
HAL Id: lirmm-02195593
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02195593

Submitted on 26 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Querying Key-Value Stores under Single-Key
Constraints: Rewriting and Parallelization

Olivier Rodriguez, Reza Akbarinia, Federico Ulliana

To cite this version:
Olivier Rodriguez, Reza Akbarinia, Federico Ulliana. Querying Key-Value Stores under Single-Key
Constraints: Rewriting and Parallelization. RuleML+RR 2019 - 3rd International Joint Conference on
Rules and Reasoning, Sep 2019, Bolzano, Italy. pp.198-206, �10.1007/978-3-030-31095-0_15�. �lirmm-
02195593�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02195593
https://hal.archives-ouvertes.fr

Querying Key-Value Stores under Single-Key
Constraints: Rewriting and Parallelization

Olivier Rodriguez, Reza Akbarinia, and Federico Ulliana

INRIA & LIRMM, Univ. Montpellier, France
{firstname.lastname}@inria.fr

Abstract. We consider the problem of querying key-value stores in the
presence of semantic constraints, expressed as rules on keys, whose pur-
pose is to establish a high-level view over a collection of legacy databases.
We focus on the rewriting-based approach for data access, which is the
most suitable for the key-value store setting because of the limited ex-
pressivity of the data model employed by such systems. Our main con-
tribution is a parallel technique for rewriting and evaluating tree-shaped
queries under constraints which is able to speed up query answering. We
implemented and evaluated our parallel technique. Results show signif-
icant performance gains compared to the baseline sequential approach.

1 Introduction

Semantic constraints are knowledge on the structure and on the domain of data
which are used in contexts such as data integration and ontology mediated query
answering to establish a unified view of a collection of a database. Constraints
allow users to better exploit their data thanks to the possibility of formulating
high-level queries, which use a vocabulary richer than that of the single sources.
In the last decade, the use of constraints in the form of ontologies has been
intensively studied in the knowledge representation domain [10,4,3]. A key factor
in the rise of the paradigm has been the reuse of off-the-shelf data management
systems as the underlying physical layer for querying data under constraints.
This resulted in a successful use of the paradigm especially on top of relational
and RDF systems [5]. However, the use of constraints to query NOSQL systems
like key-value stores (e.g., MongoDB [1], CouchDB [2]) has just begun to be
investigated [6,7,8]. Key-value stores are designed to support data-intensive tasks
on collections of JSON records, this last one being a language which is becoming
the new de facto standard for data exchange.

To illustrate the use of semantic constraints for querying key-value records,
consider the records in Example 1 which describe university departments. Query
Q1 selects all department records having a professor with some contact details.
Query Q2 selects all computer science departments with a director. It can be
easily seen that these two queries do not match any of the records. Indeed, Q1

asks for the key contact which is not used in both r1 and r2, while Q2 asks, on
the one hand, for the key director, which is not used in r1 and, on the other hand,
for the value “CS” for the department name, which does not match that of r2.

2 O. Rodriguez et al.

(r1) { dept : {
name : “CS” ,
prof : { name : “Bob” ,

mail : “bob@uni.com” } } }

(r2) { dept : {
name : “Math” ,
director : { name : “Alice” ,

phone : null } } }

(Q1) find({ dept : { prof : { contact : $exists } } })

(Q2) find({ dept : { name : “CS”, director : $exists } })

(σ1) phone → contact
(σ2) mail → contact
(σ3) director → prof
(σ4) prof → ∃director

Example 1. Data, queries, and rules.

This is where semantic constraints come into play. Indeed, although the key
contact is not used in the records, this can be seen as a high-level key generalizing
both phone and mail, as captured by rules σ1 and σ2. Therefore, by taking into
account these semantic constraints, r1 satisfies the query Q1. Moreover, since
σ3 says that the director of a department must be a professor, also r2 satisfies
Q2. Finally, σ4 says that whenever a professor is present, then a director exists.
Again, with this rule in hand, r1 would also satisfy Q2. This example outlines
how semantic constraints allow users to better exploit their data.

The two main algorithmic approaches usually considered to account for se-
mantic constraints during data access are materialization and query rewriting.
Intuitively speaking, for constraints of the form k −→ k′, materialization means
creating a fresh copy of the value of k and then associating this copy to the
key k′. It is important to notice that, being the JSON data model based on
trees, materialization can result in exponential blowups of the data. Also, not
only it is computationally expensive to repeatedly copy subrecords, but it is also
hard to efficiently implement such mechanism on top of key-value stores whose
primitives, despite handling bulk record insertions, are not oriented towards the
update of a single record. This is exacerbated by the fact that data is voluminous.
In contrast, queries are usually small. From this perspective, it is thus interest-
ing to explore query rewriting approaches that can take into account semantic
constraints while accessing data without modifying the data sources. The idea of
query rewriting is to propagate constraints “into the query”. This process yields
a set (or a union) of rewritings whose answers over the input database is exactly
the same as the initial query on the database where materialization would have
been done. Being rewritings independent from the sources, this approach is well
suited for accessing legacy databases, in particular with read-only access rights.

The query facilities of key-value stores systems include primarily a language
for selecting records matching several conditions based on tree-shaped queries
called find() queries [1,2]. The MongoDB store also includes an expressive lan-
guage for aggregate queries which is equivalent to nested relational algebra [9]. In
this work, we focus our attention on the evaluation of find() queries under single-
key constraints built on pairs of keys, as those of Example 1. It is worth noting
that NOSQL systems still lack the standardization of a common query language
and therefore of a standard syntax and semantics for queries. Therefore, in the
formal development presented in Section 2, we chose to abstract away from the
conventions of existing systems and adopt a syntax for queries akin to that of
key-value records and a natural semantics based on tree-homomorphisms.

Querying Key-Value Stores under Single-Key Constraints 3

dept

name prof

name mail“CS”

“Bob”“bob@uni.com”

dept

name director

name phone“Math”

“Alice” null

dept

prof

contact

$exists

dept

name director

“CS” $exists

(r1) (r2) (Q1) (Q2)

Fig. 2. Tree representation of records and queries of Example 1

In spite of the many advantages we already mentioned it is understood that,
depending on the target language chosen for the rewritings, the query rewriting
approach can suffer from combinatorial explosions - even for rule languages with
a limited expressivity [4]. This happens as well for the key-value store languages.
This means that the rewriting set of a query to generate may be large, which
has a consequent impact on the slowing down of query answering.

To mitigate this problem, we present a novel technique for parallelizing both
the generation and the evaluation of the rewriting set of a query serving as
the basis for distributed query evaluation under constraints. Our solution is
presented in Section 3, and relies on a schema for encoding the possible rewritings
of a query on an integer interval. This allows us to generate equi-size partitions
of rewritings, and thus to balance the load of the parallel working units that are
in charge of generating and evaluating the queries. The experimental evaluation
of our technique reported in Section 4 shows a significant reduction of query
rewriting and execution time by means of parallelization.

2 Single-Key Constraints and Query Rewriting

This section is dedicated to the formalization of the setting we consider, and
follows the lines of [8]. For concision, we will focus on a simplified JSON model.
However, this is w.l.o.g, as the technique we present applies to the full language.

Data. A key-value record is a finite (non-empty) set of key-value pairs of the
form r = {(k1, v1), . . . , (kn, vn)} where all ki are distinct keys and each vi is a
value. A value is defined as i) a constant or the null value, ii) a record r, or iii) a
non-empty sequence v = [v1 . . . vn] where each vi is a constant, null, or a record.
A value v in a key-value record can be associated with a rooted labelled forest
Tv, where each tree of the forest has a root and nodes and edges can be labelled.
If v is a constant or null then Tv is a single (root) node labelled by that value.
If v is a sequence v = [v1 . . . vn] then Tv is a forest of n rooted trees T1, . . . , Tn
where Ti is the tree associated to the value vi. Finally, if v is a record, then Tv is
as follows. Let, k be a key of v and Tk be the forest associated to the value of k.
Then Tv contains i) all nodes and edges of each tree Tk, ii) a root node s, and
iii) an edge from s to sk labelled by k whenever sk is the root of a tree in Tk.
Clearly, Tv is a rooted tree whenever v is a record. In the remainder, we will see a
key-value record as its associated tree, as illustrated in Figure 2. Note the order
of the elements of a sequence is not represented in the associated trees. Also, we
will assume a fixed way to associate a tree with a unique (representative) record.

4 O. Rodriguez et al.

Rules. We focus on semantic constraints we call single-keys, also studied in [6,8].
These are expressed as rules σ of the form

k −→ k′ (key inclusion) k −→ ∃k′ (mandatory key)

enabling the definition of hierarchies of keys as well as the existence of mandatory
keys. The semantics of constraints is defined on the tree associated to a record.
Next, we denote by (u,w, k) an edge from u to w labelled by k. We say that a tree
T satisfies a constraint σ : k −→ k′ if for each of its edges of the form (u,w, k)
there also exists an edge (u, z, k′) and an isomorphism ϕ from the subtree rooted
at w to that rooted at z such that ϕ(w) = z. Then, T satisfies σ : k −→ ∃k′ if for
each of its edges of the form (u,w, k) there also exists an edge (u, z, k′), whatever
the subtree rooted at z. Let Σ be a set of constraints. Then, we say that a tree
T is a model of r and Σ when i) Tr and T have the same root, ii) Tr is a subtree
of T , and iii) T satisfies all constraints of Σ. For single-key constraints, it can
be easily shown that every pair (r,Σ) admits a finite model.

Queries. We consider the problem of answering find() queries that are integrated
in the facilities of popular key-value stores such as MongoDB and CouchDB [1,2].
These queries select all records satisfying some structural and value conditions,
and can be seen as Boolean queries, in that query evaluation on a record yields
an answer which is either the empty set or the record itself. A query is thus of
the form find(φ) where φ is a key-value record. Importantly, we assume that 1)
queries do not use the null value and 2) the reserved constant $exists is used to
require the existence of any value associated with a key, as illustrated by Q1 in
Example 1. As for records, queries can be associated with labelled trees. Figure
2 illustrates the tree representation of the queries of Example 1.

Then, a query find(φ) answers true on a record r if there exists a mapping h
from the nodes of Tφ to that of Tr such that i) the root of Tφ is mapped to the
root of Tr, ii) for every edge (u,w, k) of Tφ, (h(u), h(w), k) is an edge of Tr, and
iii) every leaf node u of Tφ which is labelled by a constant different from $exists
is mapped to a node h(u) with the same label. Finally, with constraints, a query
find(φ) answers true on r and Σ if it answers true on all models of r and Σ.

Query Rewriting Query rewriting is an algorithmic procedure for taking into
account a set of semantic constraints Σ that starts from a query Q and produces
a set of rewritings Rew(Q,Σ) such that, for all records r, Q answers true on r
and Σ if and only if there exists a query Q′ ∈ Rew(Q,Σ) that answers true on r.
As for rules, we define the rewriting of a query find(φ) on its associated tree Tφ.
So, find(φ) can be rewritten with σ : k → k′, if Tφ contains an edge (u,w, k′).
Similarly, find(φ) can be rewritten with σ : k→ ∃k′, if Tφ has an edge (u,w, k′)
where w is a leaf node labelled by $exists. In both cases, the rewriting consists
at replacing the edge (u,w, k′) in Tφ with (u,w, k). Let Tφ′ be the resulting tree,
whose representative record is φ′. Then we say that find(φ′) is a direct rewriting
of find(φ) with σ. We denote by Rew(Q,Σ) the set of Q′ for which there exists a
(possibly empty) sequence of direct rewritings from Q to Q′ using the rules of Σ.
This means that Q belongs to Rew(Q,Σ). The size of Rew(Q,Σ) is bounded by
|Σ||Q|, where |Q| is the number of edges of Q. The correctness of the rewriting
algorithm can be shown by extending the proofs of [8].

Querying Key-Value Stores under Single-Key Constraints 5

rewriting array integer
(Q1

1) find({ dept : { director : { contact : $exists } } }) 〈0, 1, 0〉 1
(Q2

1) find({ dept : { prof : { phone : $exists } } }) 〈0, 0, 1〉 2
(Q3

1) find({ dept : { director : { phone : $exists } } }) 〈0, 1, 1〉 3
(Q4

1) find({ dept : { prof : { mail : $exists } } }) 〈0, 0, 2〉 4
(Q5

1) find({ dept : { director : { mail : $exists } } }) 〈0, 1, 2〉 5

(Q1
2) find({ dept : { name : “CS” , prof : $exists } }) 〈0, 0, 1〉 1

Fig. 3. Rewritings of the queries in Example 1 (left) and their encoding (right)

Figure 3 illustrates the rewritings of queries given in Example 1. Here,Q1
1−Q5

1

are rewritings of Q1 with σ1, σ2, σ3, while Q1
2 is a direct rewriting of Q2 with σ4.

It holds that Q4
1 selects r1, Q3

1 selects r2, and Q1
2 selects r1. Note that rules for

mandatory keys apply only on the leaves of a query that are labelled with $exists.
To see why consider the query find({dept : { director : “Alice” }}). Here, if σ4 is
used, we get find({dept : { prof : $exists }}) which is not a valid query rewriting.

3 Parallelization

We now present a parallel method that can be used to distribute both the gen-
eration and the evaluation of the rewriting set of a query to a set of independent
computing units u1, . . . , um, each being a local thread or a machine of a cluster.
Our approach relies on an interval-encoding of the rewritings. The general idea
is to establish a bijection between Rew(Q,Σ) and the integers in [0, . . . , N − 1],
where N = |Rew(Q,Σ)|. Then each of the m computing units is communicated
an interval [i, j] of size λ ≈ N/m corresponding to the subset of rewritings it
has to generate. This will result in a parallel rewriting method that enjoys the
following three properties.
1) partitioning : no rewriting is computed twice by two distinct units
2) load balance: the number of rewritings is equally distributed across all units
3) bounded-communication: units receive a constant size interval information

Encoding Queries. In contrast to the general case [6,8], when considering
single-key constraints, one can exploit the fact that, the rewriting process we
described in the previous section, yields queries that are structurally similar.
This enables a compact representation of (the edges of) a query as fixed size
arrays, which we now describe. Let find(φ) be a query. By fixing a total order on
the edges of Tφ, we can see the query as an array 〈k1, . . . , kn〉, where ki is the key
labelling the i-th edge of Tφ. Thus, to reconstruct a rewriting from an array it
just suffices to replace the i-th edge of Q with the i-th key of the array. Moreover,
given that an edge can be rewritten only in a finite number of ways, we can even
use integers to denote the possible labels of the query edges. These ideas are the
basis of the definition of an encoding function γQ,Σ which is illustrated next.

Consider the query Q1 and σ1, σ2, σ3 of Example 1 yielding rewritings Q1
1−Q5

1

as in Figure 3. For simplicity, assume the edges of Q1 being ordered by depth.

6 O. Rodriguez et al.

So the edges labelled by dept, prof, and contact are indexed by 1, 2, and 3, re-
spectively. To begin, we represent the query Q1 with 〈0, 0, 0〉 where the value 0 at
position 1, 2, and 3, of the array denote the fact that no edge is rewritten. Then,
the rewritings Q2

1, Q
4
1 can be represented by the arrays 〈0, 0, 1〉, 〈0, 0, 2〉, denot-

ing the fact that the edge labelled by contact has been rewritten either by phone
or mail while the rewritings Q1

1, Q
3
1, Q

5
1 can be represented by the arrays 〈0, 1, 0〉,

〈0, 1, 1〉 and 〈0, 1, 2〉 where prof is replaced by director and the edge labelled with
contact is rewritten (or not) as before. The resulting encoding function is γQ,Σ =
{(1, 0, dept), (2, 0, prof), (2, 1, director), (3, 0, contact), (3, 1, phone), (3, 2,mail)}.

It is important to notice that at this point γQ,Σ establishes a bijection from
arrays to the rewritings of a query. The next step towards our goal of mapping
rewritings to integers is to map the arrays encoding the rewritings to a sequence
of successive integers. To do so, we see an array as a number in a multiple base
(b1, . . . , bn) where each bi denotes the number of possible rewritings of the i-th
edge of Q. An array 〈c1 . . . cn〉 in the base (b1, . . . , bn) corresponds to the integer
p = c1 +c2 ∗B1 . . .+cn ∗Bn−1 with B1 = b1 and Bi = bi ∗Bi−1 for i ≥ 2. In the
example, the arrays 〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈0, 1, 1〉, 〈0, 0, 2〉, 〈0, 1, 2〉 in base
(b1, b2, b3) = (1, 2, 3) correspond to the integers in the interval [0,5], respectively.
For instance, 〈c1, c2, c3〉 = 〈0, 1, 1〉 correspond to the integer 3 as, given that
B1 = b1 = 1 and B2 = 2, we have 0+1∗B1+1∗B2 = 3. Conversely, the integer p
in base (b1, . . . , bn) corresponds to the array 〈c1, . . . , cn〉 where ci = (di mod bi)
where d1 = p and di = (di−1 ÷ bi−1) for all i ≥ 2. Of course, it must be that
0 ≤ p < Bn. The correspondence between rewritings and integers is outlined in
Figure 3. Finally note that by using the same formula we can compute the size
of the rewriting set of a query, which is Bn, with n the number of edges of Q.

Building the encoding function. In the general case not only two rules σ1 and
σ2 can rewrite the same edge of the query, but also the application of σ1 can
enable that of σ2. Hence, the number of alternative keys for a single edge has
to be inferred by looking at the dependencies between the keys in Σ. In doing
so, we have to distinguish between the different types of edges of the query. For
every edge of the query labelled by k the set of possible rewritings is made of all
k′ for which there exists a sequence of rules σ1, . . . , σn of the form σi = k′i −→ ki
such that ki = k′i+1 for all 1 ≤ i < n, with k′1 = k′ and kn = k. For every edge of
the query labelled by k ending on a node labelled by $exists the set of possible
rewritings is made of all k′ for which there exists a sequence of rules this time
either of the form σi = k′i −→ ∃ki or σi = k′i −→ ki satisfying the same condition
as before. Note that it is possible to analyze Σ independently of any query, and
therefore compute once the possible rewritings of a key depending on the cases
described before. Then, the construction of γQ,Σ follows by fixing any total order
on the edges of TQ. The size of γQ,Σ is bounded by |Q| × |Σ|. This avoids to
communicate to the units the whole Rew(Q,Σ), whose size can be exponential.

In conclusion, the key properties achieved with our interval encoding are that
1) we avoid a “centralized” enumeration of the rewritings (which is parallelized)
and 2) minimize communication costs by sending to each unit only a pair of
values (i, j) denoting a (possibly exponentially large) query set it has to handle.

Querying Key-Value Stores under Single-Key Constraints 7

4 Performance Evaluation

We implemented our approach in Java and parallelized query rewriting and eval-
uation by executing concurrent threads and using different cores of a machine.
Nevertheless, our approach is suitable for any shared nothing parallel framework.
For example, the threads can also be executed in the nodes of a distributed clus-
ter, if such a cluster is available. The three main modules of our tool are dedicated
to i) the interval encoding, ii) rewriting generation, and iii) query evaluation.
Next, we use the term query answering for the combination of the three tasks,
which amounts to the whole task of answering queries under constraints.

We performed an experimental evaluation whose goal is to show the benefits
of parallelization when querying key-value stores under semantic constraints. We
deployed our tool on top of key-value store MongoDB version 3.6.3. Our experi-
ments are based on the XMark benchmark which is a standard testing suite for
semi-structured data [11]. XMark provides a document generator whose output
was translated to obtain JSON records complying with our setting. Precisely, we
performed our experiments on a key-value store instance created by shredding
XMark generated data in JSON records. The results reported here concern an
instance created from 100MB XMark and split in ∼60K records of size ∼1KB.
XMark also provides a set of queries that were translated to our setting.To test
query evaluation in the presence of constraints, we then extended the benchmark
by manually adding a set of 68 rules on top of the data. These are “specializa-
tion” rules of the form knew → kxmark where kxmark is a key of the XMark
data vocabulary and knew is a fresh key that does not appear in XMark. The
benchmark data employs a vocabulary made of 91 keys and the rules define the
specialization of 40 among them. More precisely, 20 keys have 1 specialization,
14 keys have two specializations, 5 have three specializations and 1 key has 5.
Accordingly, the generated XMark data has been modified by randomly replac-
ing one of such keys by one of its specializations thereby mimicking the fact that
datasets use more specific keys while the user asks a high-level query.

Tests were performed on an Ubuntu 18.10 64-bit system, running on a ma-
chine that provides an Intel Core i7-8650U CPU 4 cores, 16 GB of RAM, and
an Intel SSD Pro 7600p Series. Figure 4 summarises i) the query answering time
under constraints and ii) the speed up of our parallel technique for 10 XMark
queries, by varying the number of threads. The speed-up is defined as the ratio
between the case of 1 thread (i.e., without parallelization) and the case with n
threads. As expected, our results show that the query answering time depends
on the size of the rewriting set, and the queries are thus sorted according to
this criterion. Query answering time with one thread takes up to 1.3s for queries
with less 150 rewritings (i.e., q4, q10, q1, q2) and increases to 2.8s for q3, which
has 324 rewritings. However, by using four threads, answering time for q3 drops
to 1.3s (55% time reduction). Answering q7, which has 1296 rewritings, takes
11s. This falls to 4.7s by using four threads (58% time reduction). The same can
be observed for q8 and q9. More generally, our results show that already by only
using two threads, there is a 1.5x speedup (33% reduction) of query answering
time for almost all queries. This increases to a 2/2.3x speedup (50-58% time re-

8 O. Rodriguez et al.

Fig. 4. Evaluation time and speedup of our method for XMark queries on MongoDB

duction) when four threads are used. Interestingly, this is the maximum number
of concurrent physical threads of our test machine, and we observe that when
using eight virtual threads essentially no improvement can be further remarked.
Naturally, when the number of rewritings of a query is too small, the impact
of parallelization is less important. For example, as illustrated by q4, which has
only 18 rewritings, only a 1.2x speedup is achieved with four threads. Summing
up, this shows the interest of parallelization in querying key value stores under
semantic constraints.

Conclusion. In this paper, we proposed a parallel technique for the efficient
rewriting and evaluation of tree-shaped queries under constraints based on an
interval encoding of the rewriting set of a query. We implemented our solution
and measured its performance using the XMark benchmark. The results show
significant performance gains compared to the baseline sequential approach.

Acknowledgements This work has been partially supported by the ANR
CQFD Project (ANR-18-CE23-0003).

References
1. MongoDB www.mongodb.com.
2. CouchDB couchdb.apache.org.
3. M.-L. Mugnier and M. Thomazo An introduction to ontology-based query answering with existential

rules. Reasoning Web International Summer School 2014
4. Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. Tractable Reasoning and Efficient

Query Answering in Description Logics: The DL-Lite Family. J. Autom. Reasoning 2007
5. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati, R. Linking data to ontolo-

gies. J. Data Semantics 2008
6. Mugnier, M., Rousset, M., and Ulliana, F. Ontology-mediated queries for NOSQL databases. AAAI 2016
7. Botoeva, E., Calvanese, D., Cogrel, B., Rezk, M., and Xiao, G. OBDA beyond relational DBs: A study for

MongoDB. 2016.
8. Bienvenu, M., Bourhis, P., Mugnier, M., Tison, S., and Ulliana, F. Ontology-mediated query answering for

key-value stores. In IJCAI 2017
9. E. Botoeva, D. Calvanese, and B. Cogrel and X. Guohui, Expressivity and complexity of MongoDB queries,

ICDT, 2018
10. G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Zakharyaschev, Ontology-

based data access: A survey, IJCAI, 2018
11. Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I., and Busse, R. Xmark: A benchmark for

XML data management. VLDB 2002

	Querying Key-Value Stores under Single-Key Constraints: Rewriting and Parallelization

