 minutes), our numerical

trials show that in practice we cannot analyze all those clusters.

Using a link-path formulation combined with path generation

and a warm start for the master problem, it took aroundk seconds

to solve the routing problem for a cluster of length k and a 50-

node network. And this time might grow considerably as we aim

at networks whose number of nodes approaches 500.

Therefore, leveraging the valid inequalities of an approximate

time-horizon partitioning problem, we developed an efficient

heuristic algorithm based on cluster preprocessing. Our algo-

rithm is capable of providing the upper and the lower objective

function value bounds with very low optimality gaps, well below

0.5%, as shown in the presented numerical study (and some other

studies not reported here for the lack of space). It also offers the

trade-off between the quality of the solution, and the number of

clusters in the control set that influences the preprocessing time,

and the size and the solution time of the partitioning problem.

In addition, we have proposed two possible ways for improving

the efficiency of the approach that lead to interesting future

research. First, we can use a stronger formulation of APP(C)

equipped with improvements described in Section 3.5. Second,

we can either implement a full version of the cluster generation

algorithm presented in Section 3.3, or, even better, to incorporate

cluster generation into a branch-and-bound procedure of solving

the partitioning problem, by analyzing relaxed or incumbent

solutions and generating appropriate user cuts. We will also aim

at testing the resulting optimization procedure on examples with

lower correlation among the traffic matrices, which might feature

a more substantial gap between the static and dynamic routing

solutions than the 3.33% observed in the current example (which

our algorithm nonetheless managed to decrease tenfold).

ACKNOWLEDGMENT
The work of the Polish authors was supported by the National

Science Center, Poland, grant no. 2015/17/B/ST7/03910 “Logical

tunnel capacity control – a traffic routing and protection strategy

for communication networks with variable link capacity”.

REFERENCES
[1] Yossi Azar, Edith Cohen, Amos Fiat, et al. 2003. Optimal oblivious routing in

polynomial time. In ACM Symp. on Theory of Computing. 383–388.
[2] Walid Ben-Ameur and Mateusz Żotkiewicz. 2011. Robust routing and optimal

partitioning of a traffic demand polytope. Intl. Trans. in Operational Research
18, 3 (2011), 307–333.

[3] Walid Ben-Ameur and Mateusz Żotkiewicz. 2013. Multipolar routing: where

dynamic and static routing meet. Electronic Notes in Discrete Mathematics 41
(2013), 61–68.

[4] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011.

MicroTE: Fine grained traffic engineering for data centers. In Proc. ACM
CoNext. 8.

[5] Pedro Casas, Lionel Fillatre, and Sandrine Vaton. 2008. Multi Hour Robust

Routing and Fast Load Change Detection for Traffic Engineering. In Proc. IEEE
ICC. 5777–5782.

[6] Bernard Fortz and Mikkel Thorup. 2002. Optimizing OSPF/IS-IS weights in a

changing world. IEEE JSAC 20, 4 (2002), 756–767.

[7] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, et al. 2013. Achieving high

utilization with software-drivenWAN. InACM SIGCOMMCCR, Vol. 43. 15–26.
[8] Sushant Jain, Alok Kumar, Subhasree Mandal, et al. 2013. B4: Experience with

a globally-deployed software defined WAN. ACM SIGCOMM CCR 43, 4 (2013),

3–14.

[9] Murali Kodialam, TV Lakshman, and Sudipta Sengupta. 2004. Efficient and

robust routing of highly variable traffic. In Proc. HotNets.
[10] Michał Pióro and Deep Medhi. 2004. Routing, Flow, and Capacity Design in

Communication and Computer Networks. Morgan-Kaufmann.

[11] Michael Poss and Christian Raack. 2013. Affine recourse for the robust network

design problem: Between static and dynamic routing. Networks 61, 2 (2013),
180–198.

[12] Matthew Roughan, Mikkel Thorup, and Yin Zhang. 2003. Traffic engineering

with estimated traffic matrices. In Proc. ACM IMC.
[13] Davide Sanvito, Ilario Filippini, Antonio Capone, Stefano Paris, and Jeremie

Leguay. 2018. Adaptive Robust Traffic Engineering in Software Defined Net-

works. In Proc. IFIP Networking.
[14] Marco Silva, Michael Poss, and Nelson Maculan. 2018. Solving the bifurcated

and nonbifurcated robust network loading problem with k-adaptive routing.

Networks 72, 1 (2018), 151–170.
[15] Vahid Tabatabaee, Abhishek Kashyap, Bobby Bhattacharjee, Richard J La, and

Mark A Shayman. 2007. Robust routing with unknown traffic matrices. In

Proc. IEEE INFOCOM. 2436–2440.

[16] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert

Greenberg. 2006. COPE: traffic engineering in dynamic networks. In ACM
SIGCOMM CCR, Vol. 36. 99–110.

[17] Yin Zhang and Zihui Ge. 2005. Finding critical traffic matrices. In Proc. IEEE
DSN.

59

The Workforce Routing and Scheduling Problem: solving
real-world Instances

Gabriel Volte
LIRMM, University of Montpellier,

CNRS
Montpellier, France

gabriel.volte@lirmm.fr

Chloé Desdouits
DecisionBrain

Montpellier, France
chloe.desdouits@decisionbrain.com

Rodolphe Giroudeau
LIRMM, University of Montpellier,

CNRS
Montpellier, France

rodolphe.giroudeau@lirmm.fr

ABSTRACT
We propose an efficient method to solve a workforce routing and
scheduling problem with working constraints, and a bounded
execution time limit. This problem combines two fundamen-
tal problems in operations research: routing and scheduling. In
such a context, we develop a column generation algorithm, as a
set partitioning problem with side constraints, within a branch-
and-price framework. The pricing sub-problem is an elementary
shortest path with resource constraints modeled with constraint
programming. In our branch-and-price framework, we first solve
our problem using branch-and-price and a branch-and-bound
strategy is proposed on the last restricted master problem, in
order to obtain a feasible solution when the time limit is almost
reached. However, we show that the developed method leads
to better solutions than using constraint programming or large
neighborhood search methods. We show the relevance of our
method with various-size real instances.

INTRODUCTION
We consider in this paper a hybrid problem in which it is neces-
sary to associate the vehicle optimization problemwith an assign-
ment problem for employees to satisfy some specific technical
constraints. The study of this problem is motivated by taking into
account new business constraints for employees with specific
skills. These problems are more and more present in the everyday
life of maintenance companies. The main difficulty is to consider
the various parameters to respond to real situations.

Workforce Scheduling and Routing Problem (hereafter WSRP)
represents problems that mobilize workforce to perform tasks
for customers. Given a set of employees and a set of tasks to
be scheduled, WSRP consists in assigning tasks to employees in
order to fulfill some constraints while minimizing operational
costs.

WSRP combines the complexity of scheduling problems [2, 18]:
• Multi-skill Project Scheduling Problem, MPSP [6, 14, 21]
(Technician and Task Scheduling Problem).

• Sequencing and Scheduling Problem, SSP [19],
• Project Scheduling with Resources Constrained Schedul-
ing Problem,

and problems of vehicle routing [20, 25]:
• Vehicle Routing Problem with Time Windows [23],
• Vehicle Routing Problem with Time Windows and Depen-
dencies,

Figure 1 represents the successive generalizations of basic
scheduling and routing problems, such as the TSP , that lead to
the WSRP class of problems.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

WSRP

SSP
Scheduling

VRP

TSP
Routing

MPSP VRPTW

Generalization

Figure 1: Description of hierarchical complexity class for
WSRP .

This paper is organized as follows: the section RELATED
WORK gives an overview of the previous works found in the
literature on theWSRP , the sectionMODELLING formally de-
scribes our problem and a first compact model using integer
linear programming (henceforth ILP) is given. The column gen-
eration decomposition and the branch-and-price scheme imple-
mented is described in section THE BRANCH-AND-PRICE
FRAMEWORK. The results and instances are presented in sec-
tion TESTS. The last section concludes the paper and presents
some future work.

RELATEDWORK
In the next section, we formally define the Workforce Scheduling
and Routing Problem class, based on the survey [3]. This sur-
vey first presents the common characteristics of technicians and
tasks, summarized in Table 1, then reviews known methods to
solve problems considered asWSRP . The main method used to
tackle these problems is a hybrid approach combining exact meth-
ods, integer linear programming or constraint programming, and
heuristics/meta-heuristics methods, large neighborhood search
or tabu search. The branch-and-price approach is also used since
this approach is known to be efficient on routing problems and
scheduling problems. This survey also gives a detailed compu-
tational study outlining the computational difficulties to solve
these problems. This study has been carried out on different data
sets with different integer linear programming formulations.

We describe some characteristics presented in Table 1. The
processing time of the tasks is not negligible compared to the
travel time andmay depend on the employee. Tasks have required
skills to filter employees who can perform them. A task can be
processed by one or more employees, in which case all employees
must be present before the starting time of the task. Castillo et

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 60 DOI: 10.5441/002/inoc.2019.12

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.12

al. [4] and Rasmussen et al. [22] define temporal dependencies
among tasks. Thus, some tasks admit a priority over others.Tasks
can have priority meaning that a task should be performed before
others.

Some tasks can be outsourced. In addition, the schedule of the
employees can vary: it can be daily, weekly, etc. In general,WSRP
instances are too big to be exactly solved. They are usually divided
into smaller geographical areas to prevent an employee from
working far from home but also to reduce the size of instances
making it easier to solve.

Employee Task
Means of transport Processing time
Starting Position Position
Ending position Temporal dependence
Working Hours Opening hours

Team Required Skills
Skills Priority

Outsourcing
Table 1: Characteristics of employees and tasks.

For example, we may consider a set of employees who have
to execute a set of tasks. Employees can travel by car, bicycle or
public transport to perform the tasks. Employees are allowed to
start and end their day from home. In the literature, there are nu-
merous works of surveys aimed at characterizing and classifying
the various problems belonging to theWSRP class. Based on an
extension of the classic notation scheme α | β | γ proposed by
[13], Desrochers [7] develop a classification ofWSRP .

An extensive overview of time constraint routing and sched-
uling problems during the last decades is given in Desrosiers et
al. [8]. They detail ILP models and algorithms (column genera-
tion and dynamic programming) for each variation of problems
(TSPTW, SDVRPTW, MDVRPTW, etc), focus their work on op-
timization methods for practical size instances. Although, they
also present heuristic methods to solve complex problems or
large-scale instances when optimal solutions are too difficult to
obtain. The survey [24] outlines the research on different routing
problems with time windows (M-TSPTW, SPPTW, etc) and give
hints for future works on these problems.

To solve problems belonging toWSRP , we observe in literature
many methods such as exact methods (constraint programming
or integer linear programming), meta-heuristics (simulated an-
nealing, tabu search, genetics, ...) or hybrid methods. Regarding
exact methods, one can find ILP models and column generation
using Dantzig-Wolfe decomposition. The master problem cor-
responds to a set partitioning problem [1] and the sub-problem
to an Elementary Shortest Path Problem with Time Windows
[12, 15] which is known to be NP-hard [10].

MODELLING
The goal of the project is to assign maintenance tasks to tech-
nicians in order to build daily schedules while optimizing some
criterion such as quality of service, travel time, productivity and
efficiency. The time limit is bounded to at most one hour for the
biggest instances. The number of tasks is too large to schedule
all of them in one day, thus tasks can be postponed. Thus the set
of tasks is updated every day according to previous schedules.

The problem can be stated as follows: let us define P the set
of technicians and T the set of tasks. For each technician, we

add two artificial tasks: one for the starting point (0p) and the
other for the ending point (np). Therefore, we define the set
Tp = T ∪ {0p ,np } for each technician p.

Let pj be the processing time of task j, and let dj be the due
date of task j, ωj is the weight (or revenue) of task j.

Let q be the number of skills and l the number of level of skills.
Consider αp = (αp1 ,α

p
2 , ...,α

p
q) be the skill vector of technician

p and β j = (β j1, β
j
2, ..., β

j
q) the skill vector of task j. For each

i ∈ {0, . . . ,q}, αpi and β
j
i indicate the level (value in {0, . . . , l})

of the ith skill in the vector.
Each task possesses a location and each technician have a start-

ing location and ending location. Let M be the distance matrix
wheremi, j represents the distance between locations i and j.

Let Kp (resp. Kp) be the set of unavailable (resp. available)
periods of technician p. The previous notation is extended to task
j with K j and Kj . Kp

j denotes the set of time windows where
technician p and task j are both available, Kp

j = Kj ∩ Kp . We
define [ak ,bk] ∈ Kp

j the kth time window of the set. A task
cannot overlap unavailable period (no task should start or end
during an unavailable period).

The beginning (resp. ending) of the workday of a technician is
given by the starting time (resp. end time) of his working hours.
Moreover, the technician cannot travel before his starting hours
or after his ending hours. Lastly, if a technician arrives early to a
customer waiting is allowed.

Our problem can be formulated as integer linear program
given below. The routing variables xpi jk take value 1 if the tech-
nician p ∈ P travels from task i ∈ Tp to task j ∈ Tp in the time
window k ∈ Kp

i , 0 otherwise; the scheduling variables tpi corre-
spond to the time the technician p ∈ P starts the task i ∈ Tp ; the
covering variables yi take value 1 if the task i ∈ T is unsched-
uled/uncovered and 0 if the task i is performed by a technician;
the tardiness variables Di correspond to the lateness of the task
i ∈ T. First, we introduce an ILP representing the backbone
of our problem, then we will add the specific constraints (same
technician constraints and appointment constraints).

(π1,π2,π3,π4) are the weights of the different criteria in the
objective function (Equation (1)). The first criterion corresponds
to the number of unscheduled tasks, the second minimizes the
technician’s travel distances, the third computes the sum of the
tasks tardiness and finally the fourth maximizes the skill gap
between technicians and tasks. W is the total of the weight
of all tasks. The first criterion maximizes the weighted sum of
tasks scheduled but we choose to minimize the weighted sum of
unscheduled tasks, the weight of all tasks minus the weight of
all unscheduled tasks gives the weight of all scheduled tasks.

We denote by Prec, Same andApp, the set of pairs (i, j) ∈ T×T
for which a precedence constraint, a same technician constraint, and
appointment constraint exists, respectively. Precedence constraints
are defined below. Same technician constraint corresponds to a
pair (i, j) ∈ Same, if technician p executes task i (resp j) thus he
is the only one who can perform task j (resp i).

Appointment constraints enforce a task to be performed by a
technician at a fixed time. These constraints appear when the cus-
tomers require a specific technician or a specific time to perform
a job. There are three kinds of appointment constraints:

• When task j is assigned to technician p (even if he does
not have the required skills to perform it): when p should
perform j?

61

• When task j is assigned to time t : which technician should
perform it?

• When task j is assigned to technician p and to time t : is j
scheduled for p at time t?

Model M1: Compact formulation

Maximize π1(W −
∑
t ∈T

ωiyi) − π2
∑
p∈P

∑
i, j ∈Tp

∑
k ∈Kp

i

x
p
i jkmi, j

−π3
∑
j ∈T

ω
′
jD j + π4

∑
p∈P

∑
i, j ∈Tp

∑
k ∈Kp

i

q∑
s=1

x
p
i jk (α

p (s) − βi (s))

(1)

s.t.
∑
p∈P

∑
j ∈Tp

∑
k ∈Kp

i

x
p
i jk + yi = 1 ∀i ∈ T (2)

∑
j ∈Tp

∑
k ∈Kp

0p

x
p
0p jk = 1 ∀p ∈ P (3)

∑
j ∈Tp

∑
k ∈Kp

j

x
p
jnpk = 1 ∀p ∈ P (4)

∑
i ∈Tp

∑
k ∈Kp

i

x
p
ihk −

∑
j ∈Tp

∑
k ∈Kp

h

x
p
hjk = 0 ∀p ∈ P, ∀h ∈ T (5)

∑
h∈Tp

∑
k ∈Kp

j

x
p
jhk (α

p (i) − β j (i)) ≥ 0 ∀j ∈ T, ∀p ∈ P, ∀i ∈ [1..q]

(6)

Bjyi +
∑
p∈P

t
p
i + pi ≤

∑
p∈P

t
p
j + Biyj ∀(i, j) ∈ Prec (7)∑

j ∈T

∑
k ∈Kp

i

x
p
i jkak ≤ t

p
i ≤

∑
j ∈T

∑
k ∈Kp

i

x
p
i jkbk ∀i ∈ T, ∀p ∈ P

(8)∑
j ∈T

∑
k ∈Kp

i

x
p
i jkak ≤ t

p
i + (

∑
j ∈T

∑
k ∈Kp

i

x
p
i jk).pi ≤

∑
j ∈T

∑
k ∈Kp

i

x
p
i jkbk

∀i ∈ T, ∀p ∈ P
(9)

t
p
i + x

p
i jk (mi, j + pi) ≤ t

p
j + (1 − x

p
i jk).Bk

∀p ∈ P, ∀i, j ∈ Tp , ∀k ∈ Kp
i

(10)

D j ≥
∑
p∈P

t
p
j + pj − dj ∀j ∈ T (11)

x
p
i jk ∈ {0, 1}, ∀p ∈ P, ∀i, j ∈ Tp , ∀k ∈ Kp

i (12)

t
p
i ∈ N, ∀p ∈ P, ∀i ∈ Tp (13)
yi ∈ {0.1}, ∀i ∈ T (14)
D j ∈ N, ∀j ∈ T (15)
The Model M1 is inspired by the MIP model given by a home
nursing problem [22] and VRPTW [9]. Our problem differs on a
few constraints: the skills/qualifications of employees, the work-
ing hours of employees and precedence constraints (they have
temporal dependencies constraints). In addition, one additional
dimension is needed on the routing decision variables (xpi jk) be-
cause it is necessary to know on which time window the task is
scheduled. The relevance of this compact formulation is discussed
in Section TESTS and presented in Table 3.

Constraints (2) ensure that each task is scheduled at most once.
If a task i is not scheduled (i.e.

∑
p∈P

∑
j ∈Tp

∑
k ∈Kp

j

x
p
i jk = 0) then to

satisfy the constraint, task i must be covered by yi = 1 and

the task is postponed to a another day. The flow constraints for
each technician depicted in (3), (4) and (5) control that technicians
must start (resp. finish) their shift at their start (resp. end) location
and that the flow conservation is respected (i.e. if a technician
arrives at a customer he musts leave it). The skill constraints
(6) restrict the set of tasks allowed to be performed by a given
technician. A task can only be performed by a technician who
has the required skills. In the current implementation of these
constraints, we force variables xpi jk to 0 when αp (s) − βi (s) >
0, s ∈ [0, ..,q]. Constraints (7) give the precedence constraints
among the tasks: let (i, j) ∈ Prec, task j can be performed only if
task i is executed before. The temporal constraints (8) and (9) and
(10) verify that the availability periods of tasks and technicians
are respected in the schedule (no overlap with unavailability
or travel periods). If a task j is not executed by technician p,
constraint (8) forces tpj to 0.

Constraints (16)-(19) correspond to problem-specific constraints.
Constraints (16) model the same technician constraints: they

ensure that if a technician performs one of the two tasks, then
the second is either performed by the same technician or the task
is not scheduled. Constraints (17), (18) and (19) represent pre-
assignment constraints describe above. Constraints (17) ensure
that the right technician performs the task or the task is not
scheduled. Constraints (18) ensure that the task is scheduled at
the right time or not at all. Constraints (19) ensure that the task is
assigned to the right technician at the right time or that otherwise
task is not performed.∑

h∈Tp

∑
k ∈Kp

j

x
p
ihk + yi =

∑
h∈Tp

∑
k ∈Kp

j

x
p
jhk + yj

∀(i, j) ∈ Same, ∀p ∈ P
(16)

∑
j ∈T

∑
k ∈Kp

j

x
p
i jk − (1 − yi) = 0 ∀(i,p) ∈ App (17)

∑
p∈P

t
p
i − (1 − yi).ti = 0 ∀(i, ti) ∈ App (18)

t
p
i − (1 − yi).ti = 0 ∀(i,p, ti) ∈ App (19)

THE BRANCH-AND-PRICE FRAMEWORK
In this section, we will introduce a branch-and-price framework.
First, we use a Dantzig-Wolfe decomposition on the compact
formulation in order to model it as a set partitioning problem
with side constraints. In a branch-and-price framework the prob-
lem is split into a master problem (hereafter MP) and a pricing
sub-problem (henceforth PSP). The PSP generates new feasible
schedules/routes for each technician. Given the set of all fea-
sible technician schedules, the MP assigns a schedule to each
technician such that a maximum of tasks is processed (c.f. the
first criterion of the objective function). Since the set of feasible
technician schedules can be very large, we restrict the MP to a
subset of schedules to obtain a reasonable size problem (called
Restricted Master Problem denoted by RMP). A feasible route for
a technician begins at his starting location and ends at his ending
location, and respects all constraints mentioned in Model M1.

Master Problem
Consider Sp the set of all feasible schedules for technician p

(this set will be generated successively by the PSP). Let apis = 1
if task i is in Schedule s of technician p and 0 otherwise; let tpis
be the starting time of Task i in schedule s of technician p. The

62

constant cps represents the cost of the schedule s for technician p.
In the compact formulation (cf. Model M1), the aim is to minimize
delays, distances and maximize the skill gap between tasks and
technicians. This cost is a variation of the objective function of
the compact formulation (Equation (1)). The first criterion of
the compact formulation objective function is separated from
the others in the RMP objective function to enhance the linear
relaxation of the RMP.

c
p
s = − π2

∑
i, j ∈T

∑
k ∈Kp

j

x
p
i jkmi, j − π3

∑
j ∈T

ω
′
jD j

+ π4
∑
i, j ∈T

∑
k ∈Kp

j

q∑
s=1

x
p
i jk (α

p (s) − βi (s))

We introduce binary variables for the RMP: the scheduling
variables λps take value 1 if schedule s is chosen for technician p
and 0 otherwise; the covering variables γi take value 1 if task i is
uncovered/unscheduled and 0 otherwise.

Model M2: Restricted Master Problem

Max
∑
p∈P

∑
s ∈Sp

λ
p
s c

p
s + π1

∑
i ∈T

(1 − γi)wi (20)

s.t.
∑
p∈P

∑
s ∈Sp

a
p
isλ

p
s + γi = 1 ∀i ∈ T (21)∑

s ∈Sp
λ
p
s ≤ 1 ∀p ∈ P (22)

γi +
∑
s ∈Sp

a
p
isλ

p
s =

∑
s ∈Sp

a
p
jsλ

p
s + γj

∀(i, j) ∈ Same, ∀p ∈ P
(23)

Bjγi +
∑
p∈P

∑
s ∈Sp

t
p
isλ

p
s + pi ≤

∑
p∈P

∑
s ∈Sp

t
p
jsλ

p
s + Biγj

∀(i, j) ∈ Prec
(24)

λ
p
s ∈ [0, 1] ∀p ∈ P, ∀s ∈ Sp (25)

γi ∈ [0, 1] ∀i ∈ T (26)
Constraints (21) express the fact that each task must be exe-

cuted or covered. Constraints (22) ensure that only one schedule
is associated with a technician. The same technician constraints
are modeled by constraints (23). The same technician constraints
are only in the RMP because in the PSP these constraints are
always checked (a PSP is solved for each technician). Constraints
(24) model the precedence constraints. As precedence constraints
among tasks are independent of the set of technicians, these con-
straints must be present in the RMP and the PSP. Constraints
(25) (resp. (26)) indicate the domain of λps variables (resp. γi).

For any primal solution of the RMP, we obtain a dual solution
[u, z, l,w], where u = (ui)i ∈T ; z = (zp)p∈P ; l = ((li , lj))(i, j)∈Prec;
w = ((wip ,w jp))(i, j)∈Same, p∈P are the dual variables of con-
straints (21), (22), (24), (23) respectively. These dual variables are
used in the PSP (cf. Equation (36)) to generate new improving
routes for each technician.

Pricing subproblem
In our case, the sub-problem generates feasible schedules/routes
(that respect the constraints) for each technician, thus these
routes are added to the RMP. The sub-problem aims to find feasi-
ble routes for a technician which improve the solution obtained
in the RMP. We cannot consider technicians as a fleet of vehicles
(they have almost no similar characteristics), thus we must solve

a sub-problem for each technician. The PSP is solved using con-
straint programming with the ILOG IBM Scheduler constraints
and variables (for more information on those constraints and vari-
ables please refer to [16, 17]). The Pricing Sub-Problem (hereafter
PSP) is the elementary shortest path problem with time windows
(ESPPTW). It focuses on finding an improved schedule for a par-
ticular technician. Recall that ESPPTW is NP-hard in a strong
sense [10] (there is no hope to develop dynamic programming).

Since our problem is a maximization problem if the PSP objec-
tive functionZPSP < 0 (cf. Equation (35)) then the corresponding
route is not improving the current solution. Adding it in the so-
lution of the RMP would decrease the value of the objective
function. So we add in the RMP all tours with a reduced cost
(ZPSP) strictly positive to potentially increase the value of the ob-
jective function. Since the PSP is hard to solve, the optimization
is terminated as soon as a tour with a strictly positive reduced
cost is found. Thanks to the constraints propagators, constraint
programming is effective to find a good feasible solution in a
short time.

For any technician p, we construct the following constraint
programmingmodel.We introduce the interval variablesX I

i , ∀i ∈
Tp to model tasks scheduling time. The domain of these variables
is either {⊥} (task is not processed) or the scheduling horizon
(the scheduling time of the task). Let XS

p refers to the sequence
variable of technician p, the domain of this variable is a permu-
tation of tasks interval variables: D(XS

p) = perm({X I
p−i | ∀i ∈

T} ∪ {X I
p0,X

I
pn }).

Model M3: Constraint programming

NoOverLap(XS
p ,M) (27)

f irst(XS
p ,X

I
p0) (28)

last(XS
p ,X

I
pn) (29){

pO f (X I
j) ≤ pO f (X I

i)
EndBe f oreStart(X I

i ,X
I
j)

∀(i, j) ∈ Prec (30)


ForbidExtent(X I

i ,K
i
p)

ForbidStart(X I
p0,K

p)
ForbidEnd(X I

pn ,Kp)
∀i ∈ T, (31)

XT =
∑
i ∈T

max(0,di − EndO f (X I
i)) (32)

XD =
∑

(i, j)∈X S
p

mi, j (33)

XSG =
∑
i ∈T

pO f (X I
i) ×

∑
s ∈[1..q]

(αp (s) − βi (s)) (34)

Max ZPSP = XSG − XT − XD − f (u, z, l,w) (35)
Equation (27) ensures that the tasks performed by p are not over-
lapping and respects the travel time matrixM . Equations (28) and
(29) enforce the route to begin (resp. end) at the starting (resp. end-
ing) location. The constraint pO f (meaning presenceO f , is used
to know if a task is executed) and the constraint EndBe f oreStart
are both used to assure that precedence constraints (30) are sat-
isfied. Equations (31) prevent tasks to be performed outside the
technician and task time windows. The constraint ForbidExtend
ensures that tasks are not overlapping an unavailability period
(given byKi

porKp). The constraint ForbidStart (resp. ForbidEnd)
ensures that tasks begin before (resp. end after) an unavailability
period. We restrict the domain of the variables to satisfy appoint-
ment constraints. In the objective function (cf. Equation (35)), the

63

variable XSG computes the skill gap between technicians and
tasks (cf. Equation (34)), the variableXT computes the tasks tardi-
ness (cf. Equation (32)) and the variable XD computes the travel
time/distance (cf. Equation (33)). The function f (u, z, l,w) is ded-
icated to the cost associated with the dual variables [u, z, l,w]
defined above.
f (u, z, l,w) =

∑
i ∈T

pO f (X I
i) × ui + zp +

∑
(i, j)∈Prec

(ljβi − liβj)

−
∑

(i, j)∈Same

(w jp × pO f (X I
j) −wip × pO f (X I

i))

(36)

Branching strategies
We based our branching strategy on the ones presented in [11].
This paper presents two rules for branching. The first one, «stan-
dard strategy» consists in branching on decision variables λps ,
this branching is not effective because it leads to an unbalanced
branching tree. The second one, is the «natural strategy» consists
in branching on flow variables xi j (cf. Model M1) and decision
variables γi , we opt for this strategy because it leads to a more
balanced tree and an easier PSP.

Branch-and-price is usually used to obtain optimal solution but
with a lack of resources and because of the large-scale instances
this method is neglected. Because of the time limit and the large-
scale highly constrained instances, finding an optimal solution
can be difficult. Our algorithm is based on the one used in [5].
The authors propose a column generation to obtain an optimal
non-integer solution. Therefore, a branch-and-bound algorithm
is applied to obtain an integer solution.

We enhance this method adding the branch-and-price frame-
work to generate more heterogeneous routes. We solve the prob-
lem with the following branch-and-price scheme (cf. Figure 2).
We first solve the problem using a standard branch-and-price
framework, at each node of the branching tree RMP is solved
using column generation. If an integer solution is found, the
bound (the best feasible solution found) is updated, else we add
a branching node. At the end of the time limit, if we reach it,
we use branch-and-bound method on the last RMP to obtain an
integer solution. If this solution is better than the best one found
in the branch-and-price algorithm we keep it.

solve RMP

solve PSP
add colomns

integer solution?stop add branching
node

branch-and-bound

reduced costs

no new columns
yes no

time limit reached

Figure 2: Illustration of our branch-and-price framework.

TESTS
We have access to many instances of two Decisionbrain cus-
tomers. Table 2 gives statistics for each instance. The name
#30#256 (first column) means that the instance has 30 technicians

and 256 tasks, the column |Prec| gives the number of precedence
constraints, |Same| shows the number of same technician con-
straints, |App| represents the number of precedence constraints,
q denotes the number of skills (length of the skill vector), loc
indicate the number of task and technician locations, KP (resp.
KT) shows the mean of technician time windows (resp. task time
windows).

instance |Prec | |Same | |App | q loc KP KT
#30#256 0 0 0 154 162 0.96 1
#30#305 30 5 0 137 162 0.9 1
#30#2781 341 101 37 137 514 0.9 0.92
#144#1377 0 0 0 154 163 0.875 1
#145#4568 0 0 0 183 544 0.87 1

Table 2: The set of instances.

We are going to compare the branch-and-price method de-
scribed here with the proposed ILP model solved using the soft-
ware CPLEX and four other methods developed by Decision-
Brain. The «ILP» corresponds to the integer linear program im-
plemented and tested with Cplex. The «CP» corresponds to con-
straint programming using ILOG IBM Scheduler constraints and
variables and tested with CPOptimizer. The «H» corresponds to
a heuristic, kept confidential. The «H+X» method corresponds
to start the X optimization with a first solution computed by the
heuristic. The «LNS» corresponds to Large Neighborhood Search
using the best insert algorithm on different neighborhood oper-
ators. The «BP» column corresponds to our branch-and-price
scheme.

Instance Model Obj. CPU(s) Gap
#30#256 ILP 1.1379E7 1802 105%
#30#256 CP 2.1393E7 1803 9.9%
#30#256 H 2.1475E7 17 9.5%
#30#256 H+ILP 2.1475E7 1806 9.5%
#30#256 H+CP 2.1475E7 1803 9.5%
#30#256 H+LNS 2.1687E7 1643 8.5%
#30#305 ILP 2364770.0 1801 525%
#30#305 CP 1.3094E7 1802 17%
#30#305 H 1.1269E7 21 35%
#30#305 H+ILP 1.1278E7 1807 35%
#30#305 H+CP 1.3102E7 1802 16.9%
#30#305 H+LNS 1.3314E7 1678 15.1%

Table 3: Results for instances with 30 technicians and 256
tasks and 30 technicians and 305 tasks with a resolution
time of 30minutes.

The ILP model does not scale for the medium and large size
instances, we obtain a high gap on the medium size instances
(100% for instance#30#256 and 525% for instance#30#305). The CP
model scales, and in some cases, achieves better results than the
heuristic and meta-heuristic resolution method (H + LNS). One
can see that the behavior of the CP is very close to the behavior
of heuristics. Indeed, the CP obtains a good quality solution in
a short time thanks to solver constraint propagators by cutting
non-solution domain values. It is interesting to note that the
heuristic gives a good solution in just a few seconds.

Now, we display the results obtained with the branch-and-
price scheme. Table 5 gives the results for the different instances.
In this table, CP is used to solve the PSP and the adopted tree
traversal strategy is the Best-first search strategy in order to
converge quickly towards a good solution.

64

Instance Model Obj. CPU(s) Status
#144#1377 CP 1.0995E7 3610 Feasible
#144#1377 H 1.4247E7 58 Feasible
#144#1377 H+CP 1.4360E7 3591 Feasible
#144#1377 H+LNS 1.4738E7 2877 Feasible
#145#4568 H 1.0421E8 221 Feasible
#145#4568 H+LNS 1.0645E8 3472 Feasible
#30#2781 CP 1.7181E7 3650 Feasible
#30#2781 H 2.3314E7 20 Feasible
#30#2781 H+CP 2.3343E7 3584 Feasible
#30#2781 H+LNS 2.3314E7 3636 Feasible

Table 4: Results for large instances with a resolution time
of 1 hour.

The column «nodes» refers to the number of nodes browsed
in the branch-and-price tree. The column «#col» represents the
total number of columns in the master problem.

Instance Model Obj. CPU(s) nodes #col gap
#30#256 BP 2.1690E7 607.0 7 436 8.4%
#30#256 H+BP 2.1599E7 600.0 9 421 8.9%
#30#305 BP 1.3322E7 612.0 13 484 15%
#30#305 H+BP 1.3232E7 601.0 14 424 15,8%
#30#256 BP 2.0802E7 1812.0 15 565 13%
#30#256 H+BP 2.1712E7 1808.0 17 544 8.3%
#30#305 BP 1.3263E7 1809.0 13 606 15.5%
#30#305 H+BP 1.3251E7 1816.0 23 558 15.6%

Table 5: Results for branch-and-price onmedium-sized in-
stances with a resolution time limit of 10 and 30 minutes
using constraint programming for the PSP.

One can observe that solutions obtained with the branch-and-
price are better than solutions obtained with the constraint pro-
gramming model and even than solutions computed by heuristic
followed by the local search. However, as the ILP model, the
branch-and-price does not scale. Large instances are too substan-
tial to be treated by our branch-and-price scheme in a reasonable
time. These results nevertheless show the interest in using the
hybridization between column generation and constraint pro-
gramming.

CONCLUSION
In this paper, we propose a branch-and-price scheme dedicated
to solving a WSRP problem in the presence of large-scale highly
constrained real-world instances when the time limit is bounded.
With this method, we were able to obtain good results, better
than LNS or CP in some instances. However this method is not
scalable, therefore results for large instances are missing.

Using a dynamic programming label algorithm to solve the
sub-problem should speed the solving process up by adding mul-
tiples improving routes in the master problem at each step of the
column generation algorithm while decreasing memory usage of
each sub-problem. On the column generation phase, we solve a
sub-problem for each technician, therefore solving all the sub-
problem is time-consuming. One could try to group technicians
that have some similar characteristics to reduce the time spent
solving sub-problem.

REFERENCES
[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P Savelsbergh, and P.H. Vance.

1998. Branch-and-price: Column generation for solving huge integer programs.
Operations research 46, 3 (1998), 316–329.

[2] J. Blazewicz, J.K. Lenstra, and A.H.G.R. Kan. 1983. Scheduling subject
to resource constraints: classification and complexity. Discrete Applied
Mathematics 5, 1 (1983), 11–24. DOI:http://dx.doi.org/10.1016/0166-218X(83)
90012-4

[3] J.A. Castillo-salazar. 2014. Qu , Rong (2014)Workforce scheduling and routing
problems : literature survey and computational study . Annals of Operations
Research . pp . 1-29 . ISSN 1572-. 239 (2014), 1–29.

[4] J.A. Castillo-Salazar, D. Landa-Silva, and R. Qu. 2015. A greedy heuristic for
workforce scheduling and routing with time-dependent activities constraints.
International Conference on Operations Research and Enterprise Systems (
ICORES 2015) (2015).

[5] E. Choi and D.W. Tcha. 2007. A column generation approach to the heteroge-
neous fleet vehicle routing problem. Computers & Operations Research 34, 7
(2007), 2080–2095.

[6] J.F. Cordeau, G. Laporte, F. Pasin, and S. Ropke. 2010. Scheduling technicians
and tasks in a telecommunications company. Journal of Scheduling 13, 4
(2010), 393–409. DOI:http://dx.doi.org/10.1007/s10951-010-0188-7

[7] M. Desrochers, J.K. Lenstra, and M.W.P. Savelsbergh. 1990. A classification
scheme for vehicle routing and scheduling problems. European Journal of
Operational Research 46, 3 (1990), 322–332. DOI:http://dx.doi.org/10.1016/
0377-2217(90)90007-X

[8] J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis. 1995. Time Con-
strained Routing and Scheduling. Handbooks in Operations Research and
Management Science 8, C (1995), 35–139. DOI:http://dx.doi.org/10.1016/
S0927-0507(05)80106-9

[9] A. Dohn, M.S. Rasmussen, and J. Larsen. 2011. The vehicle routing problem
with time windows and temporal dependencies. Networks 58, 4 (2011), 273–
289.

[10] M. Dror. 1994. Note on the Complexity of the Shortest Path Models for Column
Generation in VRPTW. 42 (10 1994), 977–978.

[11] D. Feillet. 2010. A tutorial on column generation and branch-and-price for
vehicle routing problems. 4OR: A Quarterly Journal of Operations Research
8, 4 (2010), 407–424. https://hal-emse.ccsd.cnrs.fr/emse-00505959

[12] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. 2004. An exact algorithm for
the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks 44, 3 (2004), 216–229.

[13] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. 1979. Opti-
mization and Approximation in Deterministic Sequencing and Scheduling: a
Survey. Annals of Discrete Mathematics 5 (1979), 287–326.

[14] C. A. J. Hurkens. 2009. Incorporating the strength of MIP modeling in schedule
construction. RAIRO - Operations Research 43 (2009), 409–420. DOI:http:
//dx.doi.org/10.1051/ro/2009026

[15] S. Irnich and G. Desaulniers. 2005. Shortest path problems with resource
constraints. In Column generation. Springer, 33–65.

[16] P. Laborie and J. Rogerie. 2008. Reasoning with Conditional Time-Intervals.
Proceedings of the Twenty-First International Florida Artificial Intelligence
Research Society Conference, May 15-17, 2008, Coconut Grove, Florida, USA
(2008), 555–560.

[17] P. Laborie, J. Rogerie, P. Shaw, and P. Vilim. 2009. Reasoning with Condi-
tional Time-Intervals. Part II: An Algebraical Model for Resources. FLAIRS
Conference (2009), 201–206. http://www.aaai.org/ocs/index.php/FLAIRS/
2009/paper/viewPDFInterstitial/60

[18] B. J. Lageweg, J.K. Lenstra, E.L. Lawler, and A.H.G. Rinnooy Kan. 1982.
Computer-Aided complexity classification of combinational problems. Com-
mun. ACM 25, 11 (1982), 817–822. DOI:http://dx.doi.org/10.1145/358690.
363066

[19] E.L. Lawler, J.K. Lenstra, A.H.G Rinnooy Kan, and D.B. Shmoys. 1993. Se-
quencing and scheduling: Algorithms and complexity. (1993), 445–522. DOI:
http://dx.doi.org/10.1016/S0927-0507(05)80189-6

[20] J.K Lenstra. 2013. Personnel scheduling: A literature review. (2013). DOI:
http://dx.doi.org/10.1016/j.cam.2008.10.038

[21] S. Pokutta and G. Stauffer. 2009. France Telecom workforce scheduling prob-
lem: A challenge. RAIRO - Operations Research 43, 4 (2009), 375–386. DOI:
http://dx.doi.org/10.1051/ro/2009025

[22] M.S. Rasmussen. 2010. The Home Care Crew Scheduling Problem: Preference-
Based Visit Clustering and Temporal Dependencies. May (2010).

[23] M. Solomon. 1987. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research 35, 2 (1987), 254–265.

[24] M. Solomon and J. Desrosiers. 1988. Survey Paper — Time Window Con-
strained Routing and Scheduling Problems. March 2014 (1988).

[25] J.N. Tsitsiklis. 1992. Special cases of traveling salesman and repairman
problems with time windows. Networks 22, 3 (1992), 263–282. DOI:http:
//dx.doi.org/10.1002/net.3230220305

65

Distributionally robust airline fleet assignment problem
Marco Silva

LIA, Université d’Avignon et des Pays du Vaucluse

Avignon

marco.costa-da-silva@univ-avignon.fr

Michael Poss

LIRMM, Université de Montpellier 2

Montpellier

michael.poss@lirmm.fr

ABSTRACT
In this work we consider the airline fleet assignment problem and

we experiment with a robust solution where passenger demand

is uncertain. To mitigate conservativeness of the classical robust

optimization we consider a two-stage distributionally robust

objective formulation. Our main contribution with respect to the

airline fleet management problem literature lies in the modeling

characteristics of our proposal.

We benchmark against current deterministic and robust fleet

assignment formulations and verify solution performance results

through simulation.

KEYWORDS
Distributionally robust optimization, Affine decision rules, Inte-

ger Programming, Airline fleet assignment

1 INTRODUCTION
Once an airline decides when and where to fly (flight legs) by de-

veloping its flight schedule, the next decision is determining the

type of aircraft, or fleet, that should be used on each of the flight

legs defined within the flight schedule. This process is called

fleet assignment and its purpose is to assign fleet types to flight

legs, subject to an available number of aircrafts and conservation

of aircraft flow requirements, such as to maximize profits with

respect to captured passenger demand. This decision needs to be

made well in advance of departures when passenger demand is

still highly uncertain. The factors that influence schedulers when

assigning fleet types to various flights are: passenger demand,

seating capacity, operational costs, and availability of mainte-

nance at arrival and departure stations. One important require-

ment of the fleet assignment is that the aircraft must circulate in

the network of flights. These so-called balance constraints are

enforced by using time lines to model the activities of each fleet

type. The period for which the assignment is done is normally

one day for domestic flights.

Profit maximization is normally defined in terms of uncon-

strained revenue minus assignment cost. Unconstrained revenue

of a flight leg is the maximum attainable revenue for that par-

ticular flight regardless of assigned capacity. Assignment cost, a

function of the assigned fleet type, includes the flight operating

cost, passenger carrying related cost and spill cost. Spill cost on

a flight is the revenue lost when the assigned aircraft for that

flight cannot accommodate every passenger. The result is that

either the airline spills some passengers to other flights in its

own network (in which case these passengers are recaptured by

the airline), or they are spilled to other airlines.

In [12] the authors develop a two-stage stochastic program-

ming model for integrated flight scheduling and fleet assignment

where the fleet family assigned to each scheduled flight leg is

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

International Network Optimization Conference (INOC), June 12-14, 2019:

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

decided at the first-stage. Then, the fleet type to assign to each

flight leg is decided at the second-stage based on demand and

fare realization. Sample average approximation (SAA) algorithm

is then used to solve the problem and provide information on the

quality of the solution.

In [9] the authors propose a new model based on itinerary

grouping to mitigate the effect of demand uncertainty. Their

itinerary group fleet assignment model deals with the difficulties

caused by itinerary forecast by replacing them with aggregated

demand forecasts. The authors affirm that an itinerary-based

representation of demand (see Section 2 for details) has led to a

high granularity of demand, making it hard to predict.

In this work, as an alternative to previous works presented,

we propose a two-stage data-driven distributionally robust opti-

mization model to address the question of airline robust planning

for the fleet assignment problem. Our main contribution with

respect to the airline fleet management problem literature lies in

this novel modeling approach.

We adopt the concept of robust optimization as defined in [5]

and [6] in that the demand uncertainty belongs to a known deter-

ministic uncertainty set. In fact, we consider this uncertainty set

as the support for the family of probability distributions associ-

ated with our random passenger demand parameter. We consider

a data-driven approach by which this uncertainty set is con-

structed from available historical data. We assume that historical

unconstrained (not subject to capacity issues) itinerary demand

data is available and that we can use this historical data to predict

future demand. By constructing the uncertainty set from histor-

ical data we are able to capture correlations between demands

of different itineraries and thus mitigate the granularity demand

effect as pointed out in [9].

On the other hand, we consider different modeling alterna-

tives to mitigate conservatism of a robust approach. Since fleet

assignment is a repetitive process, where fleet assignment deci-

sions are made on daily basis, we mitigate the conservatism of

the worst-case objective of classical robust optimization and con-

sider a distributionally robust optimization approach on which

we optimize the worst case expected performance on a set consti-

tuted by an infinite number of probability distributions, named

ambiguity set (see [10] for main concepts). We also propose a

two-stage model, as introduced in [4] where, although all the

fleet assignments decisions are first stage, the calculation of lost

revenue (spill) is only done after realization of uncertainty.

To facilitate handling large-scale fleet assignment problems,

we propose the use of principal component analysis techniques

to reduce dimension of the uncertainty set and the use of affine

decision rules for our two-stage problem as approximations to

improve time performance of our algorithms.

2 FLEET ASSIGNMENT FORMULATIONS
The fleet assignment model is typically formulated as a mixed-

integer program. One can see the work in [16] for a survey of

different modeling approaches for the problem.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 66 DOI: 10.5441/002/inoc.2019.13

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.13

In [1] the author first introduced for the fleet assignment

problem a time-space network model to represent the availability

of the fleet at each airport in the course of time. The proposed

model resulted in a linear program that could either maximize

profit or minimize operations cost.

In [11] the authors use the time-space network model and

develop a large-scale integer program for fleet assignment. They

propose several preprocessing techniques, namely node aggrega-

tion and isolated islands at stations, in order to reduce problem

complexity.

In these two works demand is expressed for a specific flight

leg and, therefore, these works do not capture demand dependen-

cies between legs. This is because demand is defined for airline

itineraries that can be comprised by multiple flight legs. Varia-

tions of demand in one itinerary flight leg will affect the others

legs. This is called the network effect and it was taken into con-

sideration in the model defined in [2]. There, the authors use the

time-space network model and consider the effect of recapturing,

where passengers spills from one itinerary can be redirected to

alternative itineraries. In their model demand is deterministic.

The above model is reference for our work, with the differ-

ence that we do not consider recapturing. We replicate here the

itinerary based formulation as presented in [9] where the authors

also explicitly deal with itinerary fare classes to better capture the

revenue dimension by favoring higher classes instead of consid-

ering all the fare classes at the same level. We present notations

and formulation used.

Sets

P : the set of itinerary fare classes, indexed by p
A : the set of airports, indexed by o
L : the set of flight legs, indexed by i
K : the set of fleet types, indexed by k
T : the sorted set of all relevant event times (leg departures or aircraft

availability) at all airports, indexed by t
CL(k) : the set of flight legs that pass the count time when flown by

fleet type k
I (k, o, t) : the set of inbound flight legs to node (k, o, t)
O (k, o, t) : the set of outbound flight legs from node (k, o, t)

Decision variables

tp : the number of passengers requesting itinerary fare classp and spilled

by the model because of the capacity limit.

fki : binary variable equal to 1 if fleet type k is assigned to flight leg i , 0
otherwise.

ykot+ : the number of fleet type k that are on the ground at airport o
immediately after time t .

ykot− : the number of fleet type k that are on the ground at airport

o immediately before time t . If t
′
is the time of the first event

occurring after t , then ykot = ykot ′−

Data

SEATSk : the number of seats available on aircraft of fleet type k .
cki : the cost of operating leg i with fleet type k .
Nk : the number of aircraft in fleet type k .
Dp : the unconstrained demand for itinerary fare class p .
f arep : the fare class for itinerary p .
δpi : a binary flag equal to 1 if itinerary fare class includes flight leg i, 0

otherwise.

count time : the time at which a snapshot of fleet utilization is taken

to ensure consistency with the available fleet.

tm : the last event before the count time , tm = count time−.

(I FAM)

min

∑
i∈L,k∈K

cki fki +
∑
p∈P

f arep tp (1)

s.t.

∑
k∈K

fki = 1 ∀i ∈ L

(2)∑
i∈I (k,o,t)

fki + ykot− =
∑

i∈O (k,o,t)

fki + ykot+,

∀k ∈ K, o ∈ A, t ∈ T (3)∑
o∈A

ykotm +
∑

i∈CL (k)

fki ≤ Nk ∀k ∈ K

(4)∑
p∈P

δpi Dp −
∑
p∈P

δpi t
p ≤

∑
k∈K

fki SEATSk ∀i ∈ L

(5)

tp ≤ Dp ∀p ∈ P
(6)

fki ∈ {0, 1}, ykot ∈ {0, 1}, tp ≥ 0,

∀p ∈ P, k ∈ K, i ∈ L, o ∈ A, t ∈ T

The objective function (1) minimizes the total cost of opera-

tions plus the cost related to spilled itinerary fare class demand.

This minimization is equivalent to profit maximization. Con-

straints (2) are the leg coverage constraints. Each flight leg has

to be operated by exactly one aircraft type. The flow conserva-

tion constraint related to each single event is ensured through

constraints (3). The limited size of each fleet is respected through

constraints (4). The count time can be seen as a fixed time where

a cut is applied on the network to ensure that the total aircraft of

each fleet type k on the ground at all airports plus those flying

at the time must not exceed the total aircraft Nk available for

type k . The capacity constraints (5) ensure that satisfied demand

fits with the number of seats available on any given leg. Last,

constraints (6) ensure that spill does not exceed unconstrained

demand for any given itinerary fare class.

We now propose a two-stage distributionally robust optimiza-

tion formulation derived from IFAM formulation to incorporate

the random nature of passenger demand vector D. Distribution-
ally robust optimization is an emerging and effective method to

address the inexactness of probability distributions of uncertain

parameters.

We formulate our problem assuming that passenger demand

spill decision variable is a second-stage variable. This way passen-

ger demand spill is only defined after realization of uncertainty

and we represent this dependency defining it as a function map

tp (D). We also assume the uncertainty of vector D is represented

through a probability distribution P that belongs to a family of

distributions D.

We present the formulation developed.

67

(DI FAM)

min

∑
i∈L,k∈K

cki fki + sup

P∈D
EP[Q (f , D)] (7)

s.t. ∑
k∈K

fki = 1 ∀i ∈ L

(8)∑
i∈I (k,o,t)

fki + ykot− =
∑

i∈O (k,o,t)

fki + ykot+,

∀k ∈ K, o ∈ A, t ∈ T (9)∑
o∈A

ykotm +
∑

i∈CL (k)

fki ≤ Nk ∀k ∈ K

(10)

fki ∈ {0, 1}, ykot ∈ {0, 1},

∀i ∈ L, k ∈ K, o ∈ A, t ∈ T

where

Q (f , D) =

min

∑
p∈P

f arep tp (D) (11)

∑
p∈P

δpi Dp −
∑
p∈P

δpi t
p (D) ≤

∑
k∈K

fki SEATSk ∀i ∈ L

(12)

tp (D) ≤ Dp ∀p ∈ P
(13)

tp ≥ 0, ∀p ∈ P

The cost

∑
i ∈L,k ∈K

cki fki incurred during the first stage is deter-

ministic. In progressing to the second-stage, the random passen-

ger demand vector D is realized. We can then determine the cost

incurred at the second-stage. For a given first stage fleet type as-

signment decision, f , and a realization of the random passenger

demand vector,D, we evaluate the second-stage cost via the linear
optimization problem, Q (f ,D). Since the fleet type assignment

is a repetitive daily process and the true probability distribution

of D is unknown and belong to a family of distributions set D

we are interested in the worst case expectation sup

P∈D
EP[Q (f ,D)].

Note that it is a relatively complete recourse problem because

any first-stage solution leads to a feasible second-stage solution.

In order to be able to deal with large scale problems, our

two-stage distributionally robust optimization formulation must

admit a tractable reformulation. The reformulation is closely

related to the choices of ambiguity set that we make. On the

other hand these choices must correctly reflect properties of

historical data available.

In the next section we show that defining ambiguity sets by

linear relationships of uncertainty parameters and approximating

second-stage variables as affine functions of uncertainty param-

eters yields a tractable problem. We will also use techniques of

uncertainty dimensionality reduction as a further compromise

between optimality and tractability.

3 TWO-STAGE DISTRIBUTIONAL
REFORMULATION

3.1 Dimensionality reduction
In real case examples, the dimension of the random passenger

demand vector D can be in the range of thousands of itineraries.

This can impact performance of the formulationDIFAM . Employ-

ing dimensionality reduction techniques to reduce the number of

random variables under consideration can improve performance

of our formulations.

Here we assume there is a setW
′

of N demand data samples

available, W
′

= {D (i) }Ni=1
, based on historical data, and use

this set to calculate the mean vector D̄, variance vector D̂ and

covariance matrix cov (D (i)).
A linear technique for dimensionality reduction, principal

component analysis, performs a mapping of the data to a lower-

dimensional space in such a way that the variance of the data in

the low-dimensional representation is maximized. Intuitively, we

change the system of coordinates and define this system by new

vectors Y , but we select only some of them, therefore reducing

dimension of the system. The new system of coordinates, vectors

{Y c }Cc=1
, are in fact normalized eigenvectors of the covariance

matrix cov (D (i)), where c is the index of the selected eigenvectors.
We refer to [17] for more details on principal component analysis

(PCA).

We execute a procedure to express the passenger demand

vectors, D (i)
, in the new system of coordinates, but before we

normalize the vectors D (i)
, using D̄ and D̂. Therefore we define

D (i)
′

= (D (i) − D̄)./D̂, where ./ is a component wise division of

vectors.

We then compute the coordinates, X
(i)
c , in the system of coor-

dinates of the principal components vectors, {Y c }Cc=1
, where the

principal component vector has dimension |P |. The value of X
(i)
c

results from the expression:

X
(i)
c =< D (i)

′

,Y c >, (14)

where <,> is a dot product.

In the following we need the random vector to be nonnega-

tive, which may not be the case of components X
(i)
c . Hence, we

introduce a new random vector ξ (i) where each component will

vary in the nonnegative interval [0,1]. Each component of ξ (i) is
defined as

ξ
(i)
c = (X

(i)
c −max

i
(X

(i)
c))/(min

i
(X

(i)
c) −max

i
(X

(i)
c)), (15)

where max

i
(X

(i)
c), min

i
(X

(i)
c) are, respectively, the maximum and

minimum projection component values along each vectorY c con-

sidering all instances, i ∈ {1, . . . ,N }. X
(i)
c varies in the interval

[min

i
(X

(i)
c),max

i
(X

(i)
c)] and as consequence ξ

(i)
c will vary in the

interval [0,1].

Using the above definition of ξ (i) , we can define the compo-

nents of each demand vector D (i)
as

D
(i)
p = D1p +

C∑
c=1

D2pc ξ
(i)
c , (16)

where

D1p = D̄p + D̂p

C∑
c=1

min

i
(X

(i)
c)Y cp , (17)

D2pc = D̂p (max

i
(X

(i)
c) −min

i
(X

(i)
c))Y cp (18)

This is an important step in order to guarantee positive def-

inite matrices in the algorithm developed in Section 4 for our

distributionally robust ambiguity set.

68

3.2 Ambiguity set and first-order deviation
moment functions

The tractability of a distributionally robust linear optimization

problem is dependent on the choice of the ambiguity set. Several

ambiguity sets have been proposed in the literature. In particular,

moment-based uncertainty sets assume that all distributions in

the distribution family share the same moment information. By

leveraging conic duality many distributionally robust optimiza-

tion problems with moment-based ambiguity sets can, in general,

be reformulated equivalently as convex problems. Although these

problems can be solved theoretically in polynomial time, they

are not efficient for large-scale instances.

In [8], a moment-based second-order conic representable am-

biguity set, D, is defined as

D =




P ∈ P0 (R
|P |)

�����������

D ∈ R |P |

EP[GD] = µ

EP[дi (D)] ≤ γi ∀i ∈ I

P(D ∈ U) = 1




.

We assume random passenger demand vector D, but the same

results can be derived substituting for dimensional reduced ran-

dom vector ξ derived in the previous section.P0 (R
|P |) represents

the set of all probability distributions inR |P | and new parameters

are defined asG ∈ Rn1×|P |
, µ ∈ Rn1

,γ ∈ R |I | , SOC (second-order

conic) representable support setU ∈ R |P | and SOC representable

functions дi ∈ R
|P |×1

.

D only contains valid distributions supported over the support

setU and moment information of uncertainties are characterized

via functions дi . The equality expectation expression allow the

modeler to specify the mean values of D.
The authors of [8] further reformulate the ambiguity set D as

a projection of an extended ambiguity set
¯D by introducing an

I -dimensional auxiliary random vector u in

¯D =




Q ∈ P0 (R
|P | × R |I |)

�����������

(D,u) ∈ Rp × R |I |

EQ[GD] = µ

EQ[u] ≤ γi ∀i ∈ I

P((D,u) ∈ Ū) = 1




where Ū is the lifted support set defined as

Ū =


(D,u) ∈ R |P | × R |I |

������

D ∈ U

дi (D) ≤ ui ∀i ∈ I




They observe that the lifted ambiguity set has only linear expec-

tation constraints and show that the adaptive distributionally

robust optimization problem can be reformulated as a classical

robust optimization problem with uncertainty set Ū .

To be able to reformulate adequately our fleet assignment

problem DIFAM we must then define an ambiguity set D that

will lead to a polyhedron lifted support set Ū .

In [15] the authors define first-order deviation moment-based

functions дi (.) that are second-order conic representable as piece-
wise linear functions

дi (D) = max{hTi D − qi ,0} ∀i ∈ I .

They can be understood as the first-order deviation of uncer-

tain parameters along a certain projection hi truncated at qi . We

apply these moment-based functions to our problem and also

assume that the support setU is a polyhedron. We then define

our ambiguity set D as

D =




P ∈ P0 (R
|P |)

���������

D ∈ R |P |

EP[max{hTi D − qi ,0}] ≤ γi ∀i ∈ I

P(D ∈ U) = 1




and the lifted support set Ū will be a polyhedron given as

Ū =




(D,u) ∈ R |P | × R |I |

���������

D ∈ U

0 ≤ ui ∀i ∈ I

hTi D − qi ≤ ui ∀i ∈ I




3.3 Affine decision rules
With the above definition of lifted support set we can apply,

to our DIFAM formulation, the reformulation proposed by [8]

for the adaptive distributionally robust optimization problem,

approximating second-stage variables tp as affine functions of the

lifted support set parameters (D,u), tp (D,u) = t0

p +
∑
i ∈P t

1

piDi +∑
i ∈I t

2

piui .

This reformulation is based on the dualization of the inner

problem of DIFAM , supP∈D EP[Q (f ,D)], and by introducing

Lagrangian multipliers r and β to it (alternatively see [15] for

a summarized proof of this reformulation). This leads to the

following classical robust optimization problem:

(RRI FAM)

min

∑
i∈L,k∈K

cki fki + r +
∑
i∈I

γi βi

s.t.

r +
∑

ui βi ≥
∑
p∈P

f arep tp (D, u),

∀(D, u) ∈ Ū∑
p∈P

δpi Dp −
∑
p∈P

δpi t
p (D, u) ≤

∑
k∈K

fki SEATSk ,

∀i ∈ L, ∀(D, u) ∈ Ū

tp (D, u) ≤ Dp ,

∀(D, u) ∈ Ū∑
k∈K

fki = 1,

∀i ∈ L∑
i∈I (k,o,t)

fki + ykot− =
∑

i∈O (k,o,t)

fki + ykot+,

∀k ∈ K, o ∈ A, t ∈ T∑
o∈A

ykotm +
∑

i∈CL (k)

fki ≤ Nk ,

∀k ∈ K

tp (D, u) = t 0

p +
∑
i∈P

t 1

piDi +
∑
i∈I

t 2

piui ,

∀p ∈ P

r ∈ R, βi ≥ 0, fki ∈ {0, 1}, ykot ∈ {0, 1}, tp ≥ 0,

∀p ∈ P, k ∈ K, i ∈ L, o ∈ A, t ∈ T

4 DATA-DRIVEN AMBIGUITY SET
A desirable ambiguity set should flexibly adapt to the intrinsic

structure behind real data, thereby well characterizing P and

attempting to reduce natural conservatism of robust solutions.

In face of complicated distributional geometry, making prior

69

assumptions on the form of probability distribution or using clas-

sical uncertainty sets to describe their support have limited mod-

eling power. With this in mind we adopt a data-driven method-

ology to construct and define parameters of the support set and

moment-based functions associated with our ambiguity set.

4.1 Support Set
In what follows, we use the technical approach of [14] to con-

struct a support setU from data samples of the random variable

ξ . We assume there is a set W of N data samples available,

W = {ξ (i) }Ni=1
, and this set is constructed from the sample of

demand vectors, D (i)N
i=1

, as explained in Subsection 3.1.

In [14] the authors propose piecewise linear kernel-based sup-

port vector clustering (SVC) as a machine learning technique

tailored to data-driven robust optimization. They explore the

SVC’s secondary effect that evolves the data samples inside a

sphere in a high-dimensional space [3]. They use this sphere to

characterize the uncertainty set. This mapping of data points to

a high-dimensional space is done by means of a kernel function.

Using well known techniques of machine learning they define a

linear kernel that, in turn, is used to define a polyhedral region

evolving the data in the original space.

Using these techniques, we define our data-driven support

setU as the region inside or in the borders of this sphere. This

sphere is given by the expression

U = {ξ | K (ξ ,ξ) − 2

N∑
i=1

αiK (ξ ,ξ (i))+

+

N∑
i=1

N∑
k=1

αiαkK (ξ (i) ,ξ (k)) ≤ R2}

Parameters α and R are derived by applying Lagrangian relax-

ation to the original formulation and the linear kernel is given

by

K (ξ (i) ,ξ (j)) =
N∑
k=1

lk − |ξ
(i) − ξ (j) |1,

where lk = max1≤i≤N ξ
(i)
k −min1≤i≤N ξ

(i)
k . We refer to [3] for

details.

4.2 Moment-based functions
For moment-based functions we adopt the work of [15] where the

authors define a two-step procedure for determining parameters

hi and qi of our piecewise linear functions in order to capture

meaningful information from available data.

The directions hi are based on principal component analy-

sis (PCA) such that the data space becomes decorrelated along

each direction and the information overlap between different

directions is slight. Since our random vector ξ already comprises

decorrelated components we adopt vector hi as standard unit

vectors ei .
After that, several truncation points {qi } are set along each di-

rection hi . For each direction hi we choose 2J +1 well-distributed

truncation points. The first truncation point is set as the mean

value
¯ξi and the remaining 2J ones around the mean

¯ξi symmet-

rically based on a fixed step-size given as the variance
ˆξi along

the i-th direction.

In this way, we will have C (2J + 1) piecewise functions дi (.)
in total in the ambiguity set.

Intuitively, the parameter J can be deemed as the "size" of the

ambiguity set, which can be manipulated to adjust the conser-

vatism of the model. The more truncation points we have, the

more statistical information will be incorporated, which leads to

a smaller ambiguity set as well as a less conservative solution.

After determining the value of hi and qi , the next step is to

estimate the parameters γi empirically based on N available data

samples:

γi =
1

N

N∑
j=1

max(hTi ξ
(j) − qi ,0)

Intuitively, with the values of size parameters γi increasing,
the DRO model becomes more conservative.

5 IMPLEMENTATION AND RESULTS
5.1 Implementation details
We report on experiments conducted with the formulations pro-

posed for the airline fleet assignment problem. Our objective is to

verify the performance of each solution in a long run operation

since fleet assignment is a daily repetitive process.

For our purposes, we create a small-sized hub-and-spoke air-

line instance, in which a unique major airport serves as a central

point for coordinating flights to and from other airports. This

way all our itineraries are composed of a maximum of two flight

legs. We consider a structure of 9 airports, 3 fleet types and 24

daily itineraries based on three fare classes. A flight schedule

with 21 flight legs is created and they are used to compose the

daily itineraries.

We test this operation under four different problem formula-

tions: IFAM , RRIFAM , as already presented in this study and two

other formulations RIFAM and RIFAM2. Formulation RIFAM
is a standard two-stage robust formulation where the objective

is given as the worst case performance and dimensionality re-

duction is performed the same way as for RRIFAM . Formulation

RIFAM2 is the same as RIFAM where no dimensionality reduc-

tion is performed.

We randomly generate a set of 400 demand vectors. They

are designed in a way that many itinerary demands are highly

correlated.

We use 100 demand vectors as historical training data to create

the ambiguity set of formulation RRIFAM and the 300 others to

simulate the airline operating period.

We use naive approaches to determine demand vectors for for-

mulations IFAM , RIFAM and RIFAM2. For formulation IFAM
we consider three demand scenarios of low, medium and high

total demand and consider the average of these three scenarios as

input to our IFAM formulated problem. For formulation RIFAM
and RIFAM2 we consider maximum and minimum demand val-

ues for each leg and consider a box uncertainty set where each

demand component varies within this interval.

With the solution of formulations IFAM ,RIFAM and RRIFAM
we simulate an airline operating period of 300 days and calculate

an objective of total operating costs plus total loss revenue. We

compare simulation results of the three formulations where our

focus is on analyzing objective value and time performance.

Conservatism regulation parameters of our ambiguity set are

fixed as v = 0.6 and J = 0. With v = 0.6, 100% of demand vectors

were considered inside or in the border of the support set (no

outliers). We calculate parameter C so that the sum of variances

in the direction of each principal component considered sums

70

IFAM RIFAM RIFAM2 RRIFAM

Objective value 335747 638817 651081 488135

Total Time (s) 4.5 239.77 10950.47 9041.14

Number of variables 789 982 1366 1181

Number of constraints 450 - - -

Number of iterations - 32 49 81

Simulation Total cost* 1.38e8 1.35e8 (2.2%) - 1.32e8 (4.3%)

*In parenthesis percentage gain when compared to worst result

Table 1: Implementation and performance comparison of
fleet assignment formulations

up to a minimum of 90% of the sum of variances considering all

principal components. For the instance we created, C = 8 of 24.

To solve formulations RIFAM , RIFAM2 and RRIFAM we use a

master and adversarial problem approachwhere, at each iteration,

we use the adversarial problems to search for a demand scenario

instance that invalidates the master problem solution. See [7] for

more details on this solution approach.

Algorithms were coded in Julia [13] using JuMP and Cplex 12.7.

All algorithms were run in an Intel CORE i7 CPU 3770 machine.

5.2 Comparative performance of the
formulations

Table 1 presents the results of the implementation and solution

for the four different formulations. The relation between objec-

tive values are as expected since formulation IFAM is optimizing

against a specific demand scenario, formulations RIFAM and

RIFAM2 are optimizing against a worst case scenario and formu-

lation RRIFAM is optimizing an expected performance (worst-

case). RIFAM is designed to be a lower bound of RIFAM2 since it

considers less constraints (restricted uncertainty set), but the re-

sults show thatRIFAM is a reasonable approximation ofRIFAM2.

Since we use affine decision rules, formulations RIFAM , RIFAM2

and RRIFAM are themselves upper bound approximations of the

true optimal worst-case or worst-case expected performance.

Since we use auxiliary variables to compose affine decision rules

for formulation RRIFAM , it leads to more flexible results than

affine decision rules use original demand uncertainty.

The total time performance result is in direct link with the

number of variables of each formulation, although the number of

iterations for each of the robust formulations varies. In terms of

time performance, dimensionality reduction has been effective to

reduce total time. On the other hand, since the size of our airline

instance is small, additional measures should be put in place to

be able to deal with real large airline instances.

The simulation results are also as expected since the formu-

lation RRIFAM , in the long run, leads to the less costly total

solution. We note that there are no guarantees, in terms of the

mathematical model proposed, on how formulations IFAM and

RIFAM would perform in the long simulation run. We also note

that formulationRRIFAM is an approximation of the true optimal

result. Even though we would expect that, in the long simulation

run, result of worst-case expected performance of formulation

RRIFAM would out perform the two other formulations, and that

is the case.

6 CONCLUSION
Initial computational results have shown that our proposedmodel

can improve over other more traditional approaches. A further

study can analyze the quality of the approximations performed,

using real life data and comparing with data-driven stochastic

optimization approximation algorithms.

REFERENCES
[1] Abara, J. Applying integer linear programming to the fleet assignment

problem. Interfaces 19, 4 (1989), 20–28.
[2] Barnhart, C., Kniker, T. S., and Lohatepanont, M. Itinerary-based airline

fleet assignment. Transportation Science 36, 2 (2002), 199–217.
[3] Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. Support vector

clustering. J. Mach. Learn. Res. 2 (2002), 125–137.
[4] Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. Adjustable

robust solutions of uncertain linear programs. Mathematical Programming 99,
2 (2004), 351–376.

[5] Ben-Tal, A., and Nemirovski, A. Robust convex optimization. Math. Oper.
Res. 23, 4 (1998), 769–805.

[6] Ben-Tal, A., and Nemirovski, A. Robust solutions of uncertain linear pro-

grams. Operations Research Letters 25, 1 (1999), 1–13.
[7] Bertsimas, D., Dunning, I., and Lubin, M. Reformulation versus cutting-

planes for robust optimization. Computational Management Science 13, 2 (Apr
2016), 195–217.

[8] Bertsimas, D., Sim, M., and Zhang, M. Adaptive distributionally robust

optimization. Management Science (2018), online.
[9] Boudia, M., Delahaye, T., Gabteni, S., andAcuna-Agost, R. Novel approach

to deal with demand volatility on fleet assignment models. Journal of the
Operational Research Society 69, 6 (2018), 895–904.

[10] Delage, E., and Ye, Y. Distributionally robust optimization under moment

uncertainty with application to data-driven problems. Operations Research 58,
3 (2010), 595–612.

[11] Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser,

G. L., and Sigismondi, G. The fleet assignment problem: Solving a large-scale

integer program. Math. Program. 70 (1995), 211–232.
[12] Kenan, N., Jebali, A., andDiabat, A. An integrated flight scheduling and fleet

assignment problem under uncertainty. Computers and Operations Research
100 (2018), 333 – 342.

[13] Lubin, M., and Dunning, I. Computing in Operations Research using Julia.

CoRR abs/1312.1431 (2013).
[14] Shang, C., Huang, X., and You, F. Data-driven robust optimization based on

kernel learning. Computers and Chemical Engineering 106 (2017), 464 – 479.

[15] Shang, C., and You, F. Distributionally robust optimization for planning

and scheduling under uncertainty. Computers and Chemical Engineering 110
(2018), 53 – 68.

[16] Sherali, H. D., Bish, E. K., and Zhu, X. Airline fleet assignment concepts,

models, and algorithms. European Journal of Operational Research 172 (2006),
1–30.

[17] WOLD, S., ESBENSEN, K., and GELADI, P. Principal component analysis.

Chemometrics and Intelligent Laboratory Systems 2 (1987), 37–52.

71

Routing and Slot Allocation in 5G Hard Slicing
Nicolas Huin

Huawei Technologies
nicolas.huin@huawei.com

Jérémie Leguay
Huawei Technologies

jeremie.leguay@huawei.com

Sébastien Martin
Huawei Technologies

sebastien.martin@huawei.com

Paolo Medagliani
Huawei Technologies

paolo.medagliani@huawei.com

Shengming Cai
Huawei Technologies

caishengming@huawei.com

ABSTRACT
5G networks will enable the creation of network slices to serve
very different user requirements. Flex Ethernet (FlexE) is a stan-
dard technology that provides strict isolation between slices,
also called hard slicing, by allocating capacity slots of physical
links to slices. The resulting resource allocation problem is called
Routing and Slot Allocation problem (RSA). We first prove that
this problem is NP-hard and cannot be approximated. Then, we
develop two matheuristics to efficiently solve the problem, by
leveraging on a combination of Column Generation and Gauss
Seidel procedures. The numerical evaluation, carried out by com-
paring the two matheuristics against a greedy algorithm over a
realistic IP-RAN networks, shows an optimality gap smaller than
7%, while reducing the reservation cost by 4% compared to the
greedy algorithm.

1 INTRODUCTION
The deployment of next generation 5G networks is paving the
road for custom and personalized network services. In particular,
due to the improvement in terms of end-to-end network capacity,
latency and reliability, it is now possible to envision the decompo-
sition of the physical network into several virtual sub-networks
with very different requirements. Each sub-network, also called
a slice, is independent from each other, and operated by different
players, often referred to as tenants. The partitioning of network
resources aims at guaranteeing that the requirements of tenants
are met in all slices.

The importance of network slicing relies on the fact that these
virtual networks can be designed to guarantee different Quality
of Service (QoS) requirements. In 5G networks [5], three main use
cases are commonly identified, namely enhanced Mobile Broad
Band (eMBB), ultra Reliable and Low Latency Communications
(uRLLC), and Massive IoT (mIoT), using the same physical in-
frastructure. The resources are provisioned inside each slice in
such a way that the SLA (Service Level Agreement) requirements
specified for each tenant can be met.

According to the isolation level, we categorize slicing tech-
nologies into soft and hard slicing. In soft slicing [1, 4], despite
that QoS performance guarantees are pledged to slices, the traf-
fic is actually multiplexed in a queuing system. A high load on
a physical link may introduce an additional latency for all the
slices that are routed through that link. And the traffic in one
slice may impact the other slices in case of congestion. However,
within hard slicing [8], each slice has dedicated resources at both
physical and MAC layers. Performance misbehaviors of one slice
can not have any influence on the other slices.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The main technology used to provide hard isolation is Flex
Ethernet (FlexE) [10]. As mentioned in [1], it is a key enabler of
5G networks. The way FlexE can provide isolation between slices
is through the reservation of resources at physical and MAC
layers in a Time-Division Multiplexing Access (TDMA) fashion.
The capacity of physical ports inside FlexE-enabled devices is
allocated to each slice in the form of slots, i.e., multiples of a
fundamental unit, normally expressed in Gigabits. Once a slot is
allocated to a slice, it cannot be shared with another one. When
a slice is created, FlexE slots must be reserved on physical links
and user traffic must be steered through these slots. A network
controller is typically taking routing and slot allocation decisions
with the goal of minimizing unused resources.

In this paper, we present the Routing and Slot Allocation (RSA)
problem for hard slicing with FlexE in 5G networks where the
goal is to minimize the cost of resource reservations for a slice,
under the constraint that all services in the slice are accepted. We
show that this problem is NP-hard and it cannot be approximated
with constant factors unless P = NP. We also present an efficient
heuristic to quickly approximate the optimal solution.

The RSA problem is similar to problems such as the multi-
commodity network optimization problems with general step cost
functions [6], or the energy-aware routing with discrete link rates
problem [2]. However, a few key differences exist. Firstly, the prob-
lem studied by [6] considers splittable flows unlike our problems
where each service must be routed on a unique path. Secondly,
even though [2] consider unsplittable flows, we cannot apply
their method due to statistical multiplexing available in IP-RAN
networks (see Section 2.3). To the best of our knowledge, we are
the first to propose a column generation algorithm to solve this
problem.

The structure of the paper is the following. We explain hard
slicing in Section 2 and formally present the RSA problem in
Section 2.3. We then propose an extended formulation of the
problem in Section 3 and detail the column generation proce-
dure. We then show in Section 4 two heuristics and compare,
in Section 5, our heuristics on realistic 5G scenarios using IP-
RAN network. Finally, we conclude this paper and discuss future
works in Section 6.

2 HARD SLICING
Hard physical isolation between different slices can be acheived
with Flex Ethernet (FlexE). This section presents how the technol-
ogy works and the Routing and Slot Allocation problem (RSA).

2.1 Flex Ethernet for hard slicing
As shown in Figure 1, the Optical Internetworking Forum (OIF)
has designed the FlexE standard as an extension of the traditional
IEEE 802.3 standard for wired Ethernet. In more details, FlexE
is implemented at the layer 1.5 of the OSI stack, adding a shim

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 72 DOI: 10.5441/002/inoc.2019.14

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.14

Figure 1: Extension of IEEE 802.3 to support Flex Ethernet.

layer which is in charge of allocating transmission slots to each
slice with a fixed calendar, as presented in Figure 2. This rigid

Figure 2: Role of the FlexE shim.

mapping forces the bandwidth reserved over a sub-interface to
be expressed as a multiple of fundamental slot units. In the FlexE
implementation we considered, the bandwidth is reserved in
blocks of 5 Gb [10]. However, the first 5 slots allocated to each
slice can be of 1 Gb, for a finer bandwidth reservation.

Data packets from the FlexE shim are then mixed on different
PHY interfaces that carry all or part of the traffic coming from
one or more sub-interfaces. The PHY interfaces are then multi-
plexing in a TDMA fashion, according to 64/66-bit block data line
encoding. This multiplexing operation follows a rigid calendar,
which is shared between the transmitter and the receiver to let
the latter decodes the data when received.

2.2 Slot allocation policy
FlexE follows three bandwidth reservation rules: (i) it is necessary
to activate enough slots on a link to cover all the services of the
slice routed through that link; (ii) if there is enough activated

slots over a link to accommodate a new service, it is not necessary
to activate a new one; (iii) the slot activation sequence comes
with a given order. For instance, referring to Figure 3, Service 1
of 7 Gb and Service 2 of 3 Gb need to use the same FlexE link. For
Service 1, it is necessary to activate the first 5 1-Gb slots and 1
5-Gb slot, for a total of 10 Gb. This means that there are 3 Gb that
are activated and not used by Service 1 and that can be used "for
free" by Service 2. In particular, according to the FlexE standard,
it is not possible to activate a 5-Gb slot before having activated
all the 1-Gb slots. Thus, only the following link configurations
are allowed: 1 Gb, 2 Gb, 3 Gb, 4 Gb, 5 Gb, 10 Gb, 15 Gb, 20 Gb and
other multiples of 5 Gb slots.

Figure 3: Scheme of FlexE link utilization

On top of the three rules mentioned above, there is another
bandwidth reservation policy thatmust be followed in IP-RANnet-
works (IP networks for mobile radio networks in 4G or 5G). Fig-
ure 4 shows that in aggregation and core networks statistical
multiplexing can be used to save resources. The main idea of
statistical multiplexing is to assume all services crossing a link
will not be active at the same time. Therefore, it is possible to
reserve only a portion of the bandwidth required by the services.
However, it is necessary to reserve enough bandwidth to ensure
that (i) the scaled sum of the capacities of the services passes and
(ii) each service alone can pass. The scaling factor applied in the
aggregation and in the core network is different as it depends on
the number of services using the network. This mechanism is
referred to as Convergence Ratio (CR). The CR scaling factor can
be applied only to services that explicitly support it. For example,
if two services, requesting for 4 Gb each, are routed on a link
with a convergence ratio of 2, 4 Gb must be allocated as to allow
each service to be routed alone.

Figure 4: Convergence ratio (CR) in IP-RAN networks.

2.3 Routing and Slot Allocation problem
Let G = (V , E) be the graph representing the network, where V
is the set of nodes associated with the routers and E is the set
of links between the routers. For each link e ∈ E we consider a
positive cost Ce per unit of bandwidth used, a capacity be and,
a latency λe . In particular, be can be expressed as a multiple
of a basic unit, referred to as slot, whose size is defined by the
FlexE standard. For each link, it is possible to define a set of

73

valid slot configurations Se that enumerates the possible slot
activations. To each link configuration s ∈ Se corresponds a
bandwidth utilization ξes .

A slice consists of a set of demands K to be allocated in the
network. Each demand k ∈ K is characterized by a source node
sk ∈ V , a destination node tk ∈ V , a bandwidth requirement Dk
and a latency bound Λk . As we are considering an IP-RAN net-
work, statistical multiplexing applies in some parts of the network
for the subset KC ⊆ K of the demands. For each link e , we define
a CR factor µe and the amount of bandwidth used by a demand
k ∈ KC is given by De

k = µeDk . However, the bandwidth alloca-
tion of a link with statistical multiplexing must ensure that each
demand in KC can be routed alongside the demand without con-
vergence ratio. Thus, the bandwidth usage of a link e to allocate
the set of demands Ke , it is given by

u(e,Ke) =
∑

k ∈Ke∩KNC

Dk +max ©­«
∑

k ∈Ke∩KC

De
k , max

k ∈Ke∩KC

Dk
ª®¬ (1)

where KNC ⊆ K is the set of demands that are not requesting for
statistical multiplexing.

The Routing and Slot Allocation problem (RSA) consists in
computing a feasible path for all demands within the slice, while
respecting the link capacities and delay constraints and minimizing
the cost of resource reservation in the network.

3 COLUMN GENERATION MODEL
In this section, we first formulate the problem via an Integer
Linear Program (ILP). As this model requires an exponential
number of variables, we propose a pricing procedure, based on
Column Generation (CG) techniques to dynamically add the
necessary variables.

3.1 Problem formulation
For each demand k ∈ K , we denote by Pk the set of all possible
paths between source sk and destination tk . The number of paths
for each demand can be exponential. For each demand k and each
path p ∈ Pk , a binary variable xkp is equal to 1 if the path p is
used by demand k , 0 otherwise. For this extended model we also
consider the slot configuration variables yes for each e ∈ E and
s ∈ Se defined in the previous section.

The following ILP FlexE-CG is a valid formulation for the FlexE
problem.

min
∑
e ∈E

Ce
∑
s ∈Se

ξesyes (2a)

s.t
∑

k ∈KNC

∑
p∈Pk :e ∈p

Dkxkp

+
∑
k ∈KC

∑
p∈Pk :e ∈p

µeDkxpk ≤
∑
s ∈Se

ξesyes ∀e ∈ E (2b)∑
k ′∈KNC

∑
p∈Pk′ :e ∈p

Dk ′xpk ′

+
∑

p∈Pk :e ∈p

Dkxkp ≤
∑
s ∈Se

ξesyes ∀e ∈ E,k ∈ KC (2c)∑
p∈Pk

xpk ≥ 1 ∀k ∈ K (2d)∑
s ∈S

yes ≤ 1 ∀e ∈ E (2e)

xpk ∈ {0, 1} ∀k ∈ K,p ∈ Pk (2f)

yes ∈ {0, 1} ∀e ∈ E, s ∈ Se (2g)

The inequalities (2b) are the traditional capacity constraints
on each link e where the amount of traffic for demands in KNC

and demands scaled with the convergence ratio in KC must be
smaller or equal than the size of the activated slot ξes . Inequal-
ities (2c) ensure that each demand in KC can be routed on its
own. Inequalities (2d) ensure that at least one path is assigned
to one demand. Inequalities (2e) guarantee that only one slot
configuration is activate on each link. Remark that, as we aim
at minimizing costs which are positive, it is useless to take two
paths for each demand. In order to help the pricing procedure,
we do not consider strict equality in (2e). The inequalities (2f)
and (2g) are the integrality constraints.

Pricing procedure. Since the model FlexE-CG has an exponen-
tial number of variables, it is necessary to propose a pricing pro-
cedure to generate only the necessary columns (i.e., to activate
variables) inside the CG algorithm. Indeed, the pricing procedure
is a sub module of the CG algorithm allowing to generate only
the necessary columns that improve the linear relaxation of the
FlexE-CG model and allow to reach the optimal relaxed solution.
The pricing procedure consists in solving a sub problem to define
if there exists a column such that the associated constraint in the
dual formulation is violated([3]).

At each step of the column generation algorithm, we obtain
the optimal dual values δ∗ ∈ RE+ , π∗ ∈ R

E ·KC
+ , γ ∗ ∈ RK+ , θ∗ ∈ RE+

associated with the inequalities (2b), (2c), (2d), (2e), respectively.
Thus, for a given demand k ∈ K , the separation of a violated dual
constraint is equivalent to finding a path p such that

−
∑
e ∈p

De
kδe −

∑
e ∈p

Dkπ
k
e + γk > 0 (3)

if k ∈ KC, and the following if k ∈ KNC:

−
∑
e ∈p

Dkδe −
∑
e ∈p

∑
k ′∈KC

Dkπ
k ′
e + γk > 0 (4)

For each demand k ∈ KC (resp. k ∈ KNC), the constrained
shortest path where the cost on each link is e ∈ E byDe

kδe+Dkπ
k
e

(resp. Dkδe +
∑
k ′∈KC

Dkπ
k ′
e) solves the pricing procedure. If

solved optimally, it guarantees that a path is found if it exists.
If the cost of the shortest path is strictly smaller than γk , then
we add the column (variable) associated with this path and this
demand to the problem. If for all demands, no columns are added,
the column generation procedure terminates.

Note that additive end-to-end QoS constraints, such as delay,
jitter or packet loss (taking the logarithm), can be integrated in the
path computation procedure. In our heuristic algorithm, we use
well-known algorithms such as LARAC [9] or GEN-LARAC [11]
to solve the constrained shortest path problem.

3.2 Column generation algorithm
As mentioned in Section 3.1, the FlexE-CG formulation contains
an exponential number of variables and is adapted to a column
generation algorithm to solve its relaxation. Figure 5 depicts the
whole procedure where the fractional solution is then fixed to
integer using a rounding algorithm. Column generation relies
on a pricing problem to generate variables on-the-fly instead of
enumerating them in the master problem. We combine it with a
constraint generation procedure for constraints (2c) to avoid any
stability issue and improve convergence speed.

The algorithmworks as follows: first, we warm-start the FlexE-
CG model with a solution found using a greedy algorithm (see

74

Algorithm 2 for more details). Then, we proceed with the follow-
ing steps:

1) The column generation alternates between solving the
master problem and the pricing problems:
a) We solve a reduced FlexE-CG, i.e., FlexE-CG with a sub-

set of paths, using a linear solver.
b) Using the dual values of FlexE-CG, for each demand, we

look for constrained paths that violate (3) or (4), using
the LARAC algorithm. If we find any, we add them to
FlexE-CG and go back to step 1a).

2) We then search for any violatedmultiplexing constraint (2c).
If none is violated, we have an optimal solution z∗LP for
the relaxation, otherwise we go back to step 1.

Algorithm 1 Randomized rounding

Input: A network G = (V , E), link capacity be , ∀e ∈ E, set of
demands K, set of paths P̄ =

⋃
k ∈K P̄k , vector x ∈ R |P | of value

for each path
Output: Set of paths P
1: p∗k ← ∅, ∀k ∈ K
2: Ke ← ∅ ∀e ∈ E
3: for demand k ∈ K do
4: while P̄k , ∅ do
5: p̃ ← path drawn at random from P̄k with

Pr (p is selected) = xp∑
p∈P̄k

xp
∀p ∈ P̄k

6: if ∀link e ∈ p̃ : u(e,Ke ∪ {k}) ≤ be then
7: p∗k ← p̃

8: for ∀link e ∈ p̃ do
9: Ke ← Ke ∪ {k}

10: break
11: else
12: xp ← 0
13: Pk ← Pk \ p̃

14: KREJ ← {k ∈ K : p∗k = ∅} ◃ Get set of demands not routed
15: return

⋃
k ∈K {p

∗
k } ∪Greedy(G,KREJ,Ke ,b)

Randomized Rounding. Since the column generation proce-
dure only provides a relaxed solution for FlexE-CG, we need to
derive an integral solution from it. We propose a randomized
rounding algorithm, shown in Algorithm 1. For each demand,
we randomly (with uniform distribution) choose a path amongst
all the paths generated during the column generation procedure.
The probability of choosing a path p is given by

P(k is routed on p) = x∗pk

where x∗pk is the value of xpk in the optimal solution of the
relaxation of FlexE-CG. We check that the selected path can be
routed on the current network configuration. If this is the case,
we update the link-slot allocation and move to the next demand.
Otherwise, we remove the path from the set of possible paths
and pick a new one at random. If there is no more path in the
pool, we add the demand to the list of rejected demands. Once all
demands are considered and if the list of rejected demands is not
empty, we try to find a solution for the rejected demands with
the greedy algorithm.

Parallelization. As depicted below in Figure 5, the master prob-
lem and the pricing problems are solved iteratively but columns
in the pricing can be generated in parallel. In the rounding step,

we run in parallel several randomized rounding routines to en-
sure that the final solution will be integer and feasible. Finally,
the best solution among those provided in the rounding step is
selected.

Figure 5: Algorithmic framework to solve FlexE-CG.

4 HEURISTICS
In this section, we present two heuristics we designed to solve
the RSA problem. The first one is a simple greedy algorithm
that we use as benchmark. The second one is an adaptation of
a procedure from the literature [7] to solve a network planning
problem with splittable flows and no considerations on statistical
multiplexing.

4.1 Greedy algorithm

Algorithm 2 Greedy algorithm

Input: A network G = (V , E), link capacity be , ∀e ∈ E, set of
demands K to route, set of demands Ke on each link e
Output: Set of paths P
1: P ← ∅
2: Ke ← ∅, ∀e ∈ E
3: for demand k ∈ K do
4: Ek ← {e : u(e,Ke ∪ {k}) ≤ be }

5: wk (e) =

{
1 if A(u(e,Ke)) ≥ u(e,Ke ∪ {k})

1 +Ce otherwise
∀e ∈ Ek

6: Build weighted graph Gk = (V , Ek ,wk)

7: Find shortest path p from sk to tk in Gk

8: P ← P ∪ {p}
9: for link e ∈ p do
10: Ke ← Ke ∪ {k}

return P

Algorithm 2 is a greedy algorithm that selects a path, for each
demand, by solving a constrained shortest path problem and
update the slot allocation accordingly.

For each k ∈ K , we build a weighted graph Gk = (V , Ek ,wk)

and search for a constrained shortest path from sk to tk on Gk

using the LARAC algorithm [9].
The weightswk

e are chosen in order to favor paths that do not
need a bigger slot allocation to route k and is given by

wk (e) =

{
1 if A(u(e,Ke)) ≥ u(e,Ke ∪ {k})

1 +Ce otherwise.

where Ke is the set of demands on e and A(x) returns the mini-
mum bandwidth allocation needed to route x units of bandwidth.

75

We also filter out links that do not have enough capacity to route
demand k . Once a path p is found, we update the sets Ke for each
link on p and move on the next demand.

4.2 Gauss-Seidel algorithm

Algorithm 3 Gauss-Seidel algorithm

Input: A network G = (V , E), link capacity be∀e ∈ E, set of
demands K, set of paths P = {pk : ∀k ∈ K}
Output: Set of paths P
1: ECAND ← E
2: while ECAND , ∅ do
3: Ke ← {k : e ∈ pk } ∀e ∈ E
4: ẽ ← arg maxe ∈ECAND Ce × (S(u(e,Ke)) − u(e,Ke))
5: ECAND ← ECAND \ ẽ
6: (POLD,KOLD,bOLD) ← (P,Kẽ ,bẽ)
7: bẽ ← ⌊S(u(ẽ,Kẽ))⌋
8: for demand k ∈ KOLD do
9: for link e ∈ pk do
10: Ke ← Ke \ k

11: pk ← ∅

12: PNEW ← P ∪Greedy(G,KOLD,Ke ,b)
13: if Cost(PNEW) < Cost(POLD) then
14: P ← PNEW
15: else
16: P ← POLD
17: Restore (POLD,KOLD,bOLD) as current solution
18: return P

Finally, we present a Gauss-Seidel procedure in Algorithm 3
that aims at improving any existing solution, similar to the link-
rerouting algorithm in [7]. It is a local search heuristic which tries
to reduce the number of active slots of each link by rerouting
demands on new paths.

More precisely, for a valid solution, the algorithm chooses the
link ẽ with the most free bandwidth on it, weighted by its cost,
i.e,

arg max
e ∈ECAND

Ce × (A(u(e,Ke)) − u(e,Ke))

where ECAND is the set of links not yet considered for removal.
We remove all demands using e from the network and reduce
the number of slot on e by one, e.g., if e was a FlexE link with a
reservation of 15G, we reduce it to 10G. We then greedily route
the removed demands on the new network configuration. If we
obtain a lower cost with the new routing, we use it as our new
best solution. Otherwise, we restore the link to its previous slot
configuration, restore the removed demands on their previous
paths. We continue until all links have been considered.

5 NUMERICAL RESULTS
In this section, we present numerical results to compare the
algorithms on an IP-RAN scenario. The compact formulation
(not presented in this paper) and the FlexE-CG model have been
solved using CPLEX 12.7 and all algorithms have been executed
on a server with 4 Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30GHz
and 504GB of RAM.

5.1 IP-RAN scenario
We generate instances of an IP-RAN network with multiple do-
mains connected to a mesh network. Each domain is composed

Topology type Instance name # Nodes # Edges # Demands

Small VLAN|FlexE50 50 60 60
Middle VLAN|FlexE1250 1250 1600 300
Large VLAN|FlexE5000 5000 6000 600

Table 1: Number of nodes, edges and demands for each in-
stance type

of a set of nodes connected in single or dual-homing (access
network) to a ring with probabilistic shortcuts (aggregation net-
work). Services in slices can exists between nodes in the access
networks or between a node in an access network and a node in
the core network. The bandwidth requirement of services is ran-
domly chosen between 50 Mb and 1 Gb. We consider two types of
scenarios: hard slicing, denoted FlexE, and soft slicing, denoted
VLAN (Virtual LAN), a candidate technology for this scenario.
For VLAN, we assume that the granularity of each slot is 1 Mb,
which is negligible compared to the size of the smallest demand.
All algorithms are executed with a time limit of one hour. Results
are averaged over 5 trials. A summary of the parameters used in
the experiments is shown in Table 1.

Lower bounds: Figure 6 shows the lower bounds obtained with
the compact formulation and the optimal solution z∗LP of the re-
laxation of FlexE-CG. The compact formulation can provide the
optimal solution for small instances; we can thus evaluate the
quality of the bounds computed by FlexE-CG. On small VLAN sce-
narios (i.e., with 50 demands), the bounds provided by FlexE-CG
are close to the optimal (less than 3%); however they are larger for
the hard slicing scenarios (around 22%) as the bigger granularity
of FlexE worsens the relaxation of the objective function.

Onmiddle size instances (i.e., with 1250 demands), the compact
formulation cannot be solved to optimality within the one-hour
limit. Moreover, the bounds computed is much smaller than the
ones computed by FlexE-CG. Thus, we use the bounds of FlexE-
CG to evaluate the solutions of our algorithms on middle and
large instances.

Solution quality: In Figure 7, we compare the solutions of
the greedy and FlexE-CG algorithms, improved by the Gauss-
Seidel algorithm, in terms of gap to the best lower bound, i.e., the
compact solution for small instances and the FlexE-CG bounds for
middle and large instances. The gap is computed as (zSOL−LB)/LB,
where zSOL is the value of the solution and LB is the best known
lower bound of the instance. Solutions of the compact formulation
provided by CPLEX are not shown as CPLEX cannot return a
valid solution in one hour.

First, we can see that the greedy provides good solutions,
whose gap is 10.5% in the worst case. FlexE-CG can further im-
prove the solution provided by the greedy algorithm and, on
average, the gap is reduced by 3.8%. Moreover, FlexE-CG solu-
tions are close to the optimal on soft slicing scenarios, with a gap
smaller than 1.4%. The gap of hard slicing scenarios is larger, up
to 6.2%, on middle size instances. However, the gap to optimality
might be smaller as the bounds for hard slicing are not as tight
as the ones for soft slicing.

Computational time: Finally, in Figure 8, we compare the com-
putational time of the algorithms. The compact formulation is
quite slow to be solved compared to the other algorithms. While
it takes up to 36s, on average to solve small instances, FlexE-CG
finds a solution in less than 2 s and the greedy algorithms takes

76

Compact Greedy FlexE-CG

VLA
N
 5

0

Fle
xE

 5
0

VLA
N
 1

25
0

Fle
xE

 1
25

0
108

109

1010

L
o
w

e
r

b
o
u

n
d

s

Figure 6: Average lower bounds ob-
tained with the compact formula-
tion (optimal for small networks)
and FlexE-CG (1h timeout).

VLA
N
 5

0

Fle
xE

 5
0

VLA
N
 1

25
0

Fle
xE

 1
25

0

VLA
N
 5

00
0

Fle
xE

 5
00

0
0%

2%

4%

6%

8%

10%

12%

G
a
p

Figure 7: Average gap of each solu-
tions for the greedy and FlexE-CG.

VLA
N
 5

0

Fle
xE

 5
0

VLA
N
 1

25
0

Fle
xE

 1
25

0

VLA
N
 5

00
0

Fle
xE

 5
00

0

100ms

1s

60s
5min

1h

T
im

e

Figure 8: Average computation times
of each algorithms.

less than 20 ms. As previously mentioned, the compact formu-
lation exceeds the time budget on middle instances. The greedy
remains efficient as it takes less than one second even for large
instances. FlexE-CG, instead, is considerably slower than greedy
for middle and large scale networks, but it provides for better
results.

Given the different performance in terms of optimality gap
and execution time of the two approaches, they could be used
in parallel to efficiently solve the RSA problem. The greedy al-
gorithm can be used to quickly accept demands in an online
fashion, while FlexE-CG can be used to periodically reconfigure
the network and minimize the total resource reservation cost.

6 CONCLUSION
In this paper, we presented the Routing and Slot Allocation prob-
lem for 5G hard slicing. We modeled the problem using math-
ematical programming and proposed an extended formulation,
solved using column generation. We analyzed its strength against
a basic integer linear formulation. Based on this extended formu-
lation, we derived a matheuristic, referred to as FlexE-CG, that we
benchmarked against a greedy algorithm. We also strengthened
ourmatheuristic through an adaptation of the Gauss-Seidel proce-
dure allowing to improve the performances of the two heuristics.
We showed that the extended formulation can provide good dual
bounds in a reasonable amount of time compared the the compact
formulation. The derived heuristic manages to obtain an optimal-
ity gap smaller than 7%, while improving the cost value of the
solutions provided by the greedy up to 4%. In future works, we
will propose valid inequalities to reduce the computational time
of our matheuristic and increase the dual bound. Furthermore,
we will investigate on others matheuristics and exact method
based on our extended formulation.

REFERENCES
[1] 5G Service-Guaranteed Network Slicing White Paper. Huawei whitepaper,

February 2017.
[2] Mohamad Khattar Awad, Yousef Rafique, and RymA. M‘Hallah. Energy-aware

routing for software-defined networks with discrete link rates: A benders
decomposition-based heuristic approach. Sustainable Computing: Informatics
and Systems, 13:31 – 41, 2017.

[3] V. Chvatal. Linear Programming. Freeman, USA, 1983.
[4] A. Destounis, G. Paschos, S. Paris, J. Leguay, L. Gkatzikis, S. Vassilaras,

M. Leconte, and P. Medagliani. Slice-based column generation for network
slicing. In IEEE INFOCOM 2018 - Poster, April 2018.

[5] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. Network slicing in
5g: Survey and challenges. IEEE Communications Magazine, May 2017.

[6] V. Gabrel, A. Knippel, and M. Minoux. Exact solution of multicommodity
network optimization problems with general step cost functions. Operations
Research Letters, 25(1):15 – 23, 1999.

[7] Virginie Gabrel, Arnaud Knippel, and Michel Minoux. A comparison of
heuristics for the discrete cost multicommodity network optimization problem.
Journal of Heuristics, 9(5):429–445, Nov 2003.

[8] Liang Geng, Jie Dong, Stewart Bryant, Kiran Makhijani, Alex Galis, Xavier
de Foy, and Slawomir Kuklinski. Network Slicing Architecture. Internet-Draft
draft-geng-netslices-architecture-02, Internet Engineering Task Force, July
2017. Work in Progress.

[9] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko. Lagrange relaxation based
method for the qos routing problem. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Society (Cat. No.01CH37213), volume 2,
pages 859–868, April 2001.

[10] OIF. Flex Ethernet 2.0 Implementation Agreement, June 2018.
[11] Ying Xiao, Krishnaiyan Thulasiraman, and Guoliang Xue. Gen-larac: A gen-

eralized approach to the constrained shortest path problem under multiple
additive constraints. In Algorithms and Computation, 2005.

77

MILP approaches to practical real-time train scheduling: the
Iron Ore Line case

Lukas Bach
SINTEF

Oslo, Norway
lukas.bach@sintef.no

Carlo Mannino
SINTEF

Oslo, Norway
carlo.mannino@sintef.no

Giorgio Sartor
SINTEF

Oslo, Norway
giorgio.sartor@sintef.no

ABSTRACT
Real-time train scheduling is a complex network optimization
problem, which is receiving increased attention from scientists
and practitioners. Despite a vast literature on optimization al-
gorithms for train dispatching, there are very few examples of
real-life implementations of such algorithms. Indeed, the tran-
sition from theory to practice poses several critical issues, and
many simplifying assumptions must be dropped. MILP models
become more involved and hard to solve in the short time avail-
able. Here we describe how we successfully tackled these issues
for dispatching trains on a railway in the north of Norway and
Sweden.

1 INTRODUCTION
Railway infrastructure is increasingly congested: passenger traf-
fic is expected to grow by 3.2% yearly for the next 8 years, while
freight traffic by 1.4% ([13]). Increasing pressure results in poorer
punctuality. In principle, one could augment capacity by build-
ing more infrastructure, but this requires large investments and
the benefits will only be available after some years. A quicker
and cheaper way to increase capacity is to improve traffic man-
agement by network optimization. Several recent studies have
shown improvements in the punctuality ranging from 10% to
100% [3, 6, 9, 10, 12]. In these and all other papers presented in a
large literature (for recent reviews, see [4, 8]), the train schedul-
ing problem is represented by means of event graphs. The seminal
example is probably Balas’ disjunctive graph introduced in [1]
(where each node represents the starting of an operation), later
extended to cope with blocking, no-wait job-shop scheduling
problems by Mascis and Pacciarelli [11].

Despite this huge body of academic studies and successful
stories, there have been only a few implementations of real-time
train scheduling algorithms in real life [2, 9, 10]. Things are
rapidly changing now, thanks to an increased interest by infras-
tructure managers worldwide in automatic train traffic control
systems capable of maximizing punctuality or average velocity1.
In this paper, we describe one such implementation, focusing
on the modelling and algorithmic challenges we had to tackle
when moving from theory to practice. First, standard simplifying
assumptions must be discarded in order to produce solutions
which are practically viable. Next, new solution approaches must
be developed and implemented in order keep the computation
time of the optimal solution in the range of few seconds. Indeed,
Fischetti and Monaci [5] showed that state-of-the-art solvers are

1In [2], a large North-American railway company claims that a 1% increase in
average velocity of their freight trains brings to the company $200 million savings.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

already unable to tackle rather small instances of the MILP mod-
els derived from the event graphs of these type of scheduling
problems.

The implementation we discuss in this paper is applied to a
critical part of the railway network that runs from Sweden to the
coast of Norway, also known as the "Iron Ore Line". This single
track line, well within the arctic circle, was originally built to
transport iron ore from northern Sweden to the ice free waters
of Narvik in northern Norway. The line is also used by a few
passenger trains per day. In recent years, the increased number
of iron ore trains as well as other types of freight trains has
challenged the capacity of the line. An optimized dispatching
could help ensuring that the physical capacity is used to its full
extent.

One peculiar challenge of this piece of railway comes from its
incline. This affects the speed of the heavy trains and may also
affect their ability to stop in some of the stations. For example,
fully loaded freight trains travelling from the iron ore mines in
Sweden to Norway have constraints regarding where they are
allowed to stop, while lighter freight trains travelling towards
Sweden are allowed higher speed and flexibility. Moreover, some
freight trains are also too long for some of the side tracks in
certain small stations. Passenger trains may have limitations too.
In fact, most of the stations do not have passenger platforms in all
their internal tracks, constraining the number of passenger trains
that are able to meet in the station. Instead, for all type of trains,
another important aspect is the variability of their travel times.
Indeed, moving from a stopped condition requires some time to
accelerate; similarly, stopping a train requires a deceleration and
thus extended running times.

All these practical constraints are usually ignored in theoreti-
cal works but they are crucial in real-world applications, requir-
ing more refined models. In this work, we mainly focus on two
aspects: a) being able to define a more diverse set of constraints
within each station; b) model travel times of each train based on
its stopping pattern.

Our starting point is the recent Benders’ like decomposition
approach to train rescheduling presented in [7, 9], extended to
cope with all new physical and logical constraints. In this paper,
we discuss the new features and the decomposition approach for
this MILP problem. Furthermore we describe the actual imple-
mentation which has been tested by dispatchers on the iron-ore
line.

2 A MILP FORMULATION
We start our description by considering a slightly simplified
version of our problem, where the travel times of trains are fixed
and do not depend on whether they stop.

The Iron Ore Line consists of a sequence of small stations and
single-tracks. We follow here the micro-macro decomposition ap-
proach proposed in [7]. The macro problem is associated with the
railway line, considered as a sequence of capacitated resources,

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 78 DOI: 10.5441/002/inoc.2019.15

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.15

Figure 1: Iron Ore Line

Figure 2: Line decomposition

Station Track Station Track

TrackStation Station Track

alternating stations and tracks (see Figure 2). Observe that at this
macro level, we avoid the detailed description of the movements
(i.e. routing and scheduling) of each train in every station which
is instead represented by the expected total time spent in the
station. The micro problem is associated with the routing and
scheduling of trains within each station and track, according to
the arrival and departure times established by the macro problem.
The decomposition allows us to treat the constraints generated in
the micro level (e.g., track assignment, capacity) independently of
each other. In Section 4 we will see how this decomposition can
be exploited to solve the MILP model in a master-slave fashion.
Instead, in this section we focus on describing how to formu-
late the constraints arising both at the macro and micro level,
describing train movements.

For the line (or macro) problem, each train a ∈ A is assigned
a route, i.e., an ordered sequence nr1

a ,n
r2
a , . . . ,n

rq
a of route nodes,

where ri ∈ R, i = 1, . . . ,q is a line resource, either a track or a
station2, and r1, rq are the origin and destination station, respec-
tively. In this aggregation scheme, between each pair of nodes
that represent two adjacent stations, there is always a track node.

LetN be the set of all route nodes for all trains inA,NO ⊂ N be
the set of all nodes associated with origin stations, and ND ⊂ N

2Other decomposition schemes are possible, for instance by collapsing entire railway
region in a single node of our master line problem.

the set of all nodes associated with destinations. We associate
a scheduling variable tra ∈ IR with each route node nra ∈ N ,
representing the time train a enters the resource r . There is also
a fictitious variable to ∈ IR, which serves as a reference time for
all trains (typically, but not necessarily, we have to = 0). Thus,
we have

tra − to ≥ Γa , nra ∈ NO , (1)

where Γa is the earliest time train a can enter the network. Now
let nra ,nr+1

a ∈ N be two consecutive route nodes in a particular
train route. Note that the time a train exits a resource is precisely
the time the train enters the subsequent resource in its route.
Therefore, the following constraints hold:

tr+1
a − tra ≥ Λra , nra ∈ N \ ND , (2)

whereΛra is theminimum time it takes traina to traverse resource
r . Moreover, for the destination nodes we have:

touta − tra ≥ Λra , nra ∈ ND , (3)

where the fictitious touta ,a ∈ A, represents the time traina “leaves”
the railway network, i.e., it concludes its journey at the arrival
station. Constraints (1), (2), and (3) are usually called precedence
constraints, and they model the free running of a train, i.e., the
minimum time required by a train to travel along its routewithout
obstacles from other trains. Incidentally, even if we will not make
explicit use of the underlying event graph, it is worth mentioning
here that this is built by associating a node with every time
variable and a directed edge with every constraint (1), (2), and
(3).

In general, one has to consider the interactions between trains
travelling in the same network. Observe that, for a pair of distinct
trains a,b traversing a resource r , exactly one of the following
three conditions must occur:

(1) train a and b meet in resource r
(2) train a traverses resource r before train b
(3) train b traverses resource r before train a

Consider now a set of distinct trains A(r) ⊆ A traversing a re-
source r . For each ordered pair of distinct trains (a,b) ∈ A(r) ×
A(r), we defineyrab to be equal to 1 if a exits r before b enters, and
0 otherwise. Furthermore, for each pair of trains {a,b} ⊆ A(r),
we introduce the binary variable xrab , which is 1 if and only if a
and b are simultaneously (i.e., they meet) in resource r . Then, we
have that

yrba + y
r
ab + x

r
ab = 1, {a,b} ⊆ A(r), r ∈ R. (4)

Accordingly, for every {a,b} ⊆ A(r), r ∈ R, the schedule t will
satisfy a family of (indicator) disjunctive constraints as follows3:

(i) yrab = 1 =⇒ trb − tr+1
a ≥ 0,

(ii) yrba = 1 =⇒ tra − tr+1
b ≥ 0,

(iii) xrab = 1 =⇒

{
tr+1
b − tra ≥ 0

tr+1
a − trb ≥ 0

,

yrab ,y
r
ba ,x

r
ab ∈ {0, 1}.

(5)

Indeed, yrab = 1 implies that a exits r before b enters r and,
similarly, yrba = 1 implies that b exits r before a enters. On the
other hand, when xrab = 1, then both a and b exit the sector r
after the other train enters it (i.e., they meet in r). Exploiting the

3Constraints (5) are associated with special entities of the event graph called dis-
junctive (alternative) edges, see for instance [11].

79

big-M trick, the family of disjunctive constraints in (5) can be
easily linearized as follows:

(i) trb − tr+1
a ≥ −M(1 − yrab),

(ii) tra − tr+1
b ≥ −M(1 − yrba),

(iii) tr+1
b − tra ≥ −M(1 − xrab),

(iv) tr+1
a − trb ≥ −M(1 − xrab),

yrab ,y
r
ba ,x

r
ab ∈ {0, 1},

(6)

A final set of constraints in the macro program will be used to
represent the infeasibility of the micro problems, which in turn is
associated to the resources in which the railway is decomposed.

Now, let t∗ be a schedule that satisfies constraints (1), (2), (3),
and (6), and suppose t∗ minimizes a given objective function c(t).

If the timetable t∗ is feasible for every micro problem (i.e.,
for every station and every track section between successive
stations), then it is feasible and optimal also for the overall prob-
lem. Otherwise, at least for one station or one track section, the
time schedule decided by the macro problem cannot be attained.
There may be several reasons for such infeasibility. Here we will
describe the case where feasibility depends only on the set of
trains simultaneously in the resource. For example, two passen-
ger trains are not able to meet in a station where there are two
internal tracks but only one passenger platform, but two freight
trains may meet. On a single track no two trains can meet. Two
short trains may pass each other in a siding, but not two long
trains. Etc.

So, let r ∈ R be a set of trainsQ ⊆ Aminimally infeasible for r ,
if the trains in Q cannot meet simultaneously in r , but all proper
subsets of trains in Q can meet. We define the set of A(r) ⊂ 2A
as the family of minimally infeasible set of trains for r . Clearly,
for anyQ ∈ A(r), at least two trains4 inQ cannot meet in r . Note
that if, according to a solution (t∗,x∗,y∗), all trains in Q meet
in r , then we have

∑
{a,b }⊆Q x∗rab =

(|Q |
2
)
(namely the number

of pairwise meetings in r of trains in Q is precisely
(|Q |

2
)
). To

prevent this to happen when the set Q is minimally infeasible,
we can thus write the constraint:

∑
{a,b }⊆Q

xrab ≤

(
|Q |

2

)
− 1, Q ∈ A(r), r ∈ R. (7)

In conclusion, a completeMILP formulation can be obtained by
considering as objective function c(t) the sum of the arrival times
at destination of the trains, subject to constraints (1), (2), and (3)
for all routes, and constraints (4), (6), and (7) for all resources
r ∈ R and all the minimally infeasible sets Q ∈ A(r) of trains.

4Observe that, by Helly’s property, if every pair of trains inQ meet in r , then there
exist a point in time where all trains in Q are simultaneously in r .

The full model can be written as follow:
min c(t)

subject to:

tra − to ≥ Γa , nra ∈ NO

tr+1
a − tra ≥ Λra , nra ∈ N \ ND

touta − tra ≥ Λra , nra ∈ ND

yrba + y
r
ab + x

r
ab = 1, {a,b} ⊆ A(r), r ∈ R

trb − tr+1
a ≥ −M(1 − yrab), {a,b} ⊆ A(r), r ∈ R

tra − tr+1
b ≥ −M(1 − yrba), {a,b} ⊆ A(r), r ∈ R

tr+1
b − tra ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R

tr+1
a − trb ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R∑
{a,b }⊆Q

xrab ≤
(|Q |

2
)
− 1, Q ∈ A(r), r ∈ R

yrab ,y
r
ba ,x

r
ab ∈ {0, 1}, {a,b} ⊆ A(r), r ∈ R

tra ∈ IR, nra ∈ N

touta ∈ IR, a ∈ A

to ∈ IR.

(8)

As mentioned above, the cost function c(t) in (8) usually consists
of the sum of the weighted arrival time at destination of all trains,
that is c(t) =

∑
a∈Awat

out
a , where wa is the weight of train a.

However, this can be generalized to more complex functions. For
example, an objective function commonly used in the railway
industry is a piece-wise linear one, where the delay of a train is
taken into account only if it is greater than few minutes5.

3 AN EXTENDED MILP FORMULATION
As discussed in the previous section, the model in (8) assumes
that travel times in tracks are constant and do not depend on
the fact the train has stopped at the previous station or that it is
going to stop in the next station. Similarly with travel times in
stations. While this assumption is usually tolerated for passenger
trains, it cannot be applied to heavy freight trains. In fact, they
usually need a very long time to reach the nominal speed after
they stopped, and to reach a full stop when travelling at nominal
speed. Based on theese observations, we identified four different
running times for each track and two different running times for
each station.

We define by RT ,RS ⊂ R as the sets of resources that represent
tracks and stations, respectively. Now, for each track r ∈ RT and
for each train a ∈ A we have:

• Λra : the minimum running time if a does not stop at the
previous or next station;

• Λra + ∆̄
r
a : the minimum running time if a stops at the next

station but not at the previous one;
• Λra + ¯

∆ra : the minimum running time if a stops at the
previous station but not at the next one;

• Λra + ∆̄
r
a + ¯

∆ra : the minimum running time if a stops both
at the previous and next station.

Instead, for each station r ∈ RS and for each train a ∈ Awe have:
• Λra : the minimum running time if a does not stop in this
station;

• Λra + ∆ra : the minimum running time if a stops in this
station.

In order to include this flexible running times into model (8), we
introduce binary variables zra ,a ∈ A, r ∈ RS that are equal to

5Note that the delay of a train a ∈ A can be computed by subtracting the originally
scheduled arrival time at destination from t outa .

80

1 if train a stops in station r , 0 otherwise. In other words, we
introduce this additional (indicator) constraint:

zra = 0 =⇒ tr+1
a − tra = Λra . (9)

Similarly to what done in (6), we can linearize this constraint by
using the big-M trick:

tr+1
a − tra ≤ Λra +Mzra . (10)

Indeed, when zra is equal to 0, then this constraint together with
(2) imply that the travel time of train a in r is exactly Λra , which
means that the train did not stop and traversed the station at its
nominal speed.

With these “stopping” binary variables at hand, we can now
define the constraints that model the travel times in stations and
tracks more accurately.

For each station r ∈ RS , and each train a ∈ A, we introduce
the following set of constraints:

tr+1
a − tra ≥ Λra + ∆

r
az

r
a . (11)

Similarly, for each track r ∈ RT , and each train a ∈ A, we have:

tr+1
a − tra ≥ Λra + ∆̄

r
az

r−1
a +

¯
∆raz

r+1
a , (12)

where zr−1
a , zr+1

a represent the stopping variables at the previous
and next stations, respectively.

We can now substitute constraints (2) with constraints (10),
(11), and (12) to obtain the final MILP model:

min c(t)

subject to:

tra − to ≥ Γa , nra ∈ NO

tr+1
a − tra ≥ Λra + ∆

r
az

r
a , nra ∈ N \ ND , r ∈ RS

tr+1
a − tra ≥ Λra + ∆̄

r
az

r−1
a +

¯
∆raz

r+1
a , nra ∈ N \ ND , r ∈ RT

tr+1
a − tra ≤ Λra +Mzra , nra ∈ N \ ND , r ∈ RS

touta − tra ≥ Λra , nra ∈ ND

yrba + y
r
ab + x

r
ab = 1, {a,b} ⊆ A(r), r ∈ R

trb − tr+1
a ≥ −M(1 − yrab), {a,b} ⊆ A(r), r ∈ R

tra − tr+1
b ≥ −M(1 − yrba), {a,b} ⊆ A(r), r ∈ R

tr+1
b − tra ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R

tr+1
a − trb ≥ −M(1 − xrab), {a,b} ⊆ A(r), r ∈ R∑
{a,b }⊆Q

xrab ≤
(|Q |

2
)
− 1, Q ∈ A(r), r ∈ R

yrab ,y
r
ba ,x

r
ab ∈ {0, 1}, {a,b} ⊆ A(r), r ∈ R

zra ∈ {0, 1}, nra ∈ N , r ∈ RS

tra ∈ IR, nra ∈ N

touta ∈ IR, a ∈ A

to ∈ IR.
(13)

4 SOLUTION APPROACH
In our real-life implementation of train rescheduling, Problem
(13) is solved iteratively every 10 seconds. Each time, the current
status of the trains (i.e. position, speed, etc.) is gathered from the
field, along with the current status of the rail network. The associ-
ated initial event graph is built. This is the pre-processing phase.
Then, the MILP associated to the current instance is solved. The
solution method is based on the decomposition in the macro prob-
lem and the micro problems described in Section 2 and shown
in Figure 2. Indeed, this can be seen a master-slave approach, as
described in [7]. If the master (or macro) problem is infeasible,
then there is no solution to the scheduling problem (and we are

Figure 3: Solution Algorithm

Preprocess

Solve
master problem

Solve
slave problem

Feasible

Solution

No

Add constraints

Yes

Re-solve

in a deadlock situation). Otherwise, it produces an optimal tenta-
tive schedule t∗. Recall that the schedule variables in the macro
problem are associated with the times each train enters a macro
railway resource, in our case a station or a track between two
stations in the line. Thus, the schedule t∗ may be interpreted as a
tentative (disposition) timetable. Next, this timetable is used by all
micro (or slave) problems in order to solve the routing/scheduling
within each station or track (even though for tracks this is trivial).
If they are all feasible, then we have found the optimal solu-
tion. Otherwise, we generate the constraints that invalidate the
current schedule in at least on piece of the railway, forcing the
master problem to find a new tentative schedule.

In Figure 3 we give a schematic representation of the overall
algorithm. First, the real-time data are pre-processed and the
event graph is updated (pre-processing). Second, the MILP Mas-
ter Problem is solved considering only a subset (initially empty)
of constraints (7): this MILP is called restricted master. The cur-
rent master solution is then checked for feasibility by solving the
slave problems. Namely, we check if any constraint (7) not in-
cluded in the current restricted master is violated by the current
solution - we call such violation a conflict. Observe that, while
checking conflicts on tracks is in general a simple exercise, a
similar check for stations can be indeed hard (some polynomial
cases of practical interest are discussed in [7]). If this is the case,
the violated constraints are added to the master problem and the
process is iterated until no violated constraints exists.

Note that this delayed row-generation approach usually gen-
erates models that are much smaller than the ones generated
by the full MILP formulation (see [7]). This helps to drastically
reduce the computation time.

5 RESULTS & CONCLUSIONS
Implementing an algorithm of this sort in real-life poses, as de-
scribed earlier, some additional challenges both with respect to
removing theoretical assumptions and adapting formulations to
problem specific peculiarities. Another major challenge is to in-
terface with real-time systems in order to get the correct data in
real-time. Collaboration with the dispatchers is very important
as they have the final word on whether the decisions suggested
by the algorithm is accepted or not. Here eliciting why they make
their decisions should not be underestimated. The interaction

81

Figure 4: Train graph

with the dispatchers does also make it difficult to compare the
algorithm to the current as we do simply not know what would
have happened had the dispatchers accepted all dispatching sug-
gestions.

The algorithm has been implemented into a user interface
where we are able to show the dispatchers a classical train graph
representing the line, see Figure 4. On the x-axis we have time,
both past and present separated by a red line. The stations along
the line are placed on the y-axis. Each train is shown as a line in
the graph with its train number, the black line is the schedule,
the full red line represent the past real-time data. Where the
dashed red line is the future dispatching suggestions. This train
graph has been tested over a period by the dispatchers in Narvik
operational constrol center in real-time.

When running in a real-time setting the input data in the al-
gorithm is updated every 10 seconds before it is executed again.
Testing on real-time data over an extended period the approach
presented in this paper has been able to provide solutions within
(the wanted) 2 seconds. The planning horizon covers the follow-
ing 2 hours, and the solution returned must be conflict free. The
computing speed is extremely important as solutions which are
constantly updated on the status of the trains and of the railway
must be presented to dispatchers. Hence, with longer solution
times the dispatching suggestions might already be out of sync
with the real-time data.

The implementation was funded by the Norwegian National
Research Council, and the system was indeed operative only
on the Norwegian side of the line, supporting the Norwegian
dispatchers sitting at Narvik. However, for the Swedish part of
the line, there is a second control center located in Boden (not far
from the Gulf of Bothnia where the line ends). It is worth noticing
here that the limited coordination between the two brains of the
line generates various problems. The dispatchers at Narvik may
become aware of scheduling decisions taken at Boden only when
the trains are approaching the border and in any case they cannot

affect such decisions (if not occasionally through some laborious
negotiations on the phones). It should be apparent that having
a single optimization tool on both sides of the border would
significantly increase the coordination, the quality of the overall
solutions and the awareness of both teams of dispatchers.

REFERENCES
[1] Egon Balas. 1969. Machine sequencing via disjunctive graphs: an implicit

enumeration algorithm. Operations research 17, 6 (1969), 941–957.
[2] Srinivas Bollapragada, Randall Markley, Heath Morgan, Erdem Telatar, Scott

Wills, Mason Samuels, Jerod Bieringer, Marc Garbiras, Giampaolo Orrigo, Fred
Ehlers, et al. 2018. A Novel Movement Planner System for Dispatching Trains.
Interfaces 48, 1 (2018), 57–69.

[3] Quentin Cappart and Pierre Schaus. 2017. Rescheduling railway traffic on real
time situations using time-interval variables. In International Conference on AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, June 5–8, 2017, Padua, Italy. Springer, Cham, 312–327.

[4] Francesco Corman and Lingyun Meng. 2015. A review of online dynamic
models and algorithms for railway traffic management. IEEE Transactions on
Intelligent Transportation Systems 16, 3 (2015), 1274–1284.

[5] Matteo Fischetti and Michele Monaci. 2017. Using a general-purpose mixed-
integer linear programming solver for the practical solution of real-time train
rescheduling. European Journal of Operational Research 263, 1 (2017), 258–264.

[6] Pavle Kecman, Francesco Corman, Andrea D’Ariano, and Rob MP Goverde.
2013. Rescheduling models for railway traffic management in large-scale
networks. Public Transport 5, 1-2 (2013), 95–123.

[7] Leonardo Lamorgese and Carlo Mannino. 2015. An exact decomposition
approach for the real-time train dispatching problem. Operations Research 63,
1 (2015), 48–64.

[8] Leonardo Lamorgese, CarloMannino, Dario Pacciarelli, and Johanna Törnquist
Krasemann. 2018. Train Dispatching. In Handbook of Optimization in the
Railway Industry. Springer, Cham, 265–283.

[9] Leonardo Lamorgese, Carlo Mannino, and Mauro Piacentini. 2016. Optimal
train dispatching by Benders’-like reformulation. Transportation Science 50, 3
(2016), 910–925.

[10] Carlo Mannino and Alessandro Mascis. 2009. Optimal real-time traffic control
in metro stations. Operations Research 57, 4 (2009), 1026–1039.

[11] Alessandro Mascis and Dario Pacciarelli. 2002. Job-shop scheduling with
blocking and no-wait constraints. European Journal of Operational Research
143, 3 (2002), 498–517.

[12] Paola Pellegrini, Grégory Marlière, and Joaquin Rodriguez. 2016. A detailed
analysis of the actual impact of real-time railway traffic management op-
timization. Journal of Rail Transport Planning & Management 6, 1 (2016),
13–31.

[13] SCI-Verkher. 2017. Rail transport markets - global market trends 2016-2025.

82

Minimum Concurrency for Assembling Computer Music
Carlos E. Marciano

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

cemarciano@poli.ufrj.br

Abilio Lucena

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

abiliolucena@cos.ufrj.br

Felipe M. G. França

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

felipe@ieee.org

Luidi G. Simonetti

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

luidi@cos.ufrj.br

ABSTRACT
An effective algorithmic solution for resource-sharing problems

in heavily loaded systems is Scheduling by Edge Reversal (SER),
essentially providing some level of concurrency by describing an

order of operation for nodes in a graph. The resulting concurrency
is a hard metric to optimize, as the decision problems associated

with obtaining its extrema have been proved to be NP-complete.

In this paper, we propose a novel approach involving longest

cycles for solving the Minimum Concurrency Problem to proven

optimality. Moreover, we show how this model can be used in

the field of algorithmic composition to assemble a maximum-

length loop of original computer music, capturing fundamental

concepts in music theory. To illustrate this strategy, we present

a complementary simulation accessible through theWeb.

1 INTRODUCTION
Resource-sharing problems arise naturally in many scenarios,

where graph algorithms are often employed to provide a dis-

tributed, asynchronous scheduling solution. By representing each

process as a node, we define that nodes are connected by an edge

if and only if they share a resource. Specifically, in neighborhood-

constrained systems, a process is only allowed to operate if and
only if all of its neighbors are idle, meaning that all of its required

resources must be available at the time of operation. As a conse-
quence, multiple processes requiring the same resource form a

clique, a complete sub-graph in which only one node is allowed

to operate at a time. A connected undirected graph representing

resource dependencies among processes, as illustrated in Figure

1(a), will be referred to as a resource graph throughout this paper.

Under a heavy load assumption, where nodes are constantly de-

manding access to their required resources, an effective schedul-

ing algorithm to ensure fairness and prevent starvation is Schedul-
ing by Edge Reversal (SER). Introduced by Gafni and Bertsekas [7]
in 1981 and later formalized by Barbosa and Gafni [3] in 1989,

SER has inspired many distributed resource-sharing applications

ranging from asynchronous digital circuits [5] to the control of

traffic lights in road junctions [4].

The execution of SERmay be summarized as follows: by taking

a directed acyclic graph (DAG) such as the one in Figure 1(b) as

input, SER simultaneously operates all sinks, meaning that all

nodes with no outgoing edges are allowed to utilize the resources

they demand to perform their corresponding tasks. Once every

sink is done operating, the orientation of their incoming edges

is reverted, effectively allowing other nodes to become sinks

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the

International Network Optimization Conference (INOC), June 12-14, 2019:

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

themselves. This process is repeated indefinitely, as each new

iteration will generate a new DAG, allowing different nodes to
utilize resources and operate. Eventually, orientations will start
repeating themselves, leading to the existence of periods. In fact,

as observed by Barbosa and Gafni [3], all nodes operate the same

number of times within a given period. Figure 1(c) illustrates this

procedure.

In order to apply SER to any resource graph and obtain a corre-

sponding schedule, an initial acyclic orientation must be gener-

ated. This initialDAG will directly impact the overall concurrency

of the edge reversal procedure, leading to periods of different

lengths and of different orientations. Intuitively, a highly concur-

rent dynamic will result in more nodes operating simultaneously

while minimizing the amount of steps where each node is idle.
Although a formal definition of concurrency is kept for Section 2,

it’s already inevitable to inquire about the complexity of problems

such as obtaining the orientations that lead to the extrema of this
metric. In fact, the decision problems associated with identifying

the maximum as well as the minimum concurrency yielded by

a given resource graph have been proved to be NP-complete by

Barbosa and Gafni [3] and by Arantes Jr [11], respectively.

Contrary to intuition, obtaining the orientations of a resource

graph from which SER will provide minimum concurrency is ad-

vantageous to a number of applications. For instance, Gonçalves

et al. have employed SER under minimum concurrency to di-

minish the amount ofWeb marshalls needed for the distributed

decontamination ofWebgraphs [9, 14, 16], while Alves et al. have
shown, through simulations of real conflagration scenarios, that

less concurrency implies in a reduced number of automated fire-

fighters required to control the flames [2]. However, despite SER’s
intrinsic connection to rhythms, no application in the field of

algorithmic composition exists in the literature. As such, this

paper presents a novel mechanism which, under minimum con-

currency, schedules musical phrases to create the lengthiest pos-

sible original tracks that capture fundamental concepts in music

theory, such as rhythm and polyphony. This is only possible by

developing an optimization strategy for solving the Minimum
Concurrency Problem (MCP), which is also presented in this work

as an original contribution.

The following is how the remainder of this paper is organized.

In Section 2, we recall some graph-theoretic definitions associated

with SER, including a formal metric for concurrency. Section 3, in

turn, describes the concepts involved in our proposed reformula-

tion of MCP. Finally, in Section 4, we show how minimum con-

currency under SER can be used to assemble a maximum-length

loop of computer music, expressing our concluding remarks and

future work suggestions in Section 5.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 83 DOI: 10.5441/002/inoc.2019.16

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.16

A

DC

E

B

R1, R2
R2, R3

R3

R2 R3

R4 R5

(a) A resource graph. Nodes sharing
resources are connected by an edge.

A

DC

E

B

(b) A given acyclic orientation applied
to the resource graph from (a).

A

DC

E

B

A

DC

E

B

A

DC

E

B

(c) A schedule (from left to right) taking (b) as the initial orientation. Sinks (in black) are allowed
to operate, after which they revert their edges so new sinks may be formed. Once node C is done

operating, the leftmost orientation will be repeated, leading to a period.

Figure 1: Scheduling by Edge Reversal as a distributed solution for scheduling processes (nodes) in a resource-sharing
system.

2 GRAPH-THEORETIC BACKGROUND
Initially, as defined in Barbosa and Gafni [3], we shall characterize

the necessary terminology to define concurrency under SER. As
such, let G = (V ,E) be a connected undirected graph where

|E | ≥ |V | (i.e. G is not a tree). Let κ ⊆ V denote an undirected

simple cycle inG , that is, a set of vertices that form a sequence of

length |κ | + 1 of the form i0, i1, ..., i |κ |−1, i0. If κ is traversed from

i0 to i |κ |−1, we say that it is traversed in the clockwise direction.

Otherwise, we say that it is traversed in the counterclockwise

direction. Let K denote the set of all simple cycles of G.

Moreover, an acyclic orientation of G is a function expressed

as ω : E → V such that no undirected cycle κ of the form

i0, i1, ..., i |κ |−1, i0 exists for which ω(i0, i1) = i1, ω(i1, i2) = i2, ...,
ω(i |κ |−1, i0) = i0. Let Ω denote the set of all acyclic orientations

of G.

Lastly, given an undirected simple cycle κ and an acyclic orien-
tationω, let ncw (κ,ω) be defined as the number of edges oriented

clockwise by ω in κ. Similarly, let nccw (κ,ω) be defined as the

number of edges oriented by ω in the counterclockwise direction.

Therefore, the concurrency of a graph G is defined as a function

γ : Ω → IR such that:

γ (ω) = min
κ ∈K

{
min {ncw (κ,ω),nccw (κ,ω)}

|κ |

}
(1)

In other words, given an orientation ω, we check every simple

undirected cycle κ of G and calculate the number of edges ori-

ented in the clockwise direction as well as the number of edges

oriented in the counterclockwise direction. We take the mini-

mum of these two values and divide the result by the size of the

undirected cycle κ. Whichever κ ∈ K returns the smallest value

will dictate the system’s concurrency.

Finally, we must note that an equivalent result can also be

obtained from a dynamic analysis. Let a period of length p be a

sequence of distinct acyclic orientations α0, ...,αp−1 induced by

the execution of SER. Let m be the number of times a node oper-
ates within a period, which is equal to all nodes. The expression

γ (ω) =m/p is equivalent to Equation 1, despite being less signif-

icant to this paper. As an example, the concurrency provided by

the schedule in Figure 1(c) is equal to 1/3, and can be obtained

through both expressions.

3 OBTAINING MINIMUM CONCURRENCY
Ourmain goal in this section is to propose a linear-time algorithm

for obtaining the minimum concurrency yielded by a resource

graph G given one of its longest simple cycles as input. This

reduction will essentially provide a computational model for

the Minimum Concurrency Problem (MCP), allowing previously
developed techniques for the Longest Cycle Problem (LCP [8]) to

also be effective for MCP.

84

Initially, we shall derive a different expression for minimizing

γ (ω) over all ω ∈ Ω. Given that Ω is a finite set, let γ ∗ denote the
minimum value that Equation 1 assumes over all ω ∈ Ω:

γ ∗ = min
ω ∈Ω

{
min
κ ∈K

{
min {ncw (κ,ω),nccw (κ,ω)}

|κ |

} }
(2)

The following lemma holds:

Lemma 3.1. γ ∗ = min
κ ∈K

{
1

|κ |

}
.

Proof. Consider Equation 1. For a given ω ′
, let κ ′ be the

simple cycle that minimizes the internal fraction. Let x be defined

as x =min {ncw (κ ′,ω ′),nccw (κ ′,ω ′)}, bringing Equation 1 to a

value of γ (ω ′) = x/|κ ′ |.
However, for every κ ∈ K , there will always exist an acyclic

orientationω such that ncw (κ,ω) = 1 and nccw (κ,ω) = |κ |−1, or
vice versa (this follows immediately from the fact that a directed

cycle would only exist if and only if either ncw (κ,ω) = 0 or

nccw (κ,ω) = 0).

Therefore, there must also exist an orientation ω for κ ′ such
that either ncw (κ ′,ω) = 1 or nccw (κ ′,ω) = 1. Consequently, if

ω ′
, when applied to κ ′, didn’t produce the result x = 1, there will

necessarily exist another acyclic orientation ω that will lead to

γ (ω) = 1/|κ ′ |.
Now, consider Equation 2. If γ ∗ is less than 1/|κ ′ |, then there

must exist a simple cycle κ∗ which, under an orientation ω∗
,

will produce 1/|κ∗ | < 1/|κ ′ |. As such, Equation 2 has become a

minimization problem over all κ ∈ K . □

Lemma 3.1 is essentially the problem of finding a longest

undirected cycle ofG , whose minimum concurrency will be equal

to the reciprocal of the size of its circumference.

We now show how to obtain ω∗
, an orientation for which

γ (ω∗) = γ ∗. Let κ∗ be a longest simple cycle of G, meaning that

|κ∗ | ≥ |κ | for all κ ∈ K . The following theorem holds:

Theorem 3.2. Given any longest cycle κ∗ ∈ K as input, there
exists a linear-time algorithm for finding an orientation ω∗ ∈ Ω
such that γ (ω∗) is minimum over all ω ∈ Ω.

Proof. The proof of Lemma 3.1 states that minimum concur-

rency will be attained if an orientation ω∗
is applied to G under

the condition that ncw (κ∗,ω∗) = 1 and nccw (κ∗,ω∗) = |κ∗ | − 1

or vice versa, where κ∗ is a longest cycle. Orienting κ∗ under the
aforementioned conditions can be performed in linear-time by

traversing the cycle κ∗ and assigning an increasing identification

number 1, ..., |κ∗ | to each visited vertex, resulting in a topologi-

cal ordering of the cycle. By orienting the corresponding edges

towards the vertices with lower identification numbers, only one

edge (connecting the vertices with the highest and the lowest

identification numbers) will be oriented in the opposite direction

from the other |κ∗ | − 1 edges, fulfilling the requirement.

It is now necessary to prove that it is possible to orient the

remaining edges of G such that the resulting orientation ω∗
is

always acyclic. Let S = V −κ∗ be the set of the remaining vertices

of G. Let us assign an increasing identification number |κ∗ | +
1, ..., |V | to each vertex in S , and then orient all edges ofG towards

the vertices with lower identification numbers. By contradiction,

if the resulting orientation ω∗
were cyclic, there would need

to exist a path i0, i1, ..., i0 (i.e. a directed cycle). However, since

edges always lead to vertices of lower identification numbers, it

is impossible to return to i0 after leaving it, for any i0 ∈ V . As
such, no cycles are formed. □

Algorithm 1: A linear-time algorithm for finding an acyclic
orientation that leads to minimum concurrency given a
longest cycle as input.

Input : Undirected graph G = (V,E) and longest
cycle κ∗ ⊆ V

Output: Acyclic orientation ω∗ for which γ(ω∗) is
minimum

id = 1

v = κ∗.getF irstV ertex()

for i=1 to κ∗.size() do
Assign id to v
Increment id
v = κ∗.getClockwiseNeighborOf(v)

end
while a vertex v ∈ V with no id exists do

Assign id to v
Increment id

end
Create an empty orientation ω∗

foreach undirected edge uv ∈ E do
if id(v) > id(u) then

Orient edge such that ω∗(u, v) = u

end
else

Orient edge such that ω∗(u, v) = v

end
end
return ω∗

Finally, we structure the proof discussed in Theorem 3.2 as the

algorithmic procedure presented in Algorithm 1. Its correctness

relies on the aforementioned proof. Note that linear-time is at-

tained only if the method дetClockwiseNeiдhborO f (v) is O(1).
This will depend on the data structure used for storing κ∗, which
is usually an array containing the vertices of the cycle in the order

they should be visited. In this case, дetClockwiseNeiдhborO f (v)
will simply return the next element in the array and fulfill the

O(1) requirement. Since G is always a connected graph where

|E | ≥ |V | as defined in Section 2, the overall time complexity of

the algorithm is O(m), wherem = |E |.

4 ASSEMBLING COMPUTER MUSIC
As expressed by Shan and Chiu [19], effective computer music

generation is the dream of computer music researchers. Previous

explicit approaches (where composition rules are specified by

humans) have resorted to Hidden Markov Models to capture the

sequence requirements of melody [17], but are usually limited

to composing counterpoint or harmonization for already existing

tunes [6].

In this section, we show how a system under SER’s minimum

concurrency is capable of generating a maximum-length loop

of pre-recorded musical phrases, while respecting fundamental

concepts in music theory and creating original melodies for blues,

jazz and rock music. In Subsection 4.1, we introduce the termi-

nology that will be used throughout Subsection 4.2 to provide

a strategy for representing musical phrases as graphs. Lastly, in
Subsection 4.3, we discuss implementation-specific details for a

complementary simulation included in Appendix A.

85

Blues Transit.

Jazz

A

A

C

C

A

C

A

A

C

C

A

C

C

Figure 2: A resource graph where nodes marked as “A” and “C” represent antecedent and consequent phrases, respectively.
Nodes connected by an edge are unable to be executed simultaneously, but are allowed to be played in sequence.

4.1 Music Theory Definitions
Initially, we shall define the necessary terminology from music

theory employed throughout this section, for which we resort

to Schmidt-Jones’ book [18]. A musical phrase corresponds to a

group of individual notes that, together, express a definitemelodic

idea. It is customary for phrases to appear in pairs: the first phrase
often sounds unfinished until it is completed by the second, al-

most as if the latter were answering a question posed by the

former. Phrases that respect this dynamic are called antecedent
and consequent, respectively.

A bar (or measure) is a group of beats that occur during a

segment of time. When more than one independent melody takes

place during the same bar, we call a piece of music polyphonic
(e.g. Pachelbel’s “Canon”; last chorus of “One Day More”, from

the musical “Les Miserables”). Finally, a lick, or short motif, cor-
responds to a brief musical idea that appears in many pieces of

the same genre. In this work, a pair of antecedent and consequent
phrases, when played sequentially, will also be referred to as a

lick.

4.2 Graph Representation
Although we believe that music generation through SER can

be employed to assemble any musical unit (such as chords or

individual notes) into a composition, the application we propose

revolves around scheduling phrases. Specifically, we would like

to capture the following requirements:

(i) A consequent phrase may only be played after an an-
tecedent phrase, forming a lick;

(ii) If two or more phrases are playing at the same time, either

they are all antecedent or all consequent;

(iii) Phrases of different intensities (e.g. number of notes) may

not go well together;

(iv) The final composition must be a loop, contain all available

phrases and be of maximum length.

When arranging previously recorded (or generated) phrases
into a graph, our goal is to structure which phrases can be played

sequentially and which can be played simultaneously, creating a

polyphony. By representing each phrase as a node, we are able to

capture the aforementioned restrictions through the insertion of

edges. In a resource graph, an edge between two nodes represents

the inability of those nodes to operate at the same time. As such,

an edge between two phrases is able to prevent them from occur-

ring during the same bar, while allowing each separate phrase to
be played in sequence.

A

(a) An antecedent phrase.

Property Value

Type Antecedent
Genre Blues

Note Count 8
File antec02.mp3

(b) Node attributes.

Figure 3: An example of a node and its attributes.

Above, in Figure 3, we present the information contained

within each node. A note count, corresponding to the number of

notes within a phrase, is used to measure its intensity. For this

specific example, two nodes will be connected to each other if

and only if:

(1) they’re of different types (antecedent and consequent);

(2) their note count is within a specified threshold;

(3) and they belong to the same genre.

Moreover, we’d like to make this example more interesting

by allowing a transition between two different genres: blues
and jazz. By introducing transitional phrases that incorporate
elements from both genres, a more seamless changeover can be

achieved.Antecedent phrases from blues and jazz, when connected
to transitional nodes, can act as gateways that allow access to

their respective genres.

Figure 2 illustrates all the previously discussed components.

Nodes marked as “A” and “C” represent antecedent and consequent
phrases, respectively. The further a node is from a transitional
node, the more intense is the phrase it represents. Due to the

antecedent / consequent dynamic, the resulting graph is bipartite,
for which MCP remains NP-complete [12].

86

4.3 Implementation Details
In order to demonstrate the ideas discussed in Subsection 4.2, we

have developed a simulation showing how the phrase-scheduling
dynamic, when applied to a graph such as the one in Figure 2, is

able to produce musical loops of maximum length. In this subsec-

tion, we document our steps and discuss implementation details

that may be useful for future work. The final result, featuring the

resource graph from Figure 2, is presented in Appendix A.

As discussed in Section 3, the first step in the process of ob-

taining minimum concurrency is identifying a longest simple

cycle. Although this task is visually straightforward when consid-

ering the resource graph from Figure 2, larger instances require a

computational approach. As such, we relied on the Simple Cycle
Problem branch-and-cut strategy proposed in Lucena, Cunha and

Simonetti [15], which is based on a formulation that decomposes

simple cycles into one simple path and an additional edge. We

implemented this procedure in the C programming language and

used the XPRESS Mixed Integer Programming package to solve

linear programs and manage the branch-and-cut tree.

Despite the example from Figure 2 only containing 15 nodes,

our computational results have shown that the aforementioned

strategy is able to solve, in under 1 hour, instances of random

graphs with as many as 2 000 nodes and 40 034 edges (probability

p = 0.01 for an edge to exist between two nodes), being an

appealing approach for larger instances. In turn, a linear-time

implementation of Algorithm 1 is employed to provide an acyclic

orientation for the resource graph, yieldingminimum concurrency.

The pipeline presented in Figure 4 summarizes this process.

Problem

Modelling

LCP
Solver

Algorithm

1

Resource
Graph

Longest
Cycle

Figure 4: Implementation pipeline for solvingMCP.

Note, however, that initial orientations may violate require-

ment (ii), which states that antecedent and consequent phrases
are not allowed to be played together. This is because sinks may

be formed anywhere in the graph when orienting nodes outside

the original longest cycle. However, this is merely an initializa-

tion issue: once a SER period is reached, the system will enforce,

through the edge-reversal dynamic, that antecedent phrases will
only become sink nodes when a consequent phrase reverts its
edges, and vice versa.

Having attained minimum concurrency for the resource graph
in Figure 2, we switched our attention to developing a visualiza-

tion strategy. From a compatibility perspective, a web simulation

built in JavaScript is both lightweight and easy to access onmost

platforms. Moreover, two convenient libraries, available under

theMIT License, made this choice even more appealing:Vis.js [1],
which enabled us to visually represent any graph and handle the

necessary edge-reversal dynamics; and Howler.js [20], provid-
ing a reliable audio interface when dealing with multiple files.

Finally, we curated audio recordings responsible for the rhythm
sections (also known as backing tracks) and recorded all an-
tecedent and consequent phrases on an electric guitar. Given that

this small simulation is comprised of only 15 nodes, the process

of syncing each phrase to their corresponding backing track was

performed manually. For instance, a 12-Bar Blues composition

may alternate between antecedent and consequent phrases every
2 bars. Different phrases have different starting points within this

window, requiring an offset to account for synchronization. How-

ever, once synced, phrases may be played whenever a new 2-bar
window starts. As such, by setting the edge-reversal frequency to

2 bars, every phrase will sound natural when their corresponding

node becomes a sink.

5 CONCLUSION
In this paper, two main contributions to SER were presented:

first, we reformulated the Minimum Concurrency Problem, pro-

viding a viable approach for its optimization and allowing many

empirically attractive LCP solvers to also be effective for MCP.
Secondly, we proposed a novel strategy for assembling original

computer music, which schedules all available building blocks (in
our example, musical phrases) into a maximum-length loop, all

the while incorporating essential music-theoretical restrictions.

Regarding SER’s debut in algorithmic composition, we are ea-

ger to discover how other researchers and musicians may employ

this technique and its variations to create unique songs. We note

that the Web is a never-ending repository of musical phrases,
many of which are encoded in MIDI format. MIDI is a techni-
cal standard that allows a musical pattern to be described and

synthesized by a computer [10], replacing the need for physical

recording and manual synchronization. This gain in development

speed can allow for the modelling of truly large resource graphs,
producing hour-long tracks of exclusively distinctive music.

Another aspect that can be investigated is controlling the level

of polyphony within a song. For instance, higher concurrency

values imply in a large number of independent melodies occur-

ring during the same bar, which may lead to undesirable noise

throughout the composition. As such, minimum concurrency

not only provides a maximum-length loop of music, but also

avoids an oversaturation of sounds that may lead to low-quality

polyphony. Currently, we investigate how octave information

(the frequency range in which the fundamental pitch of each

note is found) can be used to control which sounds should be

played simultaneously (e.g.: a phrase whose notes were recorded
near octave C3 could be played alongside a phrase with notes

situated around octave C5). This approach would avoid melody

lines competing for the same frequency range, leading to more

distinguishable and pleasant sounds.

Lastly, we invite other researchers to investigate a viable com-

putational model for the Maximum Concurrency Problem, which

consists of maximizing Equation 1 over the set of acyclic orien-

tations Ω. This breakthrough would impact many distributed

resource-sharing applications, such as routing Automated Guided
Vehicles (AGVs) [13], scheduling job shop tasks [13] and control-

ling traffic lights in road junctions [4]. Naturally, new engaging

applications that could benefit from SER’s simplicity are also an

interesting theme for future research, especially when combined

with new theoretical advancements for this technique.

A MUSICAL SIMULATION
The musical simulation referred to throughout this paper is avail-

able online at the following website, and can be viewed in any

browser: https://cemarciano.github.io/Song-Generator/.

This simulation is an open-source project distributed under the

GNU GPL v3.0 License. Source code is available at the following
website: https://github.com/cemarciano/Song-Generator.

87

REFERENCES
[1] B. V. Almende et al. 2015. vis.js - A dynamic, browser based visualization

library. (2015). Retrieved February 22, 2019 from http://visjs.org/

[2] Daniel S. F. Alves et al. 2012. A Swarm Robotics Approach To Decon-

tamination. In Mobile Ad Hoc Robots and Wireless Robotic Systems: De-
sign and Implementation. IGI Publishing, Hershey, PA, USA, 107–122. https:
//doi.org/10.4018/978-1-4666-2658-4.ch006

[3] Valmir C. Barbosa and Eli M. Gafni. 1989. Concurrency in Heavily Loaded

Neighborhood-Constrained Systems. ACM Transactions on Programming
Languages and Systems 11, 4 (Oct. 1989), 562–584. https://doi.org/10.1145/

69558.69560

[4] D. Carvalho, Fábio Protti, Massimo De Gregorio, and Felipe M. G. França.

2004. A Novel Distributed Scheduling Algorithm for Resource Sharing Under

Near-Heavy Load. Lecture Notes in Computer Science 3544 (2004), 431–442.
https://doi.org/10.1007/11516798_31

[5] Ricardo F. Cassia, Vladmir C. Alves, Frederico G. Besnard, and Felipe M. G.

França. 2009. Synchronous-To-Asynchronous Conversion of Cryptographic

Circuits. Journal of Circuits, Systems and Computers 18, 2 (2009), 271–282.

https://doi.org/10.1142/S0218126609005058

[6] Jose D. Fernandez and Francisco Vico. 2013. AI Methods in Algorithmic Com-

position: A Comprehensive Survey. Journal of Artificial Intelligence Research
48, 1 (Nov. 2013), 513–582. https://doi.org/10.1613/jair.3908

[7] Eli M. Gafni and Dimitri P. Bertsekas. 1981. Distributed Algorithms for

Generating Loop-Free Routes in Networks with Frequently Changing Topol-

ogy. IEEE Transactions on Communications 29, 1 (Jan. 1981), 11–18. https:

//doi.org/10.1109/TCOM.1981.1094876

[8] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA, page 213.

[9] Vanessa C. F. Gonçalves, Priscila M. V. Lima, Nelson Maculan, and Felipe

M. G. França. 2010. A Distributed Dynamics for WebGraph Decontamination.

Lecture Notes in Computer Science 6415 (2010), 462–472. https://doi.org/10.

1007/978-3-642-16558-0_39

[10] David Miles Huber. 2007. The MIDI Manual (3rd ed.). Routledge, New York,

NY, USA. https://doi.org/10.4324/9780080479460

[11] Gladstone M. Arantes Jr. 2006. Trilhas, Otimização de Concorrência e Ini-
cialização Probabilística em Sistemas sob Reversão de Arestas. Ph.D. Disser-
tation. Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. https:

//www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/2039

[12] M. S. Krishnamoorthy. 1975. An NP-hard problem in bipartite graphs. SIGACT
News 7, 1 (Jan. 1975), 26–26. https://doi.org/10.1145/990518.990521

[13] Omar Lengerke, HernÃąn G. AcuÃśa, Max S. Dutra, F. M. G. FranÃğa, and

Felix A. C. Mora-Camino. 2012. Distributed control of job-shop systems

via edge reversal dynamics for automated guided vehicles. International
Conference on Intelligent Systems and Applications 1 (April 2012), 25–30. https:
//doi.org/10.13140/RG.2.1.3054.5127

[14] Linda Luccio, Fabrizio annd Pagli. 2007. Web Marshals Fighting Curly Link

Farms. Lecture Notes in Computer Science 4475 (2007), 240–248. https://doi.
org/10.1007/978-3-540-72914-3_21

[15] Abilio Lucena, Alexandre Cunha, and Luidi G. Simonetti. 2013. A New For-

mulation and Computational Results for the Simple Cycle Problem. Electronic
Notes in Discrete Mathematics 44 (Nov. 2013), 83–88. https://doi.org/10.1016/j.
endm.2013.10.013

[16] Marina Moscarini, Rossella Petreschi, and Jayme L. Szwarcfiter. 1998. On node

searching and starlike graphs. Congressus Numerantium 131 (1998), 75–84.

DOI unavailable, must be requested directly from authors.

[17] Gerhard Nierhaus. 2009. Algorithmic Composition: Paradigms of Automated
Music Generation. Springer-Verlag, Vienna, Austria. https://doi.org/10.1007/
978-3-211-75540-2

[18] Catherine Schmidt-Jones. 2007. Understanding Basic Music Theory. OpenStax
CNX, Houston, TX, USA. http://cnx.org/content/col10363/1.3/

[19] Man-Kwan Shan and Shih-Chuan Chiu. 2010. Algorithmic compositions based

on discovered musical patterns. Multimedia Tools and Applications 46, 1 (Jan.
2010), 1–23. https://doi.org/10.1007/s11042-009-0303-y

[20] James Simpson et al. 2013. howler.js - JavaScript audio library for the modern

Web. (2013). Retrieved February 22, 2019 from https://howlerjs.com/

88

Routing and Resource Assignment Problems
in Future 5G Radio Access Networks

Amal Benhamiche

Orange Labs, Châtillon

France

amal.benhamiche@orange.com

Wesley da Silva Coelho

Orange Labs, Châtillon

France

wesley.dasilvacoelho@orange.com

Nancy Perrot

Orange Labs, Châtillon

France

nancy.perrot@orange.com

ABSTRACT
Given a mobile network composed of a set of devices, a set of

antennas (Base Stations) and a discrete set of radio resources,

we define a domain as a subset of devices/antennas that com-

municate via radio transmission links in order to exchange data

for a specific service. In this context, we are interested in the

Domain Creation (DC) problem. It consists in finding an alloca-

tion of radio resources to the transmission links of the network

so that different domains, each one related to a specific service

(gaming, video streaming, content sharing, etc.), can be imple-

mented simultaneously. Every domain has specific requirements

in terms of quality of the transmission links (SINR) and hardware

resources dedicated to carrying out the corresponding service.

We give an integer linear programming formulation for the prob-

lem and propose two classes of valid inequalities to strengthen

its linear relaxation. The resulting formulation is used within a

branch-and-cut algorithm for the problem.We further propose an

efficient heuristic obtained from solving the routing and resource

assignment sub-problems separately. We assess the efficiency

of our approaches through some experiments on instances of

varying size and realistic input data from Orange mobile network.

1 INTRODUCTION
In future 5G networks, mobile User Equipment (UEs) will be able

to host functions that give them new abilities such as sharing

connectivity, capacity and CPU resources with other UEs, regard-

less of the ongoing traditional communications. The 5G wireless

technology, along with the evolution of mobile users behavior

and needs, will make the current scheme of communication (UE

to Base Station) no longer optimal in terms of radio resource

utilization. The Device-to-Device (D2D) communication mode is

one of the new approaches presented as a promising alternative

to traditional communication in cellular networks. A D2D com-

munication is defined as a direct communication between two

mobile or fix user devices, without traversing the Base Station

(BS) [3]. This technology allows to reuse radio resources and

to decrease end-to-end latency of local communications. Then,

D2D would allow a set of UEs geographically close to each other

to establish direct D2D communications, or span multiple links

(multi-hop D2D communications), to access a given service (e.g.

video streaming or gaming) while ensuring the required service

quality.

A domain is defined as the set of UEs and BSs that are used to

establish mobile communications (D2D or cellular) related to a

specific service. The communication is either direct or uses mul-

tiple links (D2D or via the BS). Two UEs can then communicate

through cellular links, using the BS or D2D links, and both tech-

nologies can coexist within the same mobile network. In any case,

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the

International Network Optimization Conference (INOC), June 12-14, 2019:

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

radio resources should be allocated to every active link involved

in a communication, and the SINR (Signal-to-Interference-plus-

Noise Ratio) level required by the service should be ensured.

In this context, we consider a mobile network composed of a

set of devices (UEs), a set of antennas (BS) and a set of services

eligible to D2D communications, with their associated traffic

matrices. These traffic matrices are in the form of data volume

to be exchanged between pairs of devices. The involved devices

can communicate through one or several links, either using D2D

or cellular communication (via the BS). A non-negative weight,

corresponding to the SINR, is associated with each link. It is a

measure of the quality of the communication that could be estab-

lished using this link. Every service requires a minimal quality

threshold in terms of SINR and available resources (hardware

capacity for the devices, radio resources for the links) to be suc-

cessfully established. TheDomain Creation (DC) problem consists

in finding a minimum cost allocation of the radio resources to

the network links so that (i) every pair (link, resource) belongs

to a unique domain, that is, it is used for a single service; (ii) the
SINR of each pair (link, resource) assigned to a domain is above

the quality threshold required by the corresponding service; (iii)
every demand is routed from its origin to its destination within

a domain and; (iv) all the required types of hardware capacities

(CPU, RAM, battery) in the devices are satisfied.

State-of-the-art
The problem of assigning radio resources to transmission links

is studied in [1] and [2] under the denomination of Frequency

Assignment Problem (FAP). In [1], the authors give an ILP formu-

lation for the problem and propose a branch-and-cut algorithm

to solve it. The work in [2] presents several variants of FAP

and discusses existing and original optimization (including ex-

act and heuristic) approaches to solve them. The routing and

resource allocation aspects are combined in the so-called Routing
and Wavelength Assignment (RWA) problem (see [6] and [11]

for instance) which arises in Optical Networks. The DC problem

differs from the above cited problems in that traffic demands are

unsplittable (each demand has to be sent along a unique path

using D2D or cellular links), several types of capacities on the

devices are considered, and radio resources re-use is submitted

to distance constraints so as to avoid radio interference. [13] has

focused more specifically on the optimization of mobile network

resources using D2D technology. As the related optimization

problem is relatively difficult to be solved in competitive time,

a greedy heuristic has been proposed as an alternative to solve

such a problem. This heuristic is divided into two phases, each

one responsible for the allocation of uplinks (from UEs to BSs)

and downlinks (from BSs to UEs) in order to improve the total

throughput and to significantly reduce the interference between

classic and D2D communications.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 89 DOI: 10.5441/002/inoc.2019.17

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.17

Our contribution
In this work, we formally define the Domain Creation Problem

and we propose a node-arc (compact) ILP formulation to model

it. We present some strategies to enhance the linear relaxation of

the formulation along with two classes of valid inequalities. Our

results are embedded within a branch-and-cut algorithm to solve

the problem. We further propose a two-phase heuristic, obtained

by decomposing the problem into a routing and a radio resource

allocation subproblems. To solve the routing subproblem, we

propose two methods : first, a LP-based heuristic from the linear

relaxation of the compact formulation, second, a non-compact

formulation obtained by generating a subset of relevant paths.

Then, the allocation subproblem is transformed into a vertex col-

oring problem that is solved heuristically by an improved greedy

algorithm. This greedy algorithm is compared to a dual bound

given by the exact solution of the associated Max-Clique Problem.

Numerical experiments are made on instances generated thanks

to realistic parameters of Orange mobile networks.

Our paper is organized as follows. We introduce the DC problem

in Section 2 and give an ILP formulation along with two classes of

valid inequalities. An overview of our branch-and-cut algorithm

is given in Section 3 with a brief description of the separation

routines used to generate the cuts and some numerical results for

small instances. The outline of our two-phase heuristic is detailed

in Section 4. Finally, we give some concluding remarks in Section

5 and discuss future works on extensions of the problem.

2 THE DOMAIN CREATION PROBLEM
2.1 Problem definition
The network is represented by a directed graph G = (V ∪U , A),
where V is the set of nodes associated with devices,U the set of

Base Station nodes, and A the set of arcs. We denote by δ+(u)
(resp. δ−(u)) the subset of arcs going from (resp. to) nodeu. Every
node u ∈ V has an associated weight vector cu = {cu

1
, . . . , cub },

where cui ⩾ 0 is the capacity available at node u for the physical

resource i ∈ Cd . Every arc e ∈ A has a weight denoted SINRe
that expresses a measure on the quality of the transmission link

represented by e . For every pair of arcs e, f ∈ A we denote by

d(e, f) the distance between e and f . This value corresponds to
the minimum distance between the opposite ends of the given

pair of links, that is, the origin of one and the destination of the

other. Namely, two arcs e and f are said to be close if d(e, f) ⩽ D,
where D is a minimum acceptable distance. Let R = {1, . . . , r }
be the set of available radio resources. An arc e of A is said to

be active if a radio resource r ∈ R is assigned to it. A resource

r ∈ R can be assigned to two different arcs e, f ∈ A only if

d(e, f) > D. Indeed, due to interference constraints, two com-

munications cannot be established on e and f simultaneously

using the same resource r ∈ R if e is close to f . We denote by K
the set of traffic demands to be routed and S the set of service

types. Every demand k ∈ K is defined by an origin node ok ∈ V ,

a destination node dk ∈ V and a requested service sk . Moreover,

every k ∈ K has an associated cost µesk to use arc e ∈ A and

a traffic vector ask = (a
sk
1
, . . . ,a

sk
b) where the element a

sk
m ⩾ 0

denotes the quantity of physical resource typem from the setCd

of all resources types (e.g. CPU, RAM, storage) needed to process

the service sk requested by k . Finally, we denote by βk the quality

threshold needed by k to access the required service sk .

The Domain Creation (DC) Problem consists in finding a mini-

mum cost allocation of the radio resources in R to the active arcs

of G so as to provide a feasible routing path for each demand. In

particular, a routing pk = {(ok ,u), . . . , (v,dk)} for a demand k is

said to be feasible if

• all the arcs of pk have a SINR value above the quality

threshold βk required by the demand k and,

• all the nodes in pk have enough capacity to satisfy the

resource requirements of k .

An instance of the problem, with fives devices and one BS, is il-

lustrated in Figure 1. For sake of clarity, each pair of arcs between

two nodes is represented by an edge. The edges representing D2D

links are shown in solid lines while edges representing device to

BS links are in dashed lines. Two different services, namely gam-
ing and video streaming, and three demands per service are to be

delivered:{(u1,u3), (u2,u5), (u4,u2)} and {(u4, u3), (u3, u1), (u5, u2)},
assuming that twelve radio resources {r1, . . . , r12}, are available.
A feasible solution is represented in Figure 2. The figure on the

left side represents the Gaming domain, where all three demands

are satisfied through D2D links. The figure on the right side is

the Video streaming domain, where just one demand uses the

BS. Note that, using the legacy approach, all demands must pass

through the BS, using one uplink (from UE origin to BS) and one

downlink (from the BS to UE destination) for each demand. Since

all active links share at least one arc extremity (BS), the solution

would require all the available resources (a different one for each

active link) to avoid interference. Thus, using D2D communica-

tions allow here to save 50% of radio resources compared to a

"fully cellular" solution.

Figure 1: Example of a network with 6 nodes and 6 de-
mands to be delivered for 2 different services

Figure 2: Feasible solution: active links and associated ra-
dio resource for Gaming domain (left) and Video stream-
ing domain (right)

2.2 ILP formulation
In this section, we propose a compact ILP formulation for the

DC problem followed by some valid inequalities to be used in a

branch-and-cut algorithm.

2.2.1 Notations and formulation. The three types of binary
variables are:

• xker , e ∈ A, k ∈ K , r ∈ R that takes the value 1 if the arc e is used

90

by the demand k and assigned with the resource r , 0 otherwise.

• yki , i ∈ V ∪U , k ∈ K , that takes the value 1 if the node i is used
by the demand k , 0 otherwise.
• zr , r ∈ R that takes the value 1 if the resource r ∈ R is assigned

with at least one arc, 0 otherwise.

Then, the DC problem can be formulated as:

min

∑
k ∈K

∑
e ∈A

∑
r ∈R

µ
sk
e xker +

∑
r ∈R

ψzr (1)

s.t. ∑
e ∈δ−(u)

∑
r ∈R

xker −
∑

e ∈δ+(u)

∑
r ∈R

xker =


1, if u = dk ,
−1, if u = ok ,
0, otherwise,

∀k ∈ K ,∀u ∈ U ∪V , (2)

xker βk ≤ SINRe ∀ k ∈ K ,∀ e ∈ A,∀ r ∈ R, (3)∑
k ∈K\T (i)

yki a
sk
m ≤ cim ∀ i ∈ V ,∀m ∈ Cd , (4)

2xker − y
k
i − y

k
j ≤ 0 ∀k ∈ K ,∀r ∈ R∀(i, j) = e ∈ A, (5)

xker + x
k ′
f r ≤ zr ∀r ∈ R,∀k,k ′ ∈ K ,∀e ∈ A,∀f ∈ D(e), (6)

xker ∈ {0, 1} ∀k ∈ K ,∀e ∈ A,∀r ∈ R, (7)

yki ∈ {0, 1} ∀k ∈ K ,∀i ∈ V , (8)

zr ∈ {0, 1} ∀r ∈ R. (9)

This formulation has a polynomial number of variables and

constraints. The objective (1) is to minimize the total costs com-

posed of non-negative routing and radio resource utilization

costs. The first set of inequalities (2) are the flow conservation

constraints. They ensure that each demand is routed along a

unique path between its origin node and its destination node.

Note that such a routing path can either span arcs correspond-

ing to D2D links or use a node ofU corresponding to some BS.

Inequalities (3) guarantee that a demand for a given service is

routed along edges whose SINR satisfies the quality threshold

required by this service. (4) express the capacity constraints in

every node for the different types of hardware resources, with

T (i) being the set of demands k ∈ K that have i ∈ V as origin

or destination. These capacity constraints are needed only on

intermediate nodes, that is, the nodes that are not the origin nor

the destination of a given demand k ∈ K . Inequalities (5) are
linking constraints and inequalities (6) guarantee that the same

radio resource is not assigned to different edges unless they are

distant enough, where D(e) is a set of arcs that are close to a

given arc e ∈ A. Note that, as the objective is to minimize the

resources, in any optimal solution one radio resource at most will

be allocated to the same arc for a given demand. Finally, (7)-(9)

are the integrity constraints.

The ILP formulation (1)-(9) can be strengthened by replacing

inequalities (3) by:

xker ⩽ ⌊
SINRe
βk
⌋,∀k ∈ K , e ∈ A, r ∈ R. (10)

2.2.2 Symmetry. Due to the inherent symmetry of this prob-

lem, there is possibly a large number of feasible solutions. The

breaking symmetry constraints (11) are inspired by classical in-

equalities in combinatorial optimization (see [8]), and can help in

reducing the number of symmetric solutions in the formulation.

zr ⩾ zr+1, ∀1 ⩽ r ⩽ |R | − 1, (11)

(11) allow to assign the radio resources in an ordered way, for-

bidding to use a resource r + 1 if r is available. Note that a vector

(x ,y, z) ∈ {(x ,y, z) ∈ {0, 1}(m×|R |+n)×|K |+ |R | : (x ,y, z) satisfies (2)−
(11)} is clearly a feasible solution to the DC problem.

2.2.3 Valid inequalities. We introduce now two more classes

of inequalities valid for the DC problem.

(i) Clique-based inequalities:
Given an instance of DC problem, we define the conflict graph
associated with a node u ∈ V as follows. For each capacity type

m ∈ Cd , let Hm
u = (Vm

u , Emu) be the undirected graph obtained

from the set of demands K as follows. A node vk in Vm
u is as-

sociated with every demand k ∈ K and there exists an edge

vkvl ∈ E
m
u between two nodes vk , vl of V

m
u if a

sk
m + a

sl
m > cum .

In other words, an edge in Hm
u exists if two demands cannot

be packed together in the node u due to the lack of capacity for

the resource typem. Consequently, a clique in the graph Hm
u

corresponds to a set of demands that cannot use simultaneously

the node u. Hence, we denote by CH the set of cliques in the

graphHm
u .

Proposition 2.1. Letu be a node ofV andm ∈ Cd be a physical
resource type. Then the following inequalities∑

k ∈C

yku ⩽ 1,∀C ∈ CH (12)

are valid for the DC problem.

Proof. Let C̃ be a clique inHm
u . It is clear that if two demands

k1, k2 from clique C̃ use the resourcem of node u, the capacity
constraint (4) for the resourcem will be violated. In other words,

each edgevkivkj of the clique C̃ represents an infeasible packing

of the demands ki ,kj in the node u. □

(ii) Strengthened neighborhood inequalities:
The second family of valid inequalities strengthen constraints (6).

They are obtained by considering the interference graphN = (VN ,

EN) defined as follows. Every node u ∈ VN corresponds to an arc

inA and two nodesue ,uf ofVN (associated respectively with the

arcs e and f from A) are interconnected by an edge if e and f are

close enough from each other (ie if d(e, f) ⩽ D). Consequently, a
clique in the graph N corresponds to a subset of arcs in A that

are pairwise close, and cannot receive the same radio resource

due to interference constraints. Likewise in the conflict graph

defined before, we denote by CN the set of cliques in the graph

N .

Proposition 2.2. The following inequalities∑
k ∈K

∑
e ∈C

xker ⩽ zr ,∀r ∈ R,C ⊆ CN (13)

are valid for the DC problem.

Proof. Let C̃ be a clique in N and ue , uf two nodes of VN

that belong to clique C̃. Clearly, if e and f are allocated the same

resource r ∈ R in a solution, then it cannot be feasible for the DC

problem. □

91

Note that similar inequalities are used in [1] and [2] for the

Frequency Assignment Problem.

3 BRANCH-AND-CUT ALGORITHM
3.1 Overview of the algorithm
We have developed a branch-and-cut algorithm for the DC prob-

lem based on the results presented in Section 2. The algorithm

has been implemented in C++ using CPLEX 12.6 as a LP solver,

with presolve heuristics and internal cuts being disabled. We

have tested our approach

• first by solving formulation (1)-(9) along with the strength-

ened SINR inequalities (10) and symmetry breaking (11)

inequalities and

• by further using the clique-based (12) and strenghthened

neighborhood (13) valid inequalities, in addition to the

formulation (1)-(9).

We have used two heuristic procedures to generate dynamically

inequalities (12) and (13). Both separation routines rely on a

greedy algorithm introduced in [10] for the Independent Set

problem, that finds a clique in the conflict graph (respectively the

interference graph) with appropriate weights on the nodes. We

then add the corresponding violated clique-based (respectively

strenghthened neighborhood) inequalities, if any, to the current

LP. Both classes of valid inequalities are separated throughout

the branch-and-cut tree and several inequalities may be added at

each iteration of the algorithm.

3.2 Computational results
We present below some early experiments obtained for a set of

small instances containing 5 to 15 nodes and up to 7 demands.

For these tests, each scenario contains only 1 antenna and 2 ser-

vice domains. For each instance, realistic data was provided by

Orange, including the network topologies and SINR values. Table

1 shows the impact of inequalities (10) and (11) on the initial

model (formulation (1)-(9)). In the first column, the name of each

instance refers to the number of users (U#) and demands (D#).

The next four columns show the computational time (in seconds)

for the initial formulation, then when adding symmetry breaking

constraints (11), strenghthened SINR constraints (10) and both

constraints, respectively. We can notice that using constraints

(11) allows to obtain the best execution time for two out of five

instances tested (U 5_D8 andU 10_D5) while the instancesU 5_D6
andU 10_D7 have the lower runtime when applying constraints

(10) and (11), combined. For instance U 15_D7, the optimal so-

lution could not be found after 3 hours of execution. We have

Table 1: Runtime comparison (in seconds) with strength-
ening constraints

Instances Initial Symmetry SINR Symmetry & SINR
U5_D2 0,05 0,06 0,05 0,06

U5_D6 187,18 11,55 77,18 10,71
U5_D8 600,56 45,16 90,70 72,43

U10_D5 1677,21 290,33 697,49 435,08

U10_D7 8746.32 3569.18 4453.58 2967.45
U15_D7 10800* 10800* 10800* 10800*

tested the impact of using our valid inequalities and compared the

results to CPLEX branch-and-bound for the strengthened model

(formulation (1)-(2) + (4)-(11)). Table 2 shows the results obtained

on five instances (same as in Table 1) when (i) no additional cuts

are used, (ii) using strenghthened neighborhood inequalities (13)

in addition to formulation (1)-(9), (iii) using clique-based inequal-
ities (12) in addition to strengthened model and (iv) both cuts

are used in the branch-and-cut. We can observe that the gap at

root node is substantially reduced when adding cuts (the gap

value decreases from 59.65% to 23.58% for instanceU 5_D8 when
using strenghthened neighborhood cuts) and so for the size of

the branch-and-cut tree (for instance U 10_D5, we range from
1327 nodes without cuts to 84 nodes when both cuts are used).

Overall, the strenghthened neighborhood cuts are more efficient

in reinforcing the strengthened model.

4 TWO-PHASE HEURISTIC
Since solving the initial formulation has impractical runtime

even for small instances, we propose a solving method based on a

decomposition of DC problem into two subproblems: the routing
subproblem and the resource allocation subproblem, that are to be

solved separately. The objective of the first subproblem is to find

an elementary path for each demand while minimizing the total

link utilization costs. Then, the second subproblem provides a

resource allocation to each active link obtained from the routing

subproblem solution.

4.1 Routing subproblem
We propose two formulations for the routing subproblem: a com-

pact formulation obtained by relaxing the resource assignment

constraints (6) from (1)-(9), and a path reformulation.

4.1.1 Compact formulation. This formulation is the compact

formulation obtained by relaxing the resource allocation con-

straints (6) from the formulation (1)-(9). The returned solution is

a set of elementary paths for each request, respecting the capaci-

ties of the nodes along the paths. Two kinds of binary variables

remains in the formulation : xke that takes value 1 if the link e ∈ A
is used by the request k ∈ K and the variables yik . The objective
is to minimize the total cost of active links:

min
∑
k ∈K

∑
e ∈E

µ
sk
e xke (14)

Solving approach: The linear relaxation of this formulation is

strengthened replacing (5) by:

xke − y
k
i ≤ 0 ∀ k ∈ K ,∀ (i, j) = e ∈ E, (15)

xke − y
k
j ≤ 0 ∀ k ∈ K ,∀ (i, j) = e ∈ E. (16)

and adding the following inequalities:

yki (a
sk
m − c

i
m) ≤ 0 ∀ i ∈ V ,∀m ∈ Cd ,∀ k ∈ K\T (i). (17)

The linear relaxation of this strengthened subproblem is solved

using CPLEX. Then, a heuristic procedure is used to get a feasible

integer solution. This approach is summarized in Algorithm 1.

First, the linear relaxation is solved to optimality. Then, variables

having an integer optimal value are fixed by updating the right

hand side of the constraints (step 5). Finally, this residual ILP

formulation is solved to optimality using CPLEX, giving rise to

an integer solution for the whole problem. Step 11 is the rounding

procedure on solution found by step 1. This heuristic is particu-

larly efficient for this problem since most of the optimal variable

values of the linear relaxation are integer.

4.1.2 Path formulation. The second formulation is a path

formulation. We assume that all feasible paths Pk have been

previously generated for each demand k . Thus, we define new

binary variables xkp that take value 1 if the path p ∈ Pk is used by

92

Table 2: Solution quality comparison between models with and without additional cuts

Strengthened Formulation Strengthened + Neighborhood cuts Strengthened + Clique-based cuts Strengthened + both cuts
Instances root gap (%) runtime (s) tree size root gap (%) runtime (s) tree size root gap (%) runtime (s) tree size root gap (%) runtime (s) tree size
U5_D2 0.00 0.05 1 0.00 0.06 1 0.00 0.06 1 0.00 0.05 1
U5_D6 10.00 11.49 7 10.00 11.67 8 10.00 12.33 2 10.00 13.31 2
U5_D8 59.65 154.65 470 23.58 130.69 291 33.71 389.01 1225 32.00 150 599

U10_D5 57.89 677.21 1327 33.09 1370.90 190 48.23 1262.83 91 33.09 2265.83 84
U10_D7 62.26 3236.61 1850 50.04 8654.21 2040 62.26 3251.99 1850 50.04 9648.12 2040

U15_D7* 77.23 10800 58 72.37 10800 8 77.23 10800 70 72.37 10800 22

Algorithm 1 LP-based Heuristic for the Routing subproblem

1: Solve LP (G, K)

2: Let FractionalDemands be the set of demands with associated optimal

fractional variables

3: for each demand k do
4: if all associated variable have integer value then
5: update the LP by decreasing used capacities on vertices tra-

versed by the associated paths

6: else
7: FractionalDemands : FractionalDemands ∪{k }
8: end if
9: end for
10: Solve ILP (G,FractionalDemands)

11: Update solution

12: Return solution found

the demand k ∈ K , 0 otherwise. The objective now is to minimize

the sum of the active path weights:

min
∑
k ∈K

∑
p∈Pk

µ
sk
p xkp (18)

where µ
sk
p is the cost of path p ∈ Pk , defined as the sum of the

weights on the arcs of p. Let αep , respectively γ
i
p , be an indicator

parameter with value 1 if the arc e , respectively the node i , is in
the path p. The constraints of the path formulation are:∑

p∈Pk

xkp = 1 ∀ k ∈ K , (19)

αepx
k
p βsk ≤ sinre ∀ k ∈ K , e ∈ A,∀ p ∈ Pk , (20)∑

k ∈K\T (i)

∑
p∈Pk

γ ipx
k
p a

sk
m ≤ cim ∀ i ∈ V ,∀m ∈ Cd , (21)

xkp ∈ {0, 1} ∀ k ∈ K ,∀ p ∈ Pk . (22)

Constraints (19) assure that each demand uses one path. Con-

straints (20) are the SINR constraints, and (21) are the capacity

constraints.

Solving approach: This formulation, restricted to a subset of

paths, is solved to optimality using CPLEX. The subsets of paths

are generated thanks to the algorithm proposed by Yen [12]. This

algorithm returns the K-shortest loopless paths for a graph with

non-negative edge costs. It uses a shortest path algorithm as an

intermediary to construct the whole solution. In our context, we

use Dijkstra’s algorithm [5], which has a good performance and a

polynomial complexity. Using Yen’s algorithm gives a guarantee

to generate all the feasible paths due to the characteristics of

our use case: for each demand, once a path uses the base station

we are sure that all the feasible D2D paths have already been

generated, then the path generation is stopped. This feature is

due to greater weights on BS arcs. The difference between the

weights of the BS links and the D2D ones plays an important

role in the construction of the paths subsets: the greater this

difference is, the longer it could be to obtain all the paths that

use only D2D communication. Finally, to reduce the size of the

formulation, a pre-processing on the SINR constraints is operated

before solving both routing formulations: only the valid SINR

links constraints are kept in the formulation.

4.2 Resource Allocation subproblem
The resource allocation subproblem consists in allocating the

radio resources to each active link provided by the solution of

the first subproblem.

4.2.1 Solving approach. Let Ga (V a ,Ea) be a graph where

each vertex in the set V a
represents an active link, that is, a link

used by at least one path of the routing problem solution (steps

2-5 in Algorithm 2). An edge e ∈ Ea is associated with a pair of

vertices if the corresponding active links cannot share the same

radio resource due to interference (steps 6-12). The objective is

to assign a minimum number of colors (resources) to the vertices

of the graphGa
, in such a way there is no adjacent vertices with

the same color (step 14). This falls into a classical Vertex Coloring

Problem [7]. The proposed heuristic has as input the initial graph

Algorithm 2 Resource Allocation subproblem

1: Set V a
and Ea to empty sets

2: for each activated link e ∈ A do
3: Set Vertex auxV er tex .id ←− e .id
4: Set V a

: V a ∪ auxV er tex
5: end for
6: for each pair (u, v) ∈ V a do
7: if dist (u, v) ≤ cr iter ia then
8: Set Link auxLink .extremity1←− u
9: Set Link auxLink .extremity2←− v
10: Set Ea : Ea ∪ auxLink
11: end if
12: end for
13: Set graph Ga (V a, Ea)
14: Coloring (Ga)

15: Return Resource Assignment

of the problem, the values of the routing solutions and a criteria

value which represents the minimum distance for a pair of links

to have the same resource. This value was fixed toD = 100 meters

so as to be representative of realistic use cases. Hence, for dist()
method, we calculate the distance between the opposite ends of

the pair of links, that is, the origin of one with the destination of

the other. The method returns zero for adjacent links. Finally, to
find the coloring of the graph Ga

(that is, allocate the resources

to each active link) we use the Colorinд() method which is the

implementation of a classical greedy algorithm [9] for Vertex

Coloring Problem. It is well known that the performance of this

greedy algorithm is sensitive to the order of choice of the next

vertex to be colored. For this reason, we randomly generate a large

number of orders and choose the one that returns the minimum

amount of colors. A lower bound value for the optimal solution

is given by solving the associated Max-clique problem. For this

93

purpose we use the method proposed by [4], which is an exact

approach using parallel programming.

4.3 Experiments and comparative results
The experiment conditions are the same as in section 3. We

generated new instances, with 6 service domains available and

the total amount of UEs is evenly divided between 7 core cells

with one antenna installed on each one.

4.3.1 Routing subproblem. The numerical tests of the routing

subproblem are summarized in table 3. The first column of the

Compact Formulation part is the percentage of active variables
that are not integers in the optimal LP solution. We note that it is

always less than 6%. The second column is the gap between the

solution found by the relaxation and the final solution found by

the LP-based heuristic. The average gap is 2.30% with standard

deviation equals to 3.85%. Finally, the third column is the total run

time in seconds (pre-processing, relaxed solution and LP-based

heuristic). In the second part of table 3, the pre-processing and

solver run times of the path formulation are presented. The aver-

age number of paths generated in pre-processing is equal to 5.26

for each demand (with standard deviation equals to 2.39). Most

of the runtime of the compact formulation based approach was

spent in solving the linear relaxation of the problem. Given the

very low number of fractional variables in the relaxed solution,

the last IP on the residual formulation is quickly solved. It is also

worth noticing that the pre-processing in path formulation is the

most important step, since it is responsible for most of the solv-

ing time for all instances. However, its performance is relatively

better than for the compact formulation, being on average 1.30

times faster. It is important to mention that the gap between the

two formulations was always less than 0.50%.

Table 3: Routing subproblem: numerical tests
Compact formulation Path Formulation

Instances Act Frac
Var (%) Gap (%) Total

Runtime (s)
Pre

processing (s) Solver (s)

U700_D175 0.05 0.03 9.16 4.81 0.02

U700_D350 1.92 1.1 13.92 9.5 0.02

U700_D525 1.84 13 21.28 14.26 0.08

U700_D700 0.87 0.04 26.72 19.22 0.13

U1400_D350 5.22 0.02 46.83 27.48 0.8

U1400_D700 3.37 3.6 77.7 55.68 0.26

U1400_D1050 3.13 3.05 152.31 82.82 0.42

U1400_D1400 1.79 0.49 143.78 110.81 0.60

U2100_D525 5.56 0.02 143.28 81.28 0.23

U2100_D1050 3.54 0.09 257.18 163.39 0.65

U2100_D1575 2.15 3.86 242.84 230 0.8

Table 4: Resource Allocation subproblem: numerical tests
Instances Pre-processing (s) Greedy (s) Gap (%)
U700_D175 0.13 0.89 0

U700_D350 0.53 1.81 0

U700_D525 1.15 2.75 0

U700_D700 2.12 3.89 0

U1400_D350 0.54 1.74 0

U1400_D700 2.34 3.76 0

U1400_D1050 4.97 5.95 0

U1400_D1400 7.06 6.97 0

U2100_D525 1.32 2.07 0

U2100_D1050 4.45 5.25 0

U2100_D1575 11.21 9.51 0

4.3.2 Resource allocation subproblem. Table 4 shows the re-
sults for the resource allocation subproblem, where the Pre-
processing column represents the time needed to transform the

solution from the previous subproblem into a classic graph and

find its max-clique. We can observe that even though they are ex-

tremely large graphs, the time needed to find the final solution is

relatively short. This is due to the characteristics of the topology

constructed from the assumptions and hypotheses previously

presented. Generated graphs have an average density equals to

64.05% - standard deviation equals to 1.98%. Another important

result emphases is that in all cases, we have found the optimal

solution, proven by the lower bound value previously calculated

by the exact max-clique algorithm (last column).

5 CONCLUDING REMARKS
In this paper, we have studied the Domain Creation problem, that

is a routing and resource assignment problem arising in future 5G

networks. We have proposed two algorithms: exact and heuris-

tic, to solve it. The exact approach is based on a node-arc ILP

formulation enhanced by two families of valid inequalities that

are used within a branch-and-cut framework. The preliminary

results show a significant impact of the cuts in strenghthening

the LP relaxation and reducing the computation time. We expect

that adding further classes of cuts and performing an analysis to

find out the specificities of difficult instances (regardless of their

size) will allow to solve even larger instances. A natural ques-

tion would be to consider a non-compact formulation, based on

path variables and propose a column generation based algorithm

to solve it. On an other hand, our experiments show that the

heuristic approach performs well, even on large instances with

up to 2100 devices and 1500 service requests on 7-cell networks.

It would be interesting and most probably very powerful to use it

as a primal heuristic to boost efficiency of an exact algorithm. On

a practical note, a tough but interesting extension is to include

users mobility or temporal aspect in radio resource assignment.

ACKNOWLEDGMENTS
This work is supported by the french Agence Nationale de la

Recherche (ANR), Project MAESTRO-5G ANR-18-CE25-0012.

REFERENCES
[1] K. I. Aardal, A. Hipolito, S. P. M. van Hoesel, and B. Jansen. 1996. A branch-and-

cut algorithm for the frequency assignment problem. Research Memorandum
96/011, Maastricht University (1996).

[2] K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano.

2007. Models and solution techniques for frequency assignment problems.

Annals of Operations Research 153, 1 (01 Sep 2007), 79–129.

[3] Arash Asadi, QingWang, and VincenzoMancuso. 2014. A Survey on Device-to-

Device Communication in Cellular Networks. IEEE Communications Surveys
and Tutorials 16, 4 (2014), 1801–1819.

[4] Matjaz Depolli, Janez Konc, Kati Rozman, Roman Trobec, and Dusanka Janezic.

2013. Exact parallel maximum clique algorithm for general and protein graphs.

Journal of chemical information and modeling 53, 9 (2013), 2217–2228.

[5] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[6] B. Jaumard, C. Meyer, and B. Thiongane. 2006. ILP Formulations for the Routing
and Wavelength Assignment Problem: Symmetric Systems. Springer US, 637–
677.

[7] Enrico Malaguti and Paolo Toth. 2010. A survey on vertex coloring problems.

International transactions in operational research 17, 1 (2010), 1–34.

[8] François Margot. 2010. Symmetry in Integer Linear Programming. 647–686.
[9] David W Matula, George Marble, and Joel D Isaacson. 1972. Graph coloring

algorithms. (1972), 109–122.

[10] G. L. Nemhauser and G. Sigismondi. 1992. A Strong Cutting Plane/Branch-

and-Bound Algorithm for Node Packing. Journal of the Operational Research
Society 43, 5 (1992), 443–457.

[11] A. E. Ozdaglar and D. P. Bertsekas. 2003. Routing andWavelength Assignment

in Optical Networks. IEEE/ACM Trans. Netw. 11, 2 (April 2003), 259–272.
[12] Jin Y Yen. 1970. An algorithm for finding shortest routes from all source nodes

to a given destination in general networks. Quart. Appl. Math. 27, 4 (1970),
526–530.

[13] M. Zulhasnine, C. Huang, and A. Srinivasan. 2010. Efficient resource allocation

for device-to-device communication underlaying LTE network. 2010 IEEE
6th International conference on wireless and mobile computing, networking and
communications (2010), 368–375.

94

Pooling Problems with Single-Flow Constraints

D. Haugland
Department of Informatics, University of Bergen

Bergen, Norway
dag@ii.uib.no

ABSTRACT

The pooling problem is a frequently studied extension of
the traditional minimum cost flow problem, in which the
composition of the flow is subject to restrictions. In a net-
work consisting of three layers of nodes, the composition
is given at the source layer. In the intermediate nodes,
referred to as pools, the composition is a weighted av-
erage of the compositions in entering flow streams. The
same is true at the sink layer, where upper bounds on
the concentration of each component apply. Motivated by
practical applications, and needs for heuristic methods for
the standard pooling problem, the current work focuses
on pooling problems where the flow graph is restricted to
satisfy certain sparsity conditions. We consider in partic-
ular the requirements that each pool receives flow from
at most one neighboring source, or sends flow to at most
one neighboring sink. We prove that the pooling problem
remains NP-hard after this and other similar extensions.
It is also demonstrated how the single-flow constrained
extensions can be modeled by means of mixed integer lin-
ear programming (MILP), without introducing bilinear
terms. We also show that such MILP-models are useful for
computing good feasible solutions to the original problem.

KEYWORDS

Network flow, pooling problem, mixed integer programming

1 INTRODUCTION

Most network flow models are built upon considerations
of the flow as a homogeneous commodity. In many indus-
trial settings, it is however essential to reflect variation in
composition that may occur across the network. Contami-
nation levels of crude oils supplied to a refinery depend on
their sources of origin. Proportions in which major compo-
nents of natural gas, such as methane, ethane, butane and
propane, occur are not equal for all gas wells. For environ-
mental or technical reasons, requirements to the final flow
composition can be imposed at the reception points of the
flow network. In applications of this kind, it is therefore
crucial for network flow models to recognize not only the
total flow, but also how the flow composition evolves from
network sources to sinks. Updates of the composition at
nodes where differently composed flow streams are pooled
must be reflected by the models. A result of this is a com-
putationally challenging problem referred to as the pooling
problem.

The pooling problem resembles well-studied logistics
models like the minimum cost flow problem and the trans-
portation problem. While a bipartite network structure

© 2019 Copyright held by the owner/author(s). Published in Pro-
ceedings of the International Network Optimization Conference
(INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

means that the problem can be modeled in terms of linear
programming (LP), bilinear formulations appear to be in-
evitable when the network has three layers of nodes. While
large instances of the minimum cost flow problem, with
arbitrary network topology, can be solved fast, exact solu-
tion of pooling problem instances with much fewer nodes
appears to be unrealistic.

Already decades ago, Haverly [19] recognized the pool-
ing problem as a challenge where linear programming ap-
proaches may fail. Because of the anticipated intractability
of the problem, early research was mainly directed towards
heuristic methods [6, 10, 19], where iterative linearization
is the core idea. Floudas and Visweswaran [13] reported
the first exact solution algorithm for the pooling problem.
Later, algorithms based on branch-and-bound [5, 14, 25–27],
Lagrangian relaxation [1, 4, 8], particle swarm optimization
[12], integer programming [11, 16], and semi-definite pro-
gramming [22] have been studied. The industrial relevance
of the problem, notably in petroleum refining [6, 10], the
food industry [20], and in waste water processing [15, 24],
has been acknowledged by many authors. The pooling
problem survey by Misener and Floudas [23] has a compre-
hensive list of references to work in this area.

Standard pooling problems are defined as networks with
three node layers, referred to as sources, pools and sinks,
respectively. Arcs connect either a source to a pool or a pool
to a sink. Quality constraints in terms of bounds on the
composition are imposed at the sinks. Each bound relates
to the relative content of a flow component, referred to as
the quality. Even the class of instances with a unique pool
is strongly NP-hard [2]. The computational complexity is
however favorable if there are additional limitations on
node cardinalities, as polynomial time algorithms have
been developed for the case of a unique pool and an upper
bound on either the number of sinks [17] or the number of
quality constraints at each sink [2]. Polynomial running-
time algorithms for the one-pool instance class also exist
when the number of sources is bounded [9, 18].

The pooling problem remains NP-hard for networks
with only two sources and two sinks, and only one flow
component subject to constraints [17]. Such instances can
be solved in polynomial time when the input data take
values within given bounds [18]. While the algorithms with
polynomial running time mentioned this far are based
on LP, Baltean-Lugojan and Misener [7] prove that also
strongly polynomial solution algorithms exist for a wide
range of network topologies.

In certain applications [21], physical restrictions disallow
flow along more than one arc entering or leaving a pool.
While the pools may have multiple entering and leaving arcs
in the flow network, decisions must be made as to which one
of these to apply. This problem can be rephrased as a bilevel
problem in the realm of network design: Find a subnetwork,
such that each pool has only one entering arc and/or only

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 95 DOI: 10.5441/002/inoc.2019.18

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.18

one leaving arc, and solve the pooling problem on the
selected subgraph. In this context, it becomes relevant that
the pooling problem can be formulated as a compact LP if
each pool has either in-degree or out-degree equal to one
[17, Proposition 3]. By introducing design variables for each
arc, the said extension is formulated as a mixed integer
linear program (MILP), and, contrary to the standard
pooling problem, bilinear constraints are easily avoided.

Extensions where restrictions on the number of flow-
carrying arcs incident to each pool are also interesting from
a computational point of view. The feasible region of the
extended version is obviously a subset of its counterpart
in the original version. In instances where the optimal so-
lutions to the original and revised problems are not too
far apart, the latter problem may serve as a close approxi-
mation to the former. If the more restricted version of the
problem is solved with sufficiently smaller computational
burden than what is the case of the original, it may thus
be a key to effective inner approximation of the standard
pooling problem.

In the current work, we consider four different variants
of the pooling problem with constraints on the number of
active arcs (Section 2). The contributions made to the pool-
ing problem literature includes proofs of the NP-hardness
of each of the new problems (Section 3). Further, we give
MILP-formulations for the problems, along with valid in-
equalities and lifting procedures for strengthening the re-
laxations of the formulations (Sections 4–5). Preliminary
experiments are reported (Section 6), demonstrating that
the inner approximation idea enables improvements of the
best known solution to four instances of the standard pool-
ing problem.

2 NOTATION AND PROBLEM
DEFINITION

Let 𝐷 = (𝑁,𝐴) be a directed acyclic graph with the
node set 𝑁 partitioned into the sets 𝑆 of sources, 𝑃 of
pools, and 𝑇 of sinks. The arc set 𝐴 = 𝐴𝑆 ∪ 𝐴𝑇 is par-
titioned into 𝐴𝑆 ⊆ 𝑆 × 𝑃 and 𝐴𝑇 ⊆ 𝑃 × 𝑇 , connecting
sources with pools and pools with sinks, respectively. Thus,
𝐻 = {(𝑠, 𝑝, 𝑡) ∈ 𝑆 × 𝑃 × 𝑇 : (𝑠, 𝑝), (𝑝, 𝑡) ∈ 𝐴} is the set of
directed paths in 𝐷. Let 𝐾 be a finite set, the elements
of which are referred to as qualities. For each node 𝑖 ∈ 𝑁 ,
define the upper flow bound 𝑏𝑖, let 𝑏𝑖𝑗 = min{𝑏𝑖, 𝑏𝑗} for
each arc (𝑖, 𝑗) ∈ 𝐴, and let 𝑏𝑠𝑝𝑡 = min{𝑏𝑠, 𝑏𝑝, 𝑏𝑡} for each
path (𝑠, 𝑝, 𝑡) ∈ 𝐻. Further, associate the unit cost 𝑐𝑖𝑗 with
arc (𝑖, 𝑗). For each quality 𝑘 ∈ 𝐾, we introduce parameters
for each source and each sink. Let 𝑞𝑘𝑠 be the concentration
of quality 𝑘 at source 𝑠, and let 𝑞𝑘𝑡 be the upper bound on
the concentration of quality 𝑘 at sink 𝑡.

For each 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 , and 𝑡 ∈ 𝑇 , we define the neighbor
sets 𝑃𝑠 = {𝑝 ∈ 𝑃 : (𝑠, 𝑝) ∈ 𝐴}, 𝑆𝑝 = {𝑠 ∈ 𝑆 : (𝑠, 𝑝) ∈ 𝐴},
𝑇𝑝 = {𝑡 ∈ 𝑇 : (𝑝, 𝑡) ∈ 𝐴}, and 𝑃𝑡 = {𝑝 ∈ 𝑃 : (𝑝, 𝑡) ∈ 𝐴}.
Let 𝐹 (𝐷, 𝑏) ⊆ R𝐴

+ be the flow polytope associated with
𝐷 and 𝑏. That is, 𝑥 ∈ 𝐹 (𝐷, 𝑏) means that 𝑥 is a vector
with components 𝑥𝑖𝑗 corresponding to the arcs (𝑖, 𝑗), sat-
isfying the capacity constraints

∑︀
𝑝∈𝑃𝑠

𝑥𝑠𝑝 ≤ 𝑏𝑠 (𝑠 ∈ 𝑆),∑︀
𝑝∈𝑃𝑡

𝑥𝑝𝑡 ≤ 𝑏𝑡 (𝑡 ∈ 𝑇), and
∑︀

𝑠∈𝑆𝑝
𝑥𝑠𝑝 ≤ 𝑏𝑝 (𝑝 ∈ 𝑃), and

the flow conservation constraints
∑︀

𝑠∈𝑆𝑝
𝑥𝑠𝑝 =

∑︀
𝑡∈𝑇𝑝

𝑥𝑝𝑡

(𝑝 ∈ 𝑃). Any flow 𝑥 ∈ 𝐹 (𝐷, 𝑏) induces, for every 𝑘 ∈ 𝐾, a
concentration 𝑤𝑘

𝑖 at node 𝑖 ∈ 𝑁 . In the case of a source

𝑠, 𝑤𝑘
𝑠 = 𝑞𝑘𝑠 . For nodes 𝑗 ∈ 𝑃 ∪ 𝑇 , the concentration is a

solution to

𝑤𝑘
𝑗

∑︀
𝑖∈𝑁 :(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗 =

∑︀
𝑖∈𝑁 :(𝑖,𝑗)∈𝐴 𝑤𝑘

𝑖 𝑥𝑖𝑗 , (1)

reflecting the assumption that 𝑘 represents a chemical
compound, the concentration of which blends linearly when
heterogeneous flow streams meet.

Definition 2.1. The Standard Pooling Problem amounts
to finding a flow 𝑥 ∈ 𝐹 (𝐷, 𝑏) inducing a concentration
𝑤 ∈ R𝑁×𝐾 satisfying 𝑤𝑘

𝑡 ≤ 𝑞𝑘𝑡 for each 𝑡 ∈ 𝑇 and each
𝑘 ∈ 𝐾, such that

∑︀
(𝑖,𝑗)∈𝐴 𝑐𝑖𝑗𝑥𝑖𝑗 is minimized.

In the remainder of the paper, we mainly focus on ex-
tensions of the Standard Pooling Problem, where ad-
ditional constraints on the number of flow streams leav-
ing/entering a pool are imposed.

Definition 2.2. Each of the following problems are iden-
tified by a set of constraints in addition to those applying
to Definition 2.1:

∙ The Single-In Pooling Problem: For all 𝑝 ∈ 𝑃 ,
𝑥𝑠𝑝 > 0 for at most one 𝑠 ∈ 𝑆𝑝.

∙ The Single-Out Pooling Problem: For all 𝑝 ∈ 𝑃 ,
𝑥𝑝𝑡 > 0 for at most one 𝑡 ∈ 𝑇𝑝.

∙ The Single-In-And-Out Pooling Problem: For
all 𝑝 ∈ 𝑃 , 𝑥𝑠𝑝 > 0 for at most one 𝑠 ∈ 𝑆𝑝, and
𝑥𝑝𝑡 > 0 for at most one 𝑡 ∈ 𝑇𝑝.

∙ The Single-In-Or-Out Pooling Problem: For all
𝑝 ∈ 𝑃 , 𝑥𝑠𝑝 > 0 for at most one 𝑠 ∈ 𝑆𝑝, or 𝑥𝑝𝑡 > 0
for at most one 𝑡 ∈ 𝑇𝑝.

3 COMPLEXITY

For all the single-flow constrained problems introduced in
the previous section, the following observations are made:
With knowledge to the sources (sinks) from (to) which the
single flows enter (leave) a pool, the remaining problem
can be solved in terms of a compact Linear Program (LP)
[17, Proposition 3]. However, the problems are in general
intractable.

Proposition 3.1. The problems given in Definition 2.2
are NP-hard.

Proof. There exists [17, Theorem 6] a polynomial re-
duction from the Maximum 2-Satisfiability Problem
to an instance class of the Standard Pooling Problem,
in which all feasible solutions satisfy the constraints of
the Single-Out Pooling Problem, and thereby also
the Single-In-Or-Out Pooling Problem. It follows
that the latter two problems are NP-hard. Analogously, a
polynomial reduction [17, Theorem 7] from the Minimum
2-Satisfiability Problem proves the NP-hardness of the
Single-In Pooling Problem. That also the Single-In-
And-Out Pooling Problem is NP-hard, is proved by
the following reduction from the Partition Problem: Let
𝑎1, . . . , 𝑎𝑛 ∈ Z+. Consider the instance of the Single-In-
And-Out Pooling Problem where 𝑆 = {𝑠1, . . . , 𝑠𝑛},
𝑃 = {𝑝1, . . . , 𝑝𝑛}, 𝑇 = {𝑡0, 𝑡1}, 𝐴𝑇 = 𝑃 × 𝑇 , 𝐴𝑆 =
{(𝑠𝑖, 𝑝𝑖)}𝑛𝑖=1, 𝐾 = ∅, 𝑏𝑠𝑖 = 𝑏𝑝𝑖 = 𝑎𝑖 (𝑖 = 1, . . . , 𝑛), 𝑏𝑡0 =

𝑏𝑡1 = 1
2

∑︀𝑛
𝑖=1 𝑎𝑖, 𝑐𝑠𝑖𝑝𝑖 = −1, and 𝑐𝑝𝑡 = 0 for (𝑝, 𝑡) ∈ 𝐴𝑇 . It

follows that {𝑎1, . . . , 𝑎𝑛} is a yes-instance to the Partition
Problem if and only if the minimum cost in the corre-
sponding instance of the Single-In-And-Out Pooling
Problem is −

∑︀𝑛
𝑖=1 𝑎𝑖. �

96

4 MIXED INTEGER
PROGRAMMING MODELS

All problems introduced in Definition 2.2 are formulated
in terms of continuous variables representing path flow,
and binary variables representing selection of arcs to carry
the flow. In the models that follow, the flow 𝑥𝑖𝑗 along arc
(𝑖, 𝑗) is not represented by a dedicated variable, but it is
available by summation of all flow variables corresponding
to paths containing (𝑖, 𝑗). In all models, 𝑥𝑠𝑝𝑡 denotes the
flow along path (𝑠, 𝑝, 𝑡) ∈ 𝐻. To model the Single-In-Or-
Out Pooling Problem, let 𝑦 be a binary vector over the
arcs in 𝐷. For any arc (𝑠, 𝑝) ∈ 𝐴𝑆 , pool 𝑝 receives flow
uniquely along (𝑠, 𝑝) if 𝑦𝑠𝑝 = 1. Analogously, if 𝑦𝑝𝑡 = 1,
then pool 𝑝 sends flow uniquely along arc (𝑝, 𝑡) ∈ 𝐴𝑇 .
Letting 𝐻𝑖 denote the set of paths intersecting node 𝑖 ∈ 𝑁 ,
this leads to the formulation:

min
𝑥,𝑦

∑︁
(𝑠,𝑝,𝑡)∈𝐻

(𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡 (2)

s.t.
∑︁

(𝑠,𝑝,𝑡)∈𝐻𝑖

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑖 𝑖 ∈ 𝑁 (3)

∑︁
𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(︁
𝑞𝑘𝑠 − 𝑞𝑘𝑡

)︁
𝑥𝑠𝑝𝑡 ≤ 0 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 (4)

∑︁
𝑠∈𝑆𝑝

𝑦𝑠𝑝 +
∑︁
𝑡∈𝑇𝑝

𝑦𝑝𝑡 = 1 𝑝 ∈ 𝑃 (5)

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝𝑡 (𝑦𝑠𝑝 + 𝑦𝑝𝑡) (𝑠, 𝑝, 𝑡) ∈ 𝐻 (6)

𝑥 ∈ R𝐻
+ , 𝑦 ∈ {0, 1}𝐴 (7)

As arc flow is replaced by path flow, there is no need
for flow conservation constraints. Thus, the capacity con-
straints (3) ensure that only solutions in 𝐹 (𝐷, 𝑏) are fea-
sible. Because the concentration of quality 𝑘 ∈ 𝐾 at
sink 𝑡 equals

∑︀
𝑝∈𝑃𝑡

∑︀
𝑠∈𝑆𝑝

𝑞𝑘𝑠𝑥𝑠𝑝𝑡/
∑︀

𝑝∈𝑃𝑡

∑︀
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡, con-

straints (4) impose the upper bound 𝑞𝑘𝑡 on the concentra-
tion. Finally, flow on at most one arc entering pool 𝑝 ∈ 𝑃 ,
or at most one arc leaving 𝑝, is achieved by (5)–(6).

By addition of 𝑦𝑝𝑡 = 0 ((𝑝, 𝑡) ∈ 𝐴𝑇) and 𝑦𝑠𝑝 = 0 ((𝑠, 𝑝) ∈
𝐴𝑆), respectively, (2)–(7) also becomes a formulation of
the Single-In Pooling Problem and the Single-Out
Pooling Problem.

The Single-In-And-Out Pooling Problem is formu-
lated in terms of the binary path selection variables 𝑦𝑠𝑝𝑡
((𝑠, 𝑝, 𝑡) ∈ 𝐻). The objective is to minimize (2) subject to
(3)–(4) and ∑︁

(𝑠,𝑝,𝑡)∈𝐻𝑝

𝑦𝑠𝑝𝑡 = 1 𝑝 ∈ 𝑃 (8)

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝𝑡𝑦𝑠𝑝𝑡 (𝑠, 𝑝, 𝑡) ∈ 𝐻 (9)

𝑥 ∈ R𝐻
+ , 𝑦 ∈ {0, 1}𝐻 (10)

5 STRENGTHENING THE
FORMULATIONS

This section gives some simple techniques for strengthening
the continuous relaxations of the MILP-formulations. First,
observe that for pools with only one entering or one leaving
arc, the 𝑦-variables and corresponding constraints are not
needed.

Observation 1. Deletion of variables 𝑦𝑠𝑝 (𝑠 ∈ 𝑆𝑝) and
𝑦𝑝𝑡 (𝑡 ∈ 𝑇𝑝), as well as constraints (5)–(6), for all 𝑝 ∈ 𝑃

such that min {|𝑆𝑝| , |𝑆𝑝|} = 1, does not alter the optimal
solution to (2)–(7).

5.1 Lifted Inequalities

By a maximum flow instance of (2)–(7), we mean an in-
stance in which 𝑐𝑝𝑡 = −1 for a unique sink 𝑡 ∈ 𝑇 and all
neighboring pools 𝑝 ∈ 𝑃𝑡, whereas 𝑐𝑖𝑗 = 0 for all other
arcs (𝑖, 𝑗) ∈ 𝐴. That is, the problem is to maximize the
flow entering 𝑡, subject to the imposed constraints. Anal-
ogously, if all arcs leaving a given source 𝑠 ∈ 𝑆 have cost
−1, whereas other costs are zero, we face a maximum flow
instance corresponding to source 𝑠.

When the inducing node is a sink, the maximum flow
instance is particularly easy to solve:

Proposition 5.1. Any maximum flow instance of (2)–
(7) corresponding to 𝑡 ∈ 𝑇 has an optimal solution (𝑥, 𝑦)
where 𝑦𝑝𝑡 = 1 for all 𝑝 ∈ 𝑃𝑡, and 𝑥𝑠𝑝𝑡 = 0 for all (𝑠, 𝑝, 𝑡) ∈
𝐻 where 𝑡 ̸= 𝑡.

Proof. Let (𝑥, 𝑦) be a feasible solution to (2)–(7). As-
sume that

∑︀
(𝑠,𝑝,𝑡)∈𝐻𝑡

𝑥𝑠𝑝𝑡 > 0 for some sink 𝑡 ̸= 𝑡. Then,

for a sufficiently small 𝛿 > 0, also (𝑥′, 𝑦), where 𝑥′
𝑠𝑝𝑡 =

(1−𝛿)𝑥𝑠𝑝𝑡 for all (𝑠, 𝑝, 𝑡) ∈ 𝐻𝑡 and 𝑥′
𝑠𝑝𝑡 = 𝑥𝑠𝑝𝑡 for (𝑠, 𝑝, 𝑡) ∈

𝐻∖𝐻𝑡, is also feasible. Further, the objective function value
at (𝑥′, 𝑦) is identical to the one at (𝑥, 𝑦). For the largest
such 𝛿, 𝑥′

𝑠𝑝𝑡 = 0 for some (𝑠, 𝑝, 𝑡) ∈ 𝐻𝑡. It follows by in-

duction that (2)–(7) has an optimal solution where 𝑡 is the
sole sink to receive non-zero flow. In such a solution, it is
optimal to assign the value 1 to 𝑦𝑝𝑡 for all 𝑝 ∈ 𝑃𝑡, which
completes the proof. �

The tractability of sink-induced maximum flow instances
is contrasted by their source-induced counterparts:

Proposition 5.2. The Single-In-Or-Out Pooling
Problem is NP-hard for maximum flow instances corre-
sponding to a source.

Proof. The proof is by reduction from the Partition
Problem: Let 𝑎1, . . . , 𝑎𝑛 ∈ Z+. Consider the instance of
the Single-In-Or-Out Pooling Problem where 𝑆 ={︀
𝑠+1 , . . . , 𝑠

+
𝑛 , 𝑠

−
1 , . . . , 𝑠

−
𝑛 , 𝑠

}︀
, 𝑃 = {𝑝1, . . . , 𝑝𝑛, 𝑝},

𝑇 = {𝑡0, 𝑡1}, 𝐴𝑇 = 𝑃 × 𝑇 , 𝐴𝑆 =
{︀
(𝑠+𝑖 , 𝑝𝑖), (𝑠

−
𝑖 , 𝑝𝑖)

}︀𝑛

𝑖=1
∪

{(𝑠, 𝑝)}, 𝐾 = {𝑘}, 𝑏
𝑠+𝑖

= 𝑏
𝑠−𝑖

= 𝑎𝑖, 𝑏𝑝𝑖 = 2𝑎𝑖 (𝑖 = 1, . . . , 𝑛),

𝑏𝑠 = 𝑏𝑝 = 2
∑︀𝑛

𝑖=1 𝑎𝑖, 𝑏𝑡0 = 𝑏𝑡1 = 2
∑︀𝑛

𝑖=1 𝑎𝑖, 𝑞
𝑘

𝑠+𝑖
= 𝑞𝑘

𝑠−𝑖
= 0

(𝑖 = 1, . . . , 𝑛), 𝑞𝑘𝑠 = 1, 𝑞𝑘𝑡0 = 𝑞𝑘𝑡1 = 1
2
, 𝑐𝑠𝑝 = −1, and 𝑐𝑖𝑗 = 0

for all (𝑖, 𝑗) ∈ 𝐴 ∖ {(𝑠, 𝑝)}.
The quality constraints at sinks 𝑡0 and 𝑡1 ensure that

the flow along arc (𝑠, 𝑝) is at full capacity 2
∑︀𝑛

𝑖=1 𝑎𝑖 only
if both sinks receive

∑︀𝑛
𝑖=1 𝑎𝑖 flow units from 𝑆 ∖ {𝑠}. Then

the flow along the arcs entering 𝑝1, . . . , 𝑝𝑛 are at full capac-
ity. From the single-flow constraints, it follows that each
pool 𝑝1, . . . , 𝑝𝑛 delivers flow to exactly one sink. Hence,
(𝑎1, . . . , 𝑎𝑛) is a yes-instance if and only if the maximum
flow leaving 𝑠 is 2

∑︀𝑛
𝑖=1 𝑎𝑖. �

Observation 2. If (𝑥, 𝑦) is an optimal solution to (2)–
(7), then ∑︁

𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡 ≤ 0 (11)

for all 𝑡 ∈ 𝑇 .

97

Proof. Assume (11) is violated for some 𝑡′ ∈ 𝑇 . Define
𝑥′ ∈ R𝐻

+ such that 𝑥′
𝑠𝑝𝑡′ = 0 (𝑝 ∈ 𝑃𝑡′ , 𝑠 ∈ 𝑆𝑝) and 𝑥′

𝑠𝑝𝑡 =

𝑥𝑠𝑝𝑡 (𝑡 ∈ 𝑇 ∖ {𝑡′}, 𝑝 ∈ 𝑃𝑡, 𝑠 ∈ 𝑆𝑝). Then, (𝑥
′, 𝑦) is feasible,

and
∑︀

(𝑠,𝑝,𝑡)∈𝐻 (𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥
′
𝑠𝑝𝑡 <

∑︀
(𝑠,𝑝,𝑡)∈𝐻 (𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡,

contradicting the optimality assumption. �

It follows from Observation 2 that, for any (𝑠, 𝑝, 𝑡) ∈ 𝐻,
we can lift inequality (6) to

𝑥𝑠𝑝𝑡 ≤ 𝛼𝑠𝑝𝑡𝑦𝑠𝑝 + 𝛽𝑠𝑝𝑡𝑦𝑝𝑡,

where 𝛼𝑠𝑝𝑡 and 𝛽𝑠𝑝𝑡 are upper bounds on the optimal
flow along (𝑠, 𝑝, 𝑡) under the mutually exclusive conditions
𝑦𝑠𝑝 = 1 and 𝑦𝑝𝑡 = 1, respectively. The latter bound is
identified by the linear program

𝛽𝑠𝑝𝑡 = max
𝑥

𝑥𝑠𝑝𝑡 (12)

s.t.
∑︁

𝑝∈𝑃𝑠∩𝑃𝑡

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠 𝑠 ∈ 𝑆 (13)

∑︁
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑝 𝑝 ∈ 𝑃𝑡 (14)

∑︁
𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(︁
𝑞𝑘𝑠 − 𝑞𝑘𝑡

)︁
𝑥𝑠𝑝𝑡 ≤ 0 𝑘 ∈ 𝐾 (15)

∑︁
𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡 ≤ 0 (16)

𝑥 ∈ R𝐻𝑡
+ , (17)

while 𝛼𝑠𝑝𝑡 is the optimal objective function value to the
same LP, with the additional constraints that 𝑥𝑠𝑝𝑡 = 0 for
all 𝑠 ∈ 𝑆𝑝 ∖ {𝑠}.

Recently, a procedure for eliminating sinks at which
the quality constraints (4) can be met only by the zero
flow, has been suggested [11, Observation 1]. The above
lifting techniques is built upon analogous principles, and
has a corresponding elimination effect since 𝛽𝑠𝑝𝑡 = 0 for
all (𝑠, 𝑝, 𝑡) ∈ 𝐻𝑡 if (4) is too strict at 𝑡. By virtue of the
profitability condition (16), however, the lifting procedure
is capable of eliminating more sink nodes, and it is conse-
quently more selective than [11].

A stronger relaxation of the formulation for the Single-
In-And-Out Pooling Problem is obtained by lifting
constraint (9) to

𝑥𝑠𝑝𝑡 ≤ 𝛼𝑠𝑝𝑡𝑦𝑠𝑝𝑡 (𝑠, 𝑝, 𝑡) ∈ 𝐻.

5.2 Valid Inequalities

Because the flow along arc (𝑠, 𝑝) cannot exceed 𝑏𝑠𝑝, and
because it is non-zero only if 𝑦𝑠𝑝 or

∑︀
𝑡∈𝑇𝑝

𝑦𝑝𝑡 equals one,

the following inequalities are valid in all problems (the
Single-In-And-Out Pooling Problem disregarded):

∑︁
𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝

⎛⎝𝑦𝑠𝑝 +
∑︁
𝑡∈𝑇𝑝

𝑦𝑝𝑡

⎞⎠ (𝑠, 𝑝) ∈ 𝐴𝑆 (18)

∑︁
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑝𝑡

⎛⎝𝑦𝑝𝑡 +
∑︁
𝑠∈𝑆𝑝

𝑦𝑠𝑝

⎞⎠ (𝑝, 𝑡) ∈ 𝐴𝑇 (19)

The arguments leading to (19) are analogous to those
yielding (18).

When the capacities at the sinks 𝑇𝑝 are large compared
with capacities 𝑏𝑠 and 𝑏𝑝, (18) becomes particularly effec-
tive. In the extreme case, when min {𝑏𝑡 : 𝑡 ∈ 𝑇𝑝} ≥ 𝑏𝑠𝑝,

we have 𝑏𝑠𝑝𝑡 = 𝑏𝑠𝑝 for all 𝑡 ∈ 𝑇𝑝. Summating (6) over all
𝑡 ∈ 𝑇𝑝 then yields∑︁

𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ |𝑇𝑝| 𝑏𝑠𝑝𝑦𝑠𝑝 + 𝑏𝑠𝑝
∑︁
𝑡∈𝑇𝑝

𝑦𝑝𝑡,

which obviously is weaker than (18). Analogously, (19)
becomes effective when 𝑏𝑠 (𝑠 ∈ 𝑆𝑝) is large compared with
𝑏𝑝 and 𝑏𝑡.

A valid formulation of the Single-In-Or-Out Pooling
Problem is obtained if (6) is replaced by (18)–(19). How-
ever, in the continuous relaxations of the formulations, in-
equalities (18)–(19) and constraints (6) complement rather
than replace each other. This is seen by observing that for
fractional values of 𝑦, (18)–(19) do not necessarily imply
(6).

Inequality (19) is lifted to∑︁
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡 ≤ 𝜎𝑝𝑡𝑦𝑝𝑡 +
∑︁
𝑠∈𝑆𝑝

𝛼𝑠𝑝𝑡𝑦𝑠𝑝 (𝑝, 𝑡) ∈ 𝐴𝑇 ,

in a way analogously to what is outlined in Section 5.1.
The upper bound 𝜎𝑝𝑡 on the optimal flow along a given arc
(𝑝, 𝑡) ∈ 𝐴𝑇 , is given by the maximum value of

∑︀
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡,

subject to constraints (13)–(17).
According to Proposition 5.1, maximizing the flow along

an arc entering a sink does not involve consideration of
other sinks. Consequently, the LP (12)–(17) has variables
corresponding exclusively to paths in 𝐻𝑡. Unfortunately,
an analogous network reduction is not achieved when the
maximum flow 𝜎𝑠𝑝 along (𝑠, 𝑝) ∈ 𝐴𝑆 is to be maximized.
Proposition 5.2 suggests that lifting of inequality (18) anal-
ogously to the lifting of (19) is considerably more expensive,
and computing 𝜎𝑠𝑝 is unlikely to be worth the computa-
tional cost.

With no efforts beyond those required in the lifting of
(6) and (19), (18) is however lifted to∑︁

𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝𝑦𝑠𝑝 +
∑︁
𝑡∈𝑇𝑝

𝛽𝑠𝑝𝑡𝑦𝑝𝑡 (𝑠, 𝑝) ∈ 𝐴𝑆 .

In the Single-In-And-Out Pooling Problem, the
valid inequalities∑︁

𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝
∑︁
𝑡∈𝑇𝑝

𝑦𝑠𝑝𝑡 (𝑠, 𝑝) ∈ 𝐴𝑆

become effective when the sinks have relatively large ca-
pacities.

6 PRELIMINARY EXPERIMENTS

Feasible solutions to any of the problems of Definition 2.2
are also feasible in the Standard Pooling Problem. So-
lution algorithms for the single-flow constrained problems,
possibly with time interruption, can thus be considered as
heuristic methods for the standard version of the problem.
This section reports some preliminary experiments where
this approach is benchmarked against other heuristics that
recently have been analyzed in the literature.

6.1 Test Instances and Experimental
Setup

The Single In-Or-Out Pooling Problem is the variant
which preserves the largest part of the feasible region in the
standard problem. Therefore, our experiments amount to

98

submitting instantiations of model (2)–(7), with the addi-
tion of the valid inequalities (18)–(19), to a generic MILP-
solver. Twenty publicly available benchmark instances are
considered, each of which has previously [3, 11, 16] been an-
alyzed in studies of heuristics for the Standard Pooling
Problem. Dey and Gupte [11] report extensive experi-
ments on 50 additional randomly generated instances, to
which we do not have access. They compare variants of
their MIP-techniques, based on discretization of the solu-
tion set, with various heuristics. Amongst these is the time-
interrupted application of a generic global solver (BARON).
As detailed reports on the solutions produced by all in-
vestigated methods are provided [11], the capabilities of
the current approach to generate good feasible solutions is
benchmarked against these.

The test instances are partitioned into three groups,
where the node and quality cardinalities, |𝑆|, |𝑃 *|, |𝑇 |,
and |𝐾| are constant within each group. Here, 𝑃 * =
{𝑝 ∈ 𝑃 : max {|𝑆𝑝| , |𝑇𝑝|} > 1} is the set of pools with more
than one incident arc on at least one side. In instances
A0, . . . ,A9, we have |𝑆| = 20, |𝑃 *| = 10, |𝑇 | = 15, and
|𝐾| = 12, in instances B0, . . . ,B5, |𝑆| = 35, |𝑃 *| = 17,
|𝑇 | = 21, and |𝐾| = 17, and in instances C0, . . . ,C3,
|𝑆| = 60, |𝑃 *| = 30, |𝑇 | = 40, and |𝐾| = 20. More de-
tails about the instances are given in [3]. Henceforth, this
set of instances is denoted 𝐼.

To solve the MILP-instances, CPLEX (version 12.5.1.0)
is used. Time bounds of 30 CPU-minutes (instances A0–A9
and B0–B5) and 60 CPU-minutes (instances C0–C3) are
imposed. All runs are made on a Linux machine (64-bit)
with two x86-processors (2.40 GHz) and 1.9GB of RAM.

6.2 Numerical Results

Following [11], a summary of the performance of the ap-
proach under study is given in terms of performance profiles.
Let 𝑀 be the set consisting of the 13 methods compared
in [11], in addition to the current one. For each 𝑚 ∈ 𝑀 ,
let 𝑧(𝑚, 𝑖) be the cost of the solution that method 𝑚 pro-
duced in instance 𝑖 ∈ 𝐼, and define the corresponding

score 𝜂(𝑚, 𝑖) = 𝑧(𝑚,𝑖)−min{𝑧(𝑛,𝑖):𝑛∈𝑀}
max{𝑧(𝑛,𝑖):𝑛∈𝑀}−min{𝑧(𝑛,𝑖):𝑛∈𝑀} . That is,

𝜂(𝑚, 𝑖) ∈ [0, 1], with lower values indicating better per-
formance. A point (𝜅, 𝛾) intersected by the performance
profile of 𝑚 tells that there exist |𝐼|𝛾 instances 𝑖 (but not
more), in which 𝜂(𝑚, 𝑖) is no more than 𝜅. Hence, higher
profiles indicate stronger performance than lower ones.

Performance profiles obtained from previously reported
experiments [11] are depicted in Fig. 1. Additionally, the
red dashed profile represents the performance of the ap-
proach taken in the current work. We observe that for small
values of 𝜅, the red profile is dominated by the blue dotted
profile, which represents the performance of BARON when
assigned a time bound of 60 CPU minutes. This reflects
the fact that BARON more often (in 9 instances) than
the current method (in 6 instances) is the best-performing
method. However, in the larger instances, the global solver
struggles to find good feasible solutions, and finds only
the zero solution in three of them. Modest growth in the
corresponding profile is accordingly observed. Further ex-
periments [11] focused on larger instances, demonstrate
that BARON gets outperformed by the MILP techniques
introduced in [11].

Figure 1: Performance profile of the current IP-
approach (red dashed line) matched with BARON
(blue dotted line), and other methods (green solid
lines) from [11]

A feature of the solution approach analyzed in the cur-
rent work is that only sparse solutions, in the sense of
Definition 2.2, are considered. The high positions of the
corresponding profile in Fig. 1 suggests that, in the in-
stances under study, there exist near-optimal solutions to
the Standard Pooling Problem featuring sparsity. At
worst (𝑖 = A4), the score is 𝜂(𝑚, 𝑖) = 0.23 (𝑚 denoting the
current method). The largest optimality gap, relative to
the lower bounds computed by BARON within one CPU
hour [11], is in no instance above 17%. In one instance
(A9), optimality in the Standard Pooling Problem is
proved. The strength of the approach appears to be good
worst-case performance, as only the profile of the method
A(4) [11] has higher positioned points beyond 𝜅 = 0.02. In
four of the instances (B3, B4, B5, and C2), the approach
under study finds better solutions to the Standard Pool-
ing Problem than the previously best known, reported in
[11, 16].

Four of the test instances (A0–A3) are solved to integer
optimality in less than 20 CPU seconds, three more (A4, A7,
and A9) are solved in less than 7 CPU minutes, and another
two instances (A5 and B1) are solved in less than 12 CPU
minutes. In all the remaining 11 instances (A6, A8, B0, B2–
B5, and C0–C3), the solver is interrupted because the time
limit (30 and 60 CPU minutes, respectively) is reached.
Upon interruption, the remaining relative optimality gap
is below 1% in four instances (A6, A8, B4, and B5), and
at most 17% (instance C1).

7 CONCLUSIONS

Although much progress on solution algorithms for the
Standard Pooling Problem has been made over the
last decade, it is still to be judged as a considerably diffi-
cult problem to solve. Restricted versions of the problems
introduced in the current text are also shown to be NP-
hard. Unlike their parent problem, however, the single-flow

99

constrained pooling problems admit very natural MILP-
formulations. By virtue of this, powerful MILP-solvers can
provide non-trivial feasible solutions, at least in instances
of modest size.

The Single-In-Or-Out Pooling Problem, which has
received most of the attention in this work, has a potential
to serve as an inner approximation of the standard problem.
Some progress towards strong MILP-formulations for the
problem has been made, and preliminary computational
tests are encouraging. In the instances tested in the current
work, the sparse solutions obtained are good approxima-
tions of the optimal solutions to the Standard Pooling
Problem. To what extent the approximation capability
is a general or an instance-specific property is a research
question worthy of being investigated, both theoretically
and experimentally.

An adequate experimental evaluation of the approach is
left to be made. Numerical experiments reported so far are
insufficient to conclude about strengths and weaknesses,
and should not be considered as a complete assessment. In
the full-length version of this paper, we will carry out a more
thorough study of the theory and the solution methods for
the pooling problem with single-flow constraints.

REFERENCES
[1] N. Adhya, M. Tawarmalani, and N. V. Sahinidis. 1999. A

Lagrangian Approach to the Pooling Problem. Industrial and
Engineering Chemistry Research 38, 5 (1999), 1956–1972.

[2] M. Alfaki and D. Haugland. 2013. Strong Formulations for the
Pooling Problem. Journal of Global Optimization 56, 3 (2013),
897–916.

[3] M. Alfaki and D. Haugland. 2014. A Cost Minimization Heuris-
tic for the Pooling Problem. Annals of Operations Research
222, 1 (2014), 73–87.

[4] H. Almutairi and S. Elhedhli. 2009. A New Lagrangian Ap-
proach to the Pooling Problem. Journal of Global Optimization
45, 2 (2009), 237–257.

[5] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mlade-
nović. 2004. Pooling Problem: Alternate Formulations and So-
lution Methods. Management Science 50, 6 (2004), 761–776.

[6] T. E. Baker and L. S. Lasdon. 1985. Successive Linear Program-
ming at Exxon. Management Science 31, 3 (1985), 264–274.

[7] R. Baltean-Lugojan and R. Misener. 2018. Piecewise Paramet-
ric Structure in the Pooling Problem: From Sparse Strongly-
Polynomial Solutions to NP-hardness. Journal of Global Opti-
mization 71, 4 (2018), 655–690.

[8] A. Ben-Tal, G. Eiger, and V. Gershovitz. 1994. Global Minimiza-
tion by Reducing the Duality Gap. Mathematical programming
63, 2 (1994), 193–212.

[9] N. Boland, T. Kalinowski, and F. Rigterink. 2017. A Polynomi-
ally Solvable Case of the Pooling Problem. Journal of Global
Optimization 67, 3 (2017), 621–630.

[10] C. W. Dewitt, L. S. Lasdon D. A. Brenner, and S. A. Melhem.
1989. OMEGA: An Improved Gasoline Blending System for
Texaco. Interfaces 19, 1 (1989), 85–101.

[11] S. Dey and A. Gupte. 2015. Analysis of MILP Techniques
for the Pooling Problem. Operations Research 63, 2 (2015),
412–427.

[12] G. Erbeyoglu and U. Bilge. 2016. PSO-based and SA-Based
Metaheuristics for Bilinear Programming Problems: an Appli-
cation to the Pooling Problem. Journal of Heuristics 22, 2
(2016), 147–179.

[13] C. A. Floudas and V. Visweswaran. 1990. A Global Optimiza-
tion Algorithm (GOP) for CERTAIN Classes of Nonconvex
NLPs. 1. Theory. Computers and Chemical Engineering 14,
12 (1990), 1397–1417.

[14] L. R. Foulds, D. Haugland, and K. Jörnsten. 1992. A Bilinear
Approach to the Pooling Problem. Optimization 24 (1992),
165–180.

[15] B. Galan and I. E. Grossmann. 1998. Optimal Design of Dis-
tributed Wastewater Treatment Networks. Industrial and En-
gineering Chemistry Research 37, 10 (1998), 4036–4048.

[16] A. Gupte, S. Ahmed, S. Dey, and M. S. Cheon. 2017. Relax-
ations and Discretizations for the Pooling Problem. Journal of
Global Optimization 67, 3 (2017), 631–669.

[17] D. Haugland. 2016. The Computational Complexity of the
Pooling Problem. Journal of Global Optimization 64, 2 (2016),
199–215.

[18] D. Haugland and E. M. T. Hendrix. 2016. Pooling Problems
with Polynomial-Time Algorithms. Journal of Optimization
Theory and Applications 170, 2 (2016), 591–615.

[19] C. A. Haverly. 1978. Studies of the Behaviour of Recursion
for the Pooling Problem. ACM SIGMAP Bulletin 25 (1978),
19–28.

[20] J. Kallrath05. 2005. Solving Planning and Design Problems in
the Process Industry Using Mixed Integer and Global Optimiza-
tion. Annals of Operations Research 140, 1 (2005), 339–373.

[21] M. Kimizuka, S. Kim, and M. Yamashita. 2018. Solving Pooling
Problems by LP and SOCP Relaxations and Rescheduling
Methods. AnrXiv:1804.02857 [math.OC] (2018).

[22] A. Marandi, J. Dahl, and E. de Klerk. 2018. A Numerical
Evaluation of the Bounded Degree Sum-of-Squares Hierarchy
of Lasserre, Toh, and Yang on the Pooling Problem. Annals of
Operations Research 265, 1 (2018), 67–92.

[23] R. Misener and C. A. Floudas. 2009. Advances for the Pooling
Problem: Modeling, Global Optimization, and Computational
Studies Survey. Applied and Computational Mathematics 8, 1
(2009), 3–22.

[24] R. Misener and C. A. Floudas. 2010. Global Optimization of
Large-Scale Generalized Pooling Problems: Quadratically Con-
strained MINLP Models. Industrial and Engineering Chem-
istry Research 49, 11 (2010), 5424–5438.

[25] R. Misener, J. P. Thompson, and C. A. Floudas. 2011.
APOGEE: Global Optimization of Standard, Generalized, and
Extended Pooling Problems via Linear and Logarithmic Parti-
tioning Schemes. Computers and Chemical Engineering 35, 5
(2011), 876–892.

[26] N. V. Sahinidis and M. Tawarmalani. 2005. Accelerating
Branch–and–Bound through a Modeling Language Construct
for Relaxation–Specific Constraints. Journal of Global Opti-
mization 32, 2 (2005), 259–280.

[27] V. Visweswaran. 1996. Computational results for an efficient
implementation of the GOP algorithm and its variants. In
I.E. Grossmann (Ed.): Global Optimization in Engineering
Design. Kluwer Series in Nonconvex Optimization and Its
Applications 9 (1996), 111–153.

100

Challenges in System Reliability and its application in
Network Optimization

Guillermo Rela

Facultad de Ingeniería. Universidad

de la República

Montevideo, Uruguay

grela@fing.edu.uy

Franco Robledo

Facultad de Ingeniería. Universidad

de la República

Montevideo, Uruguay

frobledo@fing.edu.uy

Pablo Romero

Facultad de Ingeniería. Universidad

de la República

Montevideo, Uruguay

promero@fing.edu.uy

This paper has been retracted by the authors.

Pages 101-106 of the Proceedings volume are therefore left blank.

[note by the editor of OpenProceedings.org]

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 101 DOI: 10.5441/002/inoc.2019.19

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.19

This paper has been retracted by the authors.

Pages 101-106 of the Proceedings volume are therefore left blank.

[note by the editor of OpenProceedings.org]

102

This paper has been retracted by the authors.

Pages 101-106 of the Proceedings volume are therefore left blank.

[note by the editor of OpenProceedings.org]

103

This paper has been retracted by the authors.

Pages 101-106 of the Proceedings volume are therefore left blank.

[note by the editor of OpenProceedings.org]

104

This paper has been retracted by the authors.

Pages 101-106 of the Proceedings volume are therefore left blank.

[note by the editor of OpenProceedings.org]

105

This paper has been retracted by the authors.

Pages 101-106 of the Proceedings volume are therefore left blank.

[note by the editor of OpenProceedings.org]

106

A Nested Decomposition Model for
Reliable NFV 5G Network Slicing
Huy Duong and Brigitte Jaumard

Computer Science and Software Engineering, Concordia University
Montreal, QC, Canada

bjaumard@cse.concordia.ca

ABSTRACT

With the 5th generation ofmobile networking (5G) on our doorstep,
optical network operators are reorganizing their network infras-
tructures so that they can deploy different topologies on the same
physical infrastructure on demand. This new paradigm, called
network slicing, together with network function virtualization
(NFV), can be enabled by segmenting the physical resources based
on the requirements of the application level.

In this paper, we investigate a nested decomposition scheme
for the design of reliable 5G network slicing. It involves revisit-
ing and improving the previously proposed column generation
models, and adding in particular the computation of dual bounds
with Lagrangian relaxation in order to assess the accuracy of the
solutions.

Extensive computational results show thatwe can get ε-optimal
reliable 5G slicing solutions with small ε (about 1% on average)
in fairly reasonable computational times.

1 INTRODUCTION

The 5th generation of mobile networking (5G) is based on the
key technologies of Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) in order to offer multiple
services with various performance requirements, e.g., low latency,
high throughput, high reliability, or high security. SDN allows
network operators to remotely (re)configure the physical network
in order to reserve on demand networking resources. Virtual
compute nodes (i.e., node with computing resources such as
servers or a data center) can enable Virtual Network Functions
(VNFs) running on top of general-purpose hardware, such as a
cloud infrastructure.

Within the context of 5G networks, network slicing is an end-
to-end logical network provisioned with a set of isolated virtual
resources on a shared physical infrastructure. Slices are provided
as different customized services to fulfill dynamic demands, with
flexible resource allocations. In other words, a network slice is a
self-contained network with its own virtual resources, topology,
traffic flow, and provisioning rules. Network slicing is therefore
a key feature of 5G networks, which allows the efficient resource
share of a common physical infrastructure and consequently,
reduces operators’ network construction costs.

An interesting feature of SDN is its ability to process traf-
fic while forwarding it, using "network functions" or "network
services". The latter ones can implement header processing and
payload processing functions, such as network address transla-
tion (NAT), firewall, or domain name system (DNS). They are
called Virtual Network Functions (VNFs) and can be implemented
in software on conventional processing systems (e.g., servers or
data centers) that are co-located with networking equipment.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The sequence of functions that need to be set up for a specific
flow is referred to as a "service chain."

In this paper, we propose a 5G network slicing design model
and algorithm, based on nested column generation. It aims at
maximizing the number of granted slices while addressing the
reliability requirements of network slices. In order to avoid the
costly exact solutions of the sub-problems, we discuss how to
compute bounds using Lagrangian relaxation, so that we can
assess the accuracy of the output solutions.

The paper is organized as follows. Section 2 contains the liter-
ature review. Section 3 provides the detailed problem statement
of the design of reliable 5G network slicing. An original nested
decomposition model is proposed in Section 4. Algorithmic as-
pects are covered in Section 5. Numerical results are described in
Section 6 and conclusions are drawn in the last section.

2 LITERATURE REVIEW

2.1 5G Network Slicing

Several papers and surveys have already appeared on 5G network
slicing and described their various challenges and opportunities
[1, 14]. Similarly, many studies and several surveys have been
devoted to Network Function Virtualization (NFV), e.g., [20].

Very few studies look at the combination of reliable 5G slicing
and NFV. Tang et al. [18] propose an MILP for 5G network slicing
that maximizes the number of granted slices while minimizing
their failure rate, without providing protection mechanisms.

Some authors looked at network slicing andNFV,more often in
the wireless networks than in the wired optical ones. Challenges
are discussed in, e.g., [10, 14].

Lin et al. [11] propose an exact algorithm using column gen-
eration aiming to minimize the total embedding cost in terms
of spectrum cost and computation cost for a single virtual net-
work request. Moreover, validation of the exact algorithm is made
on a six node network. Large data instances are solved using a
heuristic. Destounis et al. [3] also propose an exact column gen-
eration algorithm for network slicing without the NSF features.
They solved data instances up to 200 nodes. Carella et al. [2]
exemplified Network slicing as an addition to the current Cloud
architecture and evaluated on a testbed architecture based on
the Fraunhofer FOKUS and TU Berlinopen source Open Baton
toolkit.

2.2 Nested Column Generation

Decomposition

The idea of nested column generation is not new: several authors
have already investigated it for various problems, e.g., Song [17]
in logistics, Dohn and Mason [4] for staff rostering, Karabuk
[8] for scheduling paratransit vehicles and Vanderbeck [19] for
two-dimension cutting-stock.

However, most studies did not worry about assessing accu-
rately the quality of the output solutions, except, e.g., [6, 19].

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 107 DOI: 10.5441/002/inoc.2019.20

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.20

SFC 1 Slice (smartphones)

SFC 2 Slice (autonomous driving)

SFC 2 Slice (IoT)

ClassifierClassifier

SRC
node

DST
node

proxy

firewall

NAT

Classifier

Backup path

Physical network

Optical network virtualization

Physical
mapping

of the
working route

Physical
mapping

of the
backup route

Figure 1: 5G Reliable Slicing

3 PROBLEM STATEMENT AND NOTATIONS

3.1 Rel_5G_NFV Problem Statement

Consider a physical network Gp and a set K of connections, in-
dexed by k . The Reliable 5G NFV Network Slicing (Rel_5G_NFV)
problem consists of embedding/mapping the maximum number
of slices onto the physical network while ensuring each slice
is individually protected against any single link failure. We as-
sume each slice is associated with a given application, that is
characterized with the use of a single service function chain.

3.2 Notations

Physical Network. The physical network Gp = (V p,Lp) is de-
fined by its set of nodes V p, indexed by v , set of links ℓ ∈ Lp,
with capacities capv ≥ 0 and capℓ ≥ 0 on both nodes and links,
respectively.
5G Slicing. Each slice S ∈ S is associated with a virtual network
S = (V S ,LS , capS), which is defined by a set of virtual nodes
V S (indexed by v ′), and virtual links LS (indexed by ℓ′), with
capacity requirements capSv ′ and capS

ℓ′
, respectively.

Virtual Networks. An embedding of S ontoGp consists of map-
ping:

• Each virtual node v ′ ∈ V S onto a physical node v ∈ V p

• Each virtual link ℓ′ onto a loop-free physical path, con-
necting two physical nodes u and v , to which the virtual
nodes u ′ and v ′ have been mapped

• Each virtual "path" is protected by a virtual path, whose
mapping is physical link-disjoint from the mapping of the
first path,

in order to maximize the GoS.
A feasible embedding is an embedding in which all physical

link and node capacity constraints are satisfied; that is, the sum
of capacity demands of all virtual nodes embedded on a physical
node is less than the capacity of this physical node, and the sum
of the requests of all the virtual links going through a physical
link does not exceed the capacity of this link.

In order to simplify the model and the algorithm, we work
directly with the mapping of the virtual nodes/links, i.e., with
physical nodes/links, without expressing explicitly the virtual
links and nodes.
Service Function Chaining. Let F be the set of all services
functions, indexed by f , and let C be the set of all service func-
tion chains, indexed by c . Any chain c is defined by an ordered
sequence of nc functions: c = { f0, f1, .., fnc−1}. The routing of
any demand in a slice governed by SFC c must go through virtual
compute nodes hosting the functions of c .

Application (Slice) Demand. Demands are provided for each
slice S , with each slice being associated with one particular appli-
cation, characterized by a given Service Function Chain (SFC) cS .
We denote by Ksd,cS the demand for node pair (vs ,vd) ∈ SDcS ,
i.e., with traffic in slice S , subject to the requirement of SFC cS ,
and by ∆sd,cfi

the required computational resource of function fi

for demand Ksd,cS .

4 A NESTED DECOMPOSITION SCHEME

We now present a nested decomposition scheme, in which at the
upper layer of the decomposition, we select the slice configura-
tions for each slice demand. Each slice configuration is defined
by a virtual network as defined in Section 3.2, which satisfies
the demand KcS associated with its required application and
corresponding SFC cS .

Let Γ, indexed by γ , be set of all possible slice configurations.
Each slice configuration γ is characterized by a slice S and its
assigned resources. Each slice configuration γ is characterized
by its slice index S , its node assigned resources Rγv , and its link
assigned resources Bγ

ℓ
. We have Γ =

⋃
c ∈C

ΓcS .

In order to simplify the notations, we will simply write c unless
there is confusion.

4.1 Master Problem

Master problem maximizes the grade of service (GoS) subject to
capacity constraints. It requires only one set of variables: zγ = 1
if potential slice virtual network γ associated with c is selected,
0 otherwise, for γ ∈ Γc and c ∈ C .
Objective:

max
∑
c ∈C

∑
γ ∈Γc

∑
(s,d)∈SDc

Ksd,c zγ (1)

subject to: ∑
γ ∈Γc

zγ ≤ 1 c ∈ C (2)∑
c ∈C

∑
γ ∈Γc

R
γ
vzγ ≤ capv v ∈ V p (3)∑

c ∈C

∑
γ ∈Γc

B
γ
ℓ
zγ ≤ capℓ ℓ ∈ Lp (4)

zγ ∈ {0, 1} γ ∈ Γ (5)

Constraints (2) impose to select at most one virtual network
(slice) for demand associated with c ∈ C . Constraints (3) enforce
the compute node capabilities, while constraints (4) enforce the
link transport capacities.

4.2 Slicing Pricing Problem (PPslice)

In order to be able to compute the required node and link resource
for a given slice, the pricing problem, or equivalently, the slice
configuration generator, needs to provision the demand Kc . We
define the following parameters.
Parameters:

• π ∈ Π: a logical path that defines a service path with chain
c from s to d . Note that a logical path may go through a
given physical link several times due to the sequence of
functions in c .

• Πc
sd ⊆ Π: set of all potential paths for service chain c from

s to d .

108

• ai,πv = 1 if, on path π , function fi is hosted on physical
node v , 0 otherwise.

• δπ
ℓ
= number of times path π goes through link ℓ

• xπ
ℓ
= 1 if logical path π goes through physical link ℓ at

least once, 0 otherwise.
Variables:

• ysd,cπ ,p = 1 if path π is the primary path to provision traffic
from s to d , 0 otherwise.

• ysd,cπ ,b = 1 if path π is the backup path to provision traffic
from s to d , 0 otherwise.

Objective:

max RCPPslice =
∑

(s,d)∈SD

Ksd,c − u
(2)
c

−
∑
v ∈V p

u
(3)
v

∑
(s,d)∈SD

nc−1∑
i=0

∑
π ∈Πcsd

∆sdfi
ai,πv (ysd,cπ ,p + y

sd,c
π ,b)

−
∑
ℓ∈Lp

u
(4)
ℓ

∑
(s,d)∈SD

∑
π ∈Πcsd

Ksd,cδπℓ (y
sd,c
π ,p + y

sd,c
π ,b) (6)

Constraints:

One primary path per demand:∑
π ∈Πcsd

ysd,cπ ,p = 1 (vs ,vd) ∈ SD (7)

One backup path per demand:∑
π ∈Πcsd

ysd,cπ ,b = 1 (vs ,vd) ∈ SD . (8)

Link disjoint primary and backup paths:∑
π ∈Πcsd

xπℓ (y
sd,c
π ,p + y

sd,c
π ,b) ≤ 1 (vs ,vd) ∈ SD, ℓ ∈ Lp. (9)

Link and node capacities:

(Rv =)
∑

(vs ,vd)∈SD

nc−1∑
i=0

∑
π ∈Πcsd

∆sdfi
ai,πv (ysd,cπ ,p + y

sd,c
π ,b)

≤ capv v ∈ V p (10)

(Bℓ =)
∑

(vs ,vd)∈SD

∑
π ∈Πcsd

Ksd,cδπℓ (ysd,cπ ,p + y
sd,c
π ,b)

≤ capℓ ℓ ∈ Lp. (11)

4.3 Path Pricing Problem (PPsd): Service path

for Demand from vs to vd
For a given (vs ,vd) ∈ SD, we look for the generation of a path
π from vs to vd , which can improve the linear programming
relaxation of PPslice.
Variables:

• xπ
ℓ
= 1 if path π uses ℓ, 0 otherwise.

• δπ
ℓ
= number of times path π goes through ℓ.

• φsd,c,i
ℓ

= 1 if, for service chain c , the path from vs to vd
uses link ℓ to go from the location of function fi−1 to the
location of function fi , 0 otherwise. Note that, when i = 0,
φsd,c,i
ℓ

represents the path from the source to the first
function, when i = nc , it is the path from the last function
to the destination.

• aiv = 1 if the ith function (fi) of chain c is installed on
node v , 0 otherwise.

Objective:

max

(
−

∑
v ∈V p

u
(3)
v

nc−1∑
i=0

∆sdfi
ai,πv −

∑
ℓ∈Lp

u
(4)
ℓ
Ksd,cδπℓ)

)
− u

(7)
sd,p −

∑
ℓ∈Lp

xπl u
(9)
sd

−
∑
v ∈V

nc−1∑
i=0

∆sdfi
aivu

(10)
v −

∑
ℓ∈L

u
(11)
ℓ

Ksd,cδπℓ (12)

Constraints:

Aggregation of link usage:

δπℓ =

nc∑
i=0

φsd,c,i
ℓ

ℓ ∈ Lp. (13)

Multiple usage of a link:

φiℓ ≤ xπℓ ℓ ∈ Lp, i ∈ 0, ..,nc − 1. (14)

This set of constraints ensures that xℓ keeps track of physical
link ℓ if it is used by any logical link. Indeed, a link can be used
multiple times by a given path, this set of constraints result xℓ
as used links, no matter how many times they are used. These
variables play the role in the upper pricing where backup path
and primary path must be disjoint.

Flow Conservation constraints∑
ℓ∈ω+(v)

φsd,c,0
ℓ

−
∑

ℓ∈ω−v

φsd,c,0
ℓ

+ asd,c,0v

=

{
1 if v = vs
0 else

v ∈ V p (15)∑
ℓ∈ω+(v)

φsd,c,nc
ℓ

−
∑

l ∈w−v

φsd,c,nc
ℓ

− asd,c,nc−1v

=

{
−1 if v = vd
0 else

v ∈ V p (16)∑
ℓ∈ω+(v)

φsd,c,i
ℓ

−
∑

ℓ∈ω−(v)

φsd,c,i
ℓ

+ asd,c,iv − asd,c,i−1v = 0

v ∈ V p, 0 < i < nc . (17)

Constraints (15) ensure that demand starts at the source node,
then is transferred through a path to the location of first function
(unless first function is located at the source node). Similarly,
constraints (16) make sure that the demand is delivered to the
destination after it is processed by the last function (unless the last
function is installed at the destination node). From the location
of function i − 1 to the location of function i , constraints (17)
define a path to connect them.

We next use constraints to eliminate the ineffective solutions
and, as a consequence, those constraints help to improve the
quality of the columns, i.e., slice configurations.
A unique node location for each function occurrence in the ser-
vice chain: ∑

v ∈V p
aiv = 1 i = 0, 1, . . . ,nc . (18)

If a link is not used, its corresponding xℓ can be set to zero:

xℓ ≤ δπℓ ℓ ∈ Lp (19)

Domain constraints:

xπℓ ,φ
π
ℓ ,a

i
v ∈ {0, 1}; δπℓ ∈ Z+ (20)

109

Node capacity constraints:

nc−1∑
i=0

∆fia
i
v ≤ capv v ∈ V p (21)

Link capacity constraints:

δπℓ K
sd,c ≤ capℓ ℓ ∈ Lp. (22)

We will discuss in the next section how to solve efficiently
the path pricing problems, without requiring the solution of ILP
programs at each iteration of the column generation algorithm.

5 NESTED COLUMN GENERATION

ALGORITHM

Column generation [9] is based on the fact that, in the simplex
method, the solver does not need to simultaneously access all
variables of the problem. In fact, a solver can start working only
with the basis (a particular subset of the constrained variables),
then use a reduced cost to choose the other variables to access,
as needed. It is today a very well known and powerful technique
[5, 12], while column generation modeling remains an art when
the decomposition is not deduced from the application of the
Dantzig-Wolfe decomposition.

We next provide the details of our nested column generation
algorithm and how we estimated the accuracies of the resulting
solutions.

5.1 Nested CG and ILP Solution

The conceptual column generation scheme alternates between
solving a restriction of the original problem, usually called re-
stricted master problem, and a column generation phase which
is used to augment the set of variables/columns of the restricted
master problem using a so-called pricing problem. Here, the
pricing problem can be decomposed into |S| slice pricing sub-
problems.

In order to guarantee reaching an optimal LP solution, it is
required to solve at least once the pricing problem. In this study,
we propose to solve the slice pricing problem, indeed, the slicing
pricing subproblems using again a column generation algorithm.
As these last subproblems are Integer Linear Programs (ILPs),
and as we did not develop any branch-and-price algorithms to
solve them, they are never solved optimally, and therefore we
need to derive a linear relaxation bound in order to get upper
bounds, see next section for the details.

In any case, at both decomposition levels, we use the column
generation algorithm as long as we can derive new improving
columns. For integer solutions, when we cannot improve any-
more the LP solution, we use an ILP solver on the current con-
straint matrix, i.e., the constraint matrix made of all the columns
generated so far, and deduce an ILP solution.

Flowcharts in Figure 2 summarize the algorithm. Accuracy
of the output solutions is assessed with ε , which is defined as
follows:

ε =
zlp − z̃ilp

z̃lp
,

where zlp is an upper bound the LP solution of problem (1)-(5),
whose calculation is developed in Section 5.2. z̃ilp is the best
found ILP solution (hence a lower bound on the ILP solution), as
derived by the solution of the ILP solver on the constraint matrix
of (1)-(5) when no more improved column can be generated by
the solution of the slice pricing problem (6)-(11).

Values
of the
dual

variables

ε-optimal
LP

solution

ε'-optimal 5G
reliable slicing

solution

Optimality
condition
satisfied?

Generation of new potential slice configurations

Selection of the
best slice

configurations

Yes

NoInitial
set of

configu
rations

…………………………………..PP"#$%& PP□PP□

(a) Upper level flowchart

…………………………………..

Weighted
shortest path

problem

Values
of the
dual

variables

optimal LP solution
for PPslice

ε-optimal ILP solution
for PPslice

Optimality
condition
satisfied

for all sd?

Generation of new potential path configurations
Selection of the

best NFV (primary
or backup) path
configurations

Yes

NoInitial set
of paths
(e.g., 1

shortest
path)

PP"#PP□ PP□

(b) Lower level flowchart

Figure 2: Flowcharts

In order to speed-up the solution of the path pricing subprob-
lems, we first use a shortest path algorithm after noting that all
the link costs are positive, taking into account the values of the
dual variables. It is worth noting that the usage of a shortest path
algorithm does not necessarily guarantee the generation of feasi-
ble lightpaths with respect to link and node capacities. However,
those capacities are enforced in the slice pricing subproblems,
and therefore taken care. When the path pricing subproblems
are not able to generate improving paths (i.e., with a negative
reduced cost), then we use an ILP solver to solve them, with the
guarantee to satisfy all node and link capacities.

5.2 Solution Accuracy

The nested column generation framework allows the efficient
exploitation of the substructures of a problem at the expense
of a more difficult exact solution of the linear programming
relaxation as it a priori requires the exact solution of the upper
level pricing problem (here the slice PPslice pricing problem), i.e.,
a branch-and-price algorithm. In order to overcome that difficulty,
we propose to compute an upper bound on the objective (i.e.,
reduced cost) of the PPslice problem, and then deduce an upper
bound on the optimal LP solution of the Rel_5G_NFV master
problem (1)-(5). It then allows the evaluation of the accuracy
(gap) of output ILP solutions using the algorithm described in
the previous section.

Consider the compact formulation associated with (1)-(5), i.e.,
the compact model such that when applying a Dantzig-Wolfe
decomposition to it, we derive model (1)-(5). Let

[compact] max{cx : Ax ≤ b,x ∈ X }.

110

Using the Dantzig-Wolfe decomposition of Model compact,
the slicing pricing problem, PPslice, can be written as follows:

RC⋆
PPslice = max

{
c x : x ∈ X pricing} . (23)

We simply write RC to shorten RCPPslice when there is no ambi-
guity so that RC⋆

PPslice = RC⋆.
In Figure 3, we rank the relative positions of the various values

that we discuss below. Question marks indicate values that are
not computed accurately, and that are upper/lower bounded.

The Lagrangian relaxation of the compact Model can be writ-
ten:

LR(u) = max
x ∈X

L(u,x) = ub + (c − uA)x︸ ︷︷ ︸
RC(u,x)

 . (24)

Following Vanderbeck [19] and Pessoa et al. [15], a valid up-
per bound for the compact problem can be computed using
Lagrangian Relaxation (LR). At any iteration τ of the column gen-
eration algorithm, i.e., when we re-optimize the linear relaxation
of the master problem (1)-(5), the optimal xRC⋆ that maximizes
L(uτ ,xRC⋆) can be written:

xRC⋆ = argmax
x ∈X

L(uτ ,x) = argmax
x ∈X

RC(uτ ,x)

= argmax
i ∈I

RC(uτ ,x i) = arg max
x ∈X pricing

RC(uτ ,x),

where x i , i ∈ I denote the extreme points of X , see [13], Section
II.3.6.

As xRC⋆ is known only if we solve PPslice exactly, we can
bound it in order to get an upper bound, zlp, on the optimal value
of the linear programming relaxation. Indeed, RC⋆,τ

ilp ≤ RC⋆,τ
lp ,

where RC⋆,τ
lp is the optimal value of the LP relaxation of PPslice

at iteration τ of the column generation algorithm.
Consequently, L(uτ ,xRC⋆) = uτb+RC⋆,τ

ilp ≤ uτb+RCτlp = zτlp.

"̃#$% "̃$% ̅"$%
"#$%∗ =? "$%∗ =? LR ,-, /01∗ =?

Figure 3: Ranking of the various LP, LR and ILP values.

At each iteration τ of the column generation algorithm, each
pricing problem is decomposed into |S| elementary slice pricing
problems of the type PPslice. It implies:

zτlp = uτb +
∑
S ∈S

RC⋆
lp (PPslice(S)) .

Note that the Lagrangian relaxation upper bound does not im-
prove monotonically [15], thus, in order to derive the best possi-
ble upper bound, the algorithm must compute

zlp = min
τ

zτlp = min
τ

max
S ∈S

RC⋆,τ
lp (PPslice(S)) .

It remains possible to add several columns (i.e., slices) at a time
(whose R̃Cτilp (PPslice(S)) > 0) to the master problem (1)-(5) in
one iteration, as long as they are generated with the same set
of dual values. Note that output ILP solutions of PPslice(S) are
not guaranteed to be optimal, hence the notation R̃C to denote
a heuristic solution of the slice pricing problem. Indeed, the
algorithm has to go through all slice subproblems in each iteration
to ensure the correctness of the Lagrangian bound.

6 NUMERICAL RESULTS

We implemented the model and algorithm described in the pre-
vious sections with a C++ program on a Linux computer with
773727 MB RAM and Intel Xeon E5-2687W v3 @ 3.10 GHz 2
processors, 20 cores. We first describe the data sets, and then we
report on the performance of the algorithm.

6.1 Data Sets

We considered two topologies from SNDLib [16] and their char-
acteristics are described in Table 1. We re-use the traffic matrix
of [7] with four SFCs. In order to derive slice demand, for each
original SFC in [7], we divided the overall traffic in 4 subsets,
resulting into traffic demands for 16 slices. Transport capacities
were set with the optimal solution when allowing only one NFV
node.

Table 1: Data sets

Topologies # # # connections # Offered
nodes links per slice slices load

internet2 10 34 90 16 1Tb
atlanta 15 44 210 16 1Tb

6.2 Model and Algorithm Efficiency and

Accuracy

We conducted experiments with the same link transport capaci-
ties, and increased node capacities as we increase the number of
NFV (compute) nodes. Corresponding accuracies and computa-
tional times (seconds) are reported in Table 2. We observe that
resulting accuracies are less than 3% except for 4 cases where
the gap can reach up to 5.6%. Data Instances are easier to solve
as the number of NFVs is increasing, and computational times
are fairly reasonable taking inot account the accuracies and the
complexity of the design problem of reliable 5G network slicing.

Table 2: Nested CG performance

NFV internet2 atlanta
nodes gap (%) CPU gap (%) CPU

1 3.8 454.9 5.6 991.8
2 3.4 574.2 4.3 4,215.9
3 0.4 89.4 2.9 1,040.2
4 0.4 65.7 2.9 1,010.1
5 0.4 89.9 2.9 578.3
6 0.4 36.3 2.9 582.9
7 0.4 36.6 0.0 651.5
8 0.1 158.8 2.9 758.5
9 0.1 34.8 0.1 601.3
10 0.1 35.1 0.0 561.5
11 - - 0.0 442.5
12 - - 0.0 572.6
13 - - 0.0 524.8
14 - - 0.1 554.3
15 - - 0.0 557.8

111

6.3 Network Spectrum Usage

We investigated how the network spectrum is used when the
number of nodes with compute capacities is increasing, i.e., when
there aremore network functions distributed all over the network.
We provide the results for the atlanta topology in Figure 4.

Plots of Figure 4 show that it is more or less the same subset
of links which are the most loaded, but their load vary with the
number and location of the NFVs, and the increase of the overall
network load when the number of NFVs is increasing. Sometimes
we see a drop in the load of a link, which is explained by the
increase and position of more NFVs. In conclusion, dimensioning
of the link is very dependent on the number and location of the
NFVs.

0 10 20 30 40
10

20

30

40

50

60

70

80

90

100

Link ID

1 NFV 8 NFVs 15 NFVs

Figure 4: Physical Link Load - atlanta Topology

We also investigated the throughput evolution when the num-
ber of NFV nodes increases and results are depicted in Figure 5
for the atlanta network. We observe that as soon as we reach
four or five NFV nodes, then the throughput does not increase
significantly anymore.

7 CONCLUSIONS

We designed a first efficient nested decomposition scheme for
reliable 5G slicing. Future work will include several algorithmic
enhancements such as parallel solutions of pricing problems
and greedy heuristics to generate an initial solution (i.e., initial
columns at both decomposition levels).

ACKNOWLEDGMENTS

B. Jaumard has been supported by a Concordia University Re-
search Chair (Tier I) on the Optimization of Communication
Networks and by an NSERC (Natural Sciences and Engineering
Research Council of Canada) grant.

REFERENCES

[1] M.S. Bonfim, K.L. Dias, and S.F.L. Fernandes. 2019. Integrated NFV/SDN
Architectures: A Systematic Literature Review. Journal ACM Computing
Surveys (CSUR) 51, 6 (2019), xxx – xxx.

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

NFV Nodes

LR Bound
LP Solution
ILP Solution

Figure 5: Throughput evolution with an increasing num-

ber of NFV nodes

[2] G. Carella, M. Pauls, A. Medhat, L. Grebe, and T. Magedanz. 2017. A Net-
work Function Virtualization framework for Network Slicing of 5G Networks.
In Mobilkommunikation–Technologien und Anwendungen. ITG-Fachtagung,
Osnabrück, Deutschland, 1–7.

[3] A. Destounis, G. Paschos, S. Paris, J. Leguay, L. Gkatzikis, S. Vassilaras, M.
Leconte, and P. Medagliani. 2018. Slice-based column generation for network
slicing. In Annual Joint Conference of the IEEE Computer and Communications
Societies - INFOCOM. IEEE, Honolulu, HI, USA, 1–2.

[4] A. Dohn and A. Mason. 2013. Branch-and-price for staff rostering: An efficient
implementation using generic programming and nested column generation.
European Journal of Operational Research 230 (2013), 157–169.

[5] J.B. Gauthier, J. Desrosiers, and M.E. Lübbecke. 2018. Vector Space Decom-
position for Solving Large-Scale Linear Programs. Operations Research 66, 5
(2018), 1376–1389.

[6] F. Hennig, B. Nygreen, and M.E. Lübbecke. 2012. Nested Column Generation
Applied to the Crude Oil Tanker Routing and Scheduling Problem with Split
Pickup and Split Delivery. Naval Research Logistics 59 (April âĂŘ June 2012),
298–310. Issue 3âĂŘ4.

[7] N. Huin, B. Jaumard, and F. Giroire. 2018. Optimal Network Service Chain
Provisioning. IEEE/ACM Transactions on Networking 26, 3 (June 2018), 1320–
1333.

[8] S. Karabuk. 2009. A nested decomposition approach for solving the paratransit
vehicle scheduling problem. Transportation Research Part B 43 (2009), 448–465.

[9] L.S. Lasdon. 1970. Optimization Theory for Large Systems. MacMillan, New
York.

[10] X. Li, M. Samaka, H.A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain.
2017. Network Slicing for 5G: Challenges and Opportunities. IEEE Internet
Computing 21, 5 (2017), 20–27.

[11] R. Lin, S. Luo, J. Zhou, S. Wang, B. Chen, X. Zhang, A. Cai, W.-D. Zhong,
and M. Zukerman. 2018. Column generation algorithms for virtual network
embedding in flexi-grid optical networks. Optics Express 26, 8 (Apr 2018),
10898–10913.

[12] M.E. Lübbecke and J. Desrosiers. 2005. Selected Topics in Column Generation.
Operations Research 53 (2005), 1007–1023. Issue 6.

[13] George L. Nemhauser and Laurence A.Wolsey. 1988. Integer and Combinatorial
Optimization. Wiley, New York.

[14] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J.J. Ramos-Muñoz, J. Lorca, and J.
Folgueira. 2017. Network Slicing for 5G with SDN/NFV: Concepts, Architec-
tures and Challenges. IEEE Communications Magazine 55 (2017), 80–87. Issue
5.

[15] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. 2018. Automation and
Combination of Linear-Programming Based Stabilization Techniques in Col-
umn Generation. INFORMS Journal on Computing 30, 2 (2018), 339–360.

[16] SNDlib. 2005. Germany50 Problem. http://sndlib.zib.de/home.action/. (October
2005).

[17] S.H. Song. 2009. A nested column generation algorithm to the meta slab
allocation problem in the steel making industry. Journal International Journal
of Production Research 47, 13 (2009), 3625–3638.

[18] L. Tang, G. Zhao, C. Wang, P. Zhao, and Q. Chen. 2018. Queue-aware reli-
able embedding algorithm for 5G network slicing. Computer Networks 146
(December 2018), 138 – 150.

[19] F. Vanderbeck. 2001. A Nested Decomposition Approach to a Three-Stage,
Two-Dimensional Cutting-Stock Problem. Management Science 47, 6 (2001),
864–879.

[20] B. Yi, X. Wang, K. Li, S.K. Das, and M. Huan. 2018. A comprehensive survey of
Network Function Virtualization. Computer Networks 133 (2018), 212 – 262.

112

A heuristic algorithm for a vehicle routing problem with
pickup & delivery and synchronization constraints

Seddik Hadjadj
Laboratoire d’informatique en image et systèmes

d’information
Villeurbanne, France

mohamed-seddik.hadjadj@liris.cnrs.fr

Hamamache Kheddouci
Laboratoire d’informatique en image et systèmes

d’information
Villeurbanne, France

hamamache.kheddouci@univ-lyon1.fr

ABSTRACT
In this paper, we consider a vehicle routing problem with pickup
& delivery and synchronization constraint. One vehicle with a
known and finite capacity has to visit n customers to pickup or
deliver empty containers. At the same time, another vehicle has
to deliver ready-mixed concrete by pouring it into the previously
delivered containers. This implies dealing with capacity and tem-
poral precedence constraints.
We propose a heuristic to tackle this problem. A two-step ap-
proach including a local search and a constructive algorithm.
We provide some experiments that show positive results.

1 INTRODUCTION
This work is carried out in collaboration with a company which
specializes in the sale of ready-mixed concrete.
Today, each ready-mixed concrete order requires the mobilization
of one or more mixer trucks, even for very small quantities of
concrete. However, such trucks are cumbersome, expensive, and
disproportionate in some cases, especially when delivering small
quantities of concrete.
Therefore, the company proposes a new delivery method to deal
more effectively with such orders. The idea is to share a single
mixer truck by several customers with small quantities (≤ 500
liters), which implies organizing optimized mixer truck tours.
On the other hand, to ensure the profitability of such truck tours,
waiting times at each customer’s location have to be reduced.
Today, a mixer truck has to wait until the concrete is poured on
site to leave a customer’s location, and this causes a huge waste
of time. To tackle this problem, the company proposes to pour
the concrete from the truck into special containers instead of
pouring it directly on site which is more difficult and takes more
time. The truck can then leave faster, and the customer can use
the concrete in the containers all day long. Waiting times are
then drastically reduced.
However, since the containers which are supposed to contain the
concrete are special, they also must be delivered to the customer.
This implies organizing another tour to deliver the containers
and pick them up after they have been used.
In brief, this new method is a three-step process :

(1) A vehicle delivers a number of empty containers to the
customer ;

(2) Thereafter, a mixer truck delivers a certain quantity of
ready-mixed concrete by pouring it into the containers
delivered ;

(3) The next day, the vehicle returns to the customer to pick
up the containers after they have been used.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

To ensure the profitability of this method, the company needs
a decision support system that can generate two efficient and
synchronized vehicle tours : a pickup & delivery tour for the
containers, and a mixer truck tour to deliver the concrete, know-
ing that each customer has to receive the containers before the
concrete (temporal precedence constraint), and that the vehicle
carrying the containers has a maximal capacity (capacity con-
straint).
This paper aims to provide an efficient heuristic to build such
synchronized vehicle tours minimizing the total travel times.
The paper is structured as follows. Section 2 provides a literature
review of vehicle routing problems with pickup & delivery. Sec-
tion 3 gives a formulation for the problem tackled in this work. In
section 4, we present our heuristic. Section 5 is devoted to some
experimental results, and section 6 concludes the paper.

2 LITERATURE REVIEW
We present a brief review of pickup & delivery problems.

2.1 Pickup & Delivery Problems
There are three main classes of pickup & delivery problem in the
literature :

2.1.1 One-to-One Problems. One or more vehicles have to
carry n commodities, where each commodity has an origin and a
destination. One of the best known examples of this class is the
Dial-a-ride problem which consists of transporting people from
an origin to a destination. The problem has been studied for both
single [13] and multiple [4] vehicle cases, with various types of
constraints related to ride times, time windows [5, 14]...

2.1.2 One-to-Many-to-One Problems. Commodities are di-
vided into "delivery commodities" and "pickup commodities".
One or more vehicles have to carry the delivery commodities
from the depot to the customers and the pickup commodities
from the customers to the depot. Assuming that np is a set of
pickup customers, and nd a set of delivery customers, two cases
have been distinguished for these problems : single demands,
where np ∩ nd = ∅, and combined demands, where np ∩ nd , ∅ .
For the latter case, [7] consider various possible path types such
as the Hamiltonian path, where each customer is visited once
such that pickup and delivery are performed simultaneously, as
well as the double path,where each customer that has a combined
demand (pickup and delivery) is visited twice, the first time for
pickup, the second for delivery. Several heuristics have been pro-
posed for both path types for the single and the multi-vehicle
cases [3, 12]...

2.1.3 Many-to-Many Problems. One or more vehicles have to
transport goods between customers knowing that each customer
can be a source or a destination of any type of good. Among the
problems of this class, the One-Commodity pickup and delivery

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 113 DOI: 10.5441/002/inoc.2019.21

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.21

travelling salesman problem is the variant that we consider in this
work. It was introduced in [10]. A single vehicle with a known and
finite capacity has to carry a single commodity between pickup
customers and delivery customers. Picked up commodities can be
supplied to delivery customers. This problem is known to be NP-
Hard. Moreover, checking the existence of a feasible solution is an
NP-Complete problem [8]. Studies on such problems are relatively
scarce. A branch and cut algorithm has been proposed in [10]
for small instances, and two heuristics have been developed in
[11] to tackle larger instances, in particular by defining "the
infeasibility of a path", and adapting the nearest neighbourhood
heuristic to increase the chance of obtaining a feasible solution.
Furthermore, [9] have proposed a hybrid method combining
GRASP (greedy randomized adaptive search procedure) and VND
(variable neighbourhood descent) metaheuristics. This method
gave better results than the previously proposed ones.
For a detailed survey on pickup and delivery problems, we refer
the reader to [1].

3 PROBLEM FORMULATION
Given two vehicles V1 and V2 such that :

• V1 is in charge of delivering (or picking up) empty con-
tainers, and has a known and finite maximum capacity
Q (Q is the maximum number of containers that can be
carried by the vehicle) ;

• V2 is a mixer truck carrying a sufficient quantity of con-
crete.

And considering :
• D1 the depot of V1 ;
• D2 the depot of V2 ;
• N = {1, ...,n} a set of n customers who require a visit of
V1 and/or V2 ;

• N = Np ∪ Nd , where :
– Nd is the set of customers who require delivering con-
tainers + concrete (who require a visit of both V1 and
V2) ;

– Np is the set of customers who require picking up con-
tainers (who require a visit of V1 only) ;

– Np ∩ Nd = ∅.
The problem can be defined on a complete graph G = (V ,E) as
follows (see Fig 1) :

• V = {D1} ∪ {D2} ∪ N is a set of n + 2 nodes ;
• E = {(i, j), i, j ∈ V , i , j} is a set of edges representing
connections between nodes ;

• C = {ci, j , (i, j) ∈ E} represents the travel time between i
and j (ci, j = c j,i ,∀(i, j) ∈ E) ;

• D = {di , i ∈ N } is a set of customers’ demands (|di | is the
number of containers to deliver to / pick up from customer
i , di < 0 ∀i ∈ Nd and di > 0 ∀i ∈ Np) ;

Assuming that :
• xi, j is a boolean variable such that :
– xi, j = 1 if j is visited immediately after i by V1,
– 0 otherwise.

• yi, j is a boolean variable such that:
– yi, j = 1 if j is visited immediately after i by V2,
– yi, j = 0 otherwise.
(Note that yi, j = 0 ∀i ∈ Np ,∀j ∈ Np).

• qi is the number of containers in V1 after his visit to cus-
tomer i (the initial number of containers in V1 when leav-
ing the depot D1 is qD1 = Qinit) ;

• t1,i represents the departure time of V1 from customer i
location (t1,0 represents de departure time of V1 from the
depot D1) ;

• t2,i represents the departure time of V2 from customer i
location (t2,0 represents de departure time of V2 from the
depot D2).

The objective is to find two optimized vehicle tours TV1 and TV2
minimizing the total travel times, such that TV1 is a pickup &
delivery tour through n customers, andTV2 is a concrete delivery
tour through the nd customers who have received containers.
Thus, we consider the following objective function :

min
n∑
i=0

n∑
j=0

xi, jci, j +
n∑
i=0

n∑
j=0

yi, jci, j (1)

Subject to : ∑
j ∈N

xi, j = 1 ∀i ∈ {D1} ∪ N (2)∑
i ∈N

xi, j = 1 ∀j ∈ {D1} ∪ N (3)∑
j ∈Nd

yi, j = 1 ∀i ∈ {D2} ∪ Nd (4)∑
i ∈Nd

yi, j = 1 ∀j ∈ {D2} ∪ Nd (5)

xi,D2 = 0 ∀i ∈ {D1} ∪ N (6)
xD2,i = 0 ∀i ∈ {D1} ∪ N (7)
yi, j = 0 ∀i, j ∈ {D1} ∪ Np (8)

xi, j (qi + dj − qj) = 0 ∀i, j ∈ {D1} ∪ N (9)
qi ≤ Q ∀i ∈ {D1} ∪ N (10)
qi ≥ 0 ∀i ∈ {D1} ∪ N (11)

qD1 = Qinit (12)
xi, j (t1,i + ci, j − t1, j) = 0 ∀i, j ∈ {D1} ∪ N (13)
yi, j (t2,i + ci, j − t2, j) = 0 ∀i, j ∈ {D2} ∪ Nd (14)

t2,i ≥ t1,i ∀i ∈ {D2} ∪ Nd (15)
t1,0 = 0 (16)

Where :
• Constraints (2) and (3) ensure that each customer is visited
exactly once by vehicle V1, while constraints (4) and (5)
ensure that each "delivery customer" is visited exactly
once by vehicle V2 ;

• Constraints (6) and (7) relate to the fact that V1 cannot
visit the depot of V2, while (8) ensures that V2 cannot visit
neither the depot of V1 nor the "pickup customers" ;

• Constraints (9) to (12) are related to vehicle capacity. If
customer j is visited immediately after customer i (xi, j =
1), then, the condition qj = qi + dj must be satisfied.
Furthermore, qi must be smaller then Q and greater than
0 ;

• Constraint (13) and (14) concern the computing of depar-
ture times of V1 and V2 from each customer’s location.
Thus, if customer j is visited by vehicle m immediately
after customer i , then tm, j = tm,i + ci, j ;

• Constraint (15) concern the temporal precedence between
V1 and V2. The vehicle V2 cannot arrives at a customer’s
location before V1. In other words, t2,i ≥ t1,i .

Note that Picked up containers can be supplied to a delivery
customer if necessary.

114

Figure 1: Synchronized vehicle tours.

4 PROPOSED HEURISTIC
To tackle to problem described above, we propose a two-step
heuristic :

(1) We generate a feasible pickup & delivery tour for the
vehicle V1 (TV1) using the local search approach described
below ;

(2) Then, we build a tour for V2 (TV2) taking TV1 as a strong
constraint.

4.1 Generating the pickup & delivery tour
The pickup& delivery problem tackled here is the one-commodity
pickup & delivery traveling salesman problem. We have a single
vehicle (V1) picking up or delivering a single type of commodity
(empty containers). A picked up container can be supplied to
another customer during a tour, and the vehicle has a maximum
capacity that cannot be exceeded during a tour.
We propose a local search method which starts from an initial
feasible solution S , and tries to improve it by moving to S ′, a fea-
sible neighbouring solution of S , such that f (S ′) < f (S), where
f (S) is the total travel time of V1. The process is repeated until
no improvement can be found.

4.1.1 Neighbourhood Structure. We use the 1-shift algorithm
introduced in [2] to generate the neighbourhood of a given so-
lution S . This method consists in changing the position of a
customer in a tour from i to j. Customers who are in positions
i + 1, i + 2, ..., j of the tour are then shifted backwards (see Fig. 2).

4.1.2 Feasibility Checking. For each generated solution, we
ensure that capacity constraints are respected. A feasible solution
is a tour in which the number of containers loaded on the vehicle
V1 never exceeds its maximum capacity Q , and is never negative.
Fig.2 presents an example of a feasible and an infeasible solution.
Given a feasible solution S and a 1-shift neighbouring solution
S ′ of S obtained by shifting a customer from position i to j. It
can easily be shown that S ′ is feasible if and only if the partial
tour from customer i to customer j is feasible. Indeed, to check
the feasibility of a neighbouring solution, we only check the
feasibility of the tour between position i and position j.

4.2 Generating the mixer truck tour
Once the pickup & delivery tour for the vehicle V1 is generated,
we build a second tour forV2 considering the first one as a strong
constraint. Thus, starting from D2, the idea is to choose, at each
iteration of the procedure, the next customer to be visited. So, as
it appears in Fig 3, among all customers who require a visit of V2
:

• We identify those who can be visited by V2 after the de-
parture of V1. In other words, when V2 is at customer i
location, we calculate t2,i +ci, j for each customer j who re-
quires a visit. We choose the next customer from those for
whom t2,i + ci, j ≥ t1, j (temporal precedence constraint) ;

• Among all the customers for whom the temporal prece-
dence constraint is respected, we choose the nearest one
(in terms of travel time) from the current position of the
vehicle ;

• This procedure is repeated until all the customers are
visited.

5 COMPUTATIONAL RESULTS
The approach described above was implemented in Java, and
executed on AMD A10-7700K Radeon R7, 3.40 GHz With 8 GB
RAM.
To the best of our knowledge, there is no benchmark instances for
simultaneous vehicle routing problems with pickup & delivery.
Therefore, we tested our algorithm on the Euclidian PDTSP in-
stances generated by [6], which consider a single depot for each
instance. The number of customers varies between 25 and 200.
We adapted the instances to fit our constraints by considering
the depot and the first customer of each instance as the depots
of the two vehicles considered in our problem.
Table 1 shows the average results obtained by the pickup & de-
livery tour and the mixer truck tour. Pickup & delivery tours
are more costly because they involve more customers. In the
other hand, they are more flexible since they are not subject to
temporal precedence constraint, contrary to mixer truck tours.
Therefore, we can hope to obtain better results when focusing
on the optimization of the pickup & delivery tours.

115

Figure 2: 1-Shift algorithm

Figure 3: Building a mixer truck tour

Table 1: Average results on the Euclidian PDTSP instances

Number of customers Pickup & delivery tour Mixer truck tour
25 564.36 363,19
50 871.33 573
75 1143.1 779.24
100 1429.71 1001.41
150 2019.18 1613.86
200 2704.91 1813.22

6 CONCLUSIONS
We presented an approach to tackle a vehicle routing problem
with pickup & delivery and synchronization constraint. This ap-
proach is a two-step heuristic. We start by generating a pickup
& delivery tour for a first vehicle respecting vehicle capacity
constraint. Then, we construct a second tour according to the
first one for another vehicle, respecting temporal precedence
constraint. The objective function considered is the minimization
of the total travel times.
We tested our algorithms on the Euclidian PDTSP instances pro-
posed in [6]. We adapted the instances to fit our constraints and
collected the results, which were positive.
Future works will be devoted to the implementation of the ILP
model proposed in this paper and the development of other ap-
proaches exploiting other types of heuristics, and including other
constraints such as time windows, multiple vehicles...

REFERENCES
[1] Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert

Laporte. 2007. Static pickup and delivery problems: a classification scheme
and survey. Top 15, 1 (2007), 1–31.

[2] Dimitris Bertsimas. 1988. Probabilistic combinatorial optimization problems.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[3] Jeng-Fung Chen and Tai-Hsi Wu. 2006. Vehicle routing problem with simulta-
neous deliveries and pickups. Journal of the Operational Research Society 57, 5
(2006), 579–587.

[4] Jean-François Cordeau. 2006. A branch-and-cut algorithm for the dial-a-ride
problem. Operations Research 54, 3 (2006), 573–586.

[5] Jean-François Cordeau and Gilbert Laporte. 2003. A tabu search heuristic for
the static multi-vehicle dial-a-ride problem. Transportation Research Part B:
Methodological 37, 6 (2003), 579–594.

[6] Michel Gendreau, Gilbert Laporte, and Daniele Vigo. 1999. Heuristics for the
traveling salesman problem with pickup and delivery. Computers & Operations
Research 26, 7 (1999), 699–714.

[7] Irina Gribkovskaia, Øyvind Halskau sr, Gilbert Laporte, and Martin Vlček.
2007. General solutions to the single vehicle routing problemwith pickups and
deliveries. European Journal of Operational Research 180, 2 (2007), 568–584.

[8] H Hernández-Pérez. 2004. Traveling salesman problems with pickups and
deliveries. Disertation, University of La Laguna, Spain (2004).

116

[9] Hipólito Hernández-Pérez, Inmaculada Rodríguez-Martín, and Juan José
Salazar-González. 2009. A hybrid GRASP/VND heuristic for the one-
commodity pickup-and-delivery traveling salesman problem. Computers
& Operations Research 36, 5 (2009), 1639–1645.

[10] Hipólito Hernández-Pérez and Juan-José Salazar-González. 2004. A branch-
and-cut algorithm for a traveling salesman problem with pickup and delivery.
Discrete Applied Mathematics 145, 1 (2004), 126–139.

[11] Hipólito Hernández-Pérez and Juan-José Salazar-González. 2004. Heuris-
tics for the one-commodity pickup-and-delivery traveling salesman problem.
Transportation Science 38, 2 (2004), 245–255.

[12] Arild Hoff and Arne Løkketangen. 2006. Creating lasso-solutions for the
traveling salesman problem with pickup and delivery by tabu search. Central
European Journal of Operations Research 14, 2 (2006), 125–140.

[13] Harilaos N Psaraftis. 1980. A dynamic programming solution to the single
vehicle many-to-many immediate request dial-a-ride problem. Transportation
Science 14, 2 (1980), 130–154.

[14] Paolo Toth and Daniele Vigo. 1996. Fast local search algorithms for the
handicapped persons transportation problem. In Meta-Heuristics. Springer,
677–690.

117

	Foreword
	Program Committee Members
	Table of Contents
	Research Papers
	Interdependent Infrastructure Network Restoration Optimization from Community and Spatial Resilience PerspectivesDeniz Berfin Karakoc, Kash Barker, Yasser Almoghathawi
	On the Complexity of RSSA of Anycast Demands in Spectrally-Spatially Flexible Optical NetworksRóża Goścień, Piotr Lechowicz
	Extended linear formulation of the pump scheduling problem in water distribution networksGratien Bonvin, Sophie Demassey
	Risk averse management on strategic multistage operational two-stage stochastic 0-1 optimization for the Rapid Transit Network Design (RTND) problemLuis Cadarso, Laureano F. Escudero, Ángel Marín
	Formulation and Branch-and-cut algorithm for the Minimum Cardinality Balanced and Connected Clustering ProblemAlexandre Salles da Cunha
	A Branch-and-Bound Algorithm for the Maximum Weight Perfect Matching Problem with Conflicting Edge PairsTemel Öncan, M. Hakan Akyüz, İ. Kuban Altınel
	Minimum-Cost Virtual Network Function ResilienceYannick Carlinet, Nancy Perrot, Anderson Alves-Tzitas
	Valid constraints for time-indexed formulations of job scheduling problems with distinct time windows and sequence-dependent setup timesBruno Ferreira Rosa, Marcone Jamilson Freitas Souza, Sérgio Ricardo de Souza, Zacharie Ales, Philippe Yves Paul Michelon
	Smart Grid Topology DesignsPaula Carroll, Cristina Requejo
	On Optimization of Semi-stable Routing in Multicommodity Flow NetworksArtur Tomaszewski, Michał Pióro, Davide Sanvito, Ilario Filippini, Antonio Capone
	The Workforce Routing and Scheduling Problem: solving real-world InstancesGabriel Volte, Chloé Desdouits, Rodolphe Giroudeau
	Distributionally robust airline fleet assignment problemMarco Silva, Michael Poss
	Routing and Slot Allocation in 5G Hard SlicingNicolas Huin, Jérémie Leguay, Sébastien Martin, Paolo Medagliani, Shengmin Cai
	MILP approaches to practical real-time train scheduling: the Iron Ore Line caseLukas Bach, Carlo Mannino, Giorgio Sartor
	Minimum Concurrency for Assembling Computer MusicCarlos E. Marciano, Abilio Lucena, Felipe M. G. França, Luidi G. Simonetti
	Routing and Resource Assignment Problems in Future 5G Radio Access NetworksAmal Benhamiche, Wesley da Silva Coelho, Nancy Perrot
	Pooling Problems with Single-Flow ConstraintsDag Haugland
	[paper retracted by authors]Guillermo Rela, Franco Robledo, Pablo Romero
	A Nested Decomposition Model for Reliable NFV 5G Network SlicingHuy Quang Duong, Brigitte Jaumard
	A heuristic algorithm for a vehicle routing problem with pickup & delivery and synchronization constraintsSeddik Hadjadj, Hamamache Kheddouci

