
HAL Id: lirmm-02197618
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02197618

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Massively Distributed Time Series Indexing and
Querying

Djamel-Edine Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Themis
Palpanas

To cite this version:
Djamel-Edine Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Themis Palpanas. Massively Dis-
tributed Time Series Indexing and Querying. IEEE Transactions on Knowledge and Data Engineering,
2020, 32 (1), pp.108-120. �10.1109/TKDE.2018.2880215�. �lirmm-02197618�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02197618
https://hal.archives-ouvertes.fr

1

Massively Distributed Time Series
Indexing and Querying

Djamel-Edine Yagoubi1, RezaAkbarinia1, F lorentMasseglia1, ThemisPalpanas2

Abstract—Indexing is crucial for many data mining tasks that rely on efficient and effective similarity query processing. Consequently,
indexing large volumes of time series, along with high performance similarity query processing, have became topics of high interest.
For many applications across diverse domains though, the amount of data to be processed might be intractable for a single machine,
making existing centralized indexing solutions inefficient. We propose a parallel indexing solution that gracefully scales to billions of
time series (or high-dimensional vectors, in general), and a parallel query processing strategy that, given a batch of queries, efficiently
exploits the index. Our experiments, on both synthetic and real world data, illustrate that our index creation algorithm works on 4 billion
time series in less than 5 hours, while the state of the art centralized algorithms do not scale and have their limit on 1 billion time series,
where they need more than 5 days. Also, our distributed querying algorithm is able to efficiently process millions of queries over
collections of billions of time series, thanks to an effective load balancing mechanism.

Index Terms—Time Series, Parallel Indexing, Distributed Querying

F

1 INTRODUCTION

NOWADAYS individuals are able to monitor various
indicators for their personal activities (e.g., through

smart-meters or smart-plugs for electricity or water con-
sumption), or professional activities (e.g., through the sen-
sors installed on plants by farmers). Sensors technology
is also improving over time and the number of sensors is
increasing, e.g., in finance and seismic studies. This results
in the production of large and complex data, usually in the
form of time series (or TS in short) [9], [12], [17], [20], [21],
[25], [26], [27], [29], [34] that challenge knowledge discovery.
With such complex and massive sets of time series, fast and
accurate similarity search is a key to perform many data
mining tasks like Shapelets, Motifs Discovery, Classification
or Clustering [19], [25], [39].

In order to improve the performance of such similarity
queries, indexing is one of the most popular techniques [6],
[7], which has been successfully used in a variety of set-
tings and applications [2], [4], [8], [14], [18], [31], [32], [37].
Although recent studies have shown that in certain cases
sequential scans can be very efficient [25], [35], such tech-
niques are only advantageous when the database consists
of a single, long time series, and query answers are small
subsequences of this long time series. Such approaches,
however, are not beneficial in the general case of querying
a mixed database of many small time series [38] (e.g., in
neuroscience, or manufacturing applications [21]), which is
the focus of this study. Therefore, indexing is required in
order to efficiently support data exploration tasks, which
involve ad-hoc queries.

In this work, we focus on the problem of similarity

• 1: Inria - University of Montpellier - Lirmm, France
E-mail: Djamel-Edine.Yagoubi@inria.fr, Reza.Akbarinia@inria.fr, Flo-
rent.Masseglia@inria.fr

• 2: Paris Descartes University, France
E-mail: themis@mi.parisdescartes.fr

b
bbb b

b b

b
b b bb

b b b b

b
bbb

b b

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

(a) Straightforward implementation: the batch of queries is duplicated on all the
computing nodes.

b
bbb b

b b

b

b b bb

b b b b

b

b b b

bb

Q5

Q3
Q4

Q1

Q2

Q1
Q2

Q3
Q4

Q5

(b) Ideal distribution of time series in the index nodes: each query is sent only
to the relevant partition.

Fig. 1: Straightforward Vs. partitioned strategies for TS indexing
and querying. Load balancing is a major lever.

search in such massive sets of time series1 by means of
scalable index construction and use. Unfortunately, making
an index over billions of time series by using traditional
centralized approaches is highly time consuming [22], [23].
Moreover, a naive construction of the index on the parallel
environment may lead to poor querying performances. This
is illustrated in Figure 1, where an index is computed and
stored on a distributed file system. The index is in the
form of a tree, where each leaf contains time series (or
id/addresses of time series on the disk). We explain in

1. We note that the proposed techniques are also applicable for high-
dimensional vectors.

2

details in Section 2.1 how to build and query such an index.
Now, let us consider that the time series dataset is naively
split on the W distributed nodes (Figure 1a). Then, for a
new query q, we don’t know what split may contain the best
answer to that query (i.e., what time series, in the distributed
dataset, is the most similar to q). This is not an issue with
one query. But when we deal with a batch of queries, then
the parallel computing power is just under exploited by
such a naive approach. Basically, a batch of queries B has
to be duplicated and sequentially processed on each node.
However, by means of a dedicated strategy, where each
query in B could be oriented to the right partition (i.e., the
partition that must correspond to the query) the querying
work load can be significantly reduced (Figure 1b shows
an ideal case, where B is split in W subsets and really
processed in parallel). Our goal is to reach such an ideal
distribution of index construction and query processing in
massively distributed environments.

We propose a parallel solution to construct the state of
the art iSAX-based index [4] over billions of time series by
making the most of the parallel environment by carefully
distributing the work load. Our solution takes advantage
of the computing power of distributed systems by using
parallel frameworks such as MapReduce or Spark [36]. We
provide dedicated strategies and algorithms for a deep com-
bination of parallelism and indexing techniques, for better
query performances.

Our contributions are as follows:
• We propose a parallel index construction algorithm

that takes advantage of distributed environments to
efficiently build iSAX-based indices over very large
volumes of time series (or high-dimensional vectors,
in general).

• We implemented our index construction and query
processing algorithms, and evaluated their perfor-
mance over large volumes of data (up to 4 billion
series, for a total volume of 6 Terabytes), using both
synthetic and real data with sequences and vectors.
Our experiments illustrate the benefits of our algo-
rithm with an indexing time of less than 2 hours for
more than 1 billion series, while the state of the art
centralized algorithm needs more than 5 days.

• We also propose a parallel query processing algo-
rithm that, given a query, exploits the available pro-
cessors of the distributed system to answer the query
in parallel by using the constructed parallel index.
As illustrated by our experiments, and owing to our
distributed querying strategy, our approach is able
to process 10M queries in less than 140 seconds,
while the state of the art centralized algorithm needs
almost 2300 seconds.

The rest of this paper2 is organized as follows. In Sec-
tion 2, we define the problem we address in the paper and
present the related background. In Section 3 and Section 4,
we describe the details of our parallel index construction
and query processing algorithms. In Section 5, we present a
detailed experimental evaluation to verify the effectiveness
of our approach. In Section 6, we discuss the related work.
Finally, we conclude in 7.

2. A preliminary version of this work has appeared elsewhere [33].

2 PROBLEM DEFINITION AND BACKGROUND

A time series X is a sequence of values X = {x1, ..., xn}.
We assume that every time series has a value at every
timestamp t = 1, 2, ..., n. The length of X is denoted by
|X|. Figure 2a shows a time series of length 16, which will
be used as running example throughout this paper.

2.1 iSAX Representation

Given two time series (or vectors) of real numbers, X =
{x1, ..., xn} and Y = {y1, ..., ym} such that n = m, the
Euclidean distance between X and Y is defined as [8]:
ED(X,Y) =

√∑n
i=1(xi − yi)2. The Euclidean distance

is one of the most straightforward similarity measurement
methods used in time series analysis. In this work, we use it
as the distance measure.

For very large time series databases, it is important to
estimate the distance between two time series very quickly.
There are several techniques, providing lower bounds by
segmenting time series. Here, we use a popular method,
called indexable Symbolic Aggregate approXimation (iSAX)
representation [30], [31]. The iSAX representation will be
used to represent time series in our index.

The iSAX representation extends the SAX representation
[16]. This latter representation is based on the PAA represen-
tation [15] which allows for dimensionality reduction while
providing the important lower bounding property as we
will show later. The idea of PAA is to have a fixed segment
size, and minimize dimensionality by using the mean values
on each segment. Example 1 gives an illustration of PAA.
Example 1. Figure 2b shows the PAA representation of

X , the time series of Figure 2a. The representation is
composed of w = |X|/l values, where l is the segment
size. For each segment, the set of values is replaced with
their mean. The length of the final representation w is
the number of segments (and, usually, w << |X|).
The SAX representation takes as input the reduced time

series obtained using PAA. It discretizes this representation
into a predefined set of symbols, with a given cardinality,
where a symbol is a binary number. Example 2 gives an
illustration of the SAX representation.
Example 2. In Figure 2c, we have converted the time series

X to SAX representation with size 4, and cardinality 4
using the PAA representation shown in Figure 2b. We
denote SAX(X) = [11, 10, 01, 01].

The iSAX representation uses a variable cardinality for
each symbol of SAX representation, each symbol is accom-
panied by a number that denotes its cardinality. We defined
the iSAX representation of time series X as iSAX(X)
and we call it the iSAX word of the time series X . For
example, the iSAX word shown in Figure 2d can be written
as iSAX(X) = [12, 12, 014, 02].

The lower bounding approximation of the Euclidean
distance for iSAX representation iSAX(X) = {x′1, ..., x′w}
and iSAX(Y) = {y′1, ..., y′w} of two time series X and Y is
defined as:

MINDIST (iSAX(X), iSAX(Y)) =
√

n
w

√√√√ w∑
i=1

(dist(x′i, y
′
i))

2

3

b
b b

b

b b b b b

b

b
b b b

b b b

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

A time series Ts

(a) A time series X of
length 16

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

(b) A PAA representation of X, with 4 segments

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

11

10
01

00

(c) A SAX representation of X, with 4 segments and cardinality
4, [11, 10, 01, 01].

−3

−2

−1

0

1

2

3

4

5

0 4 8 12 16

1

0

0

1

0

(d) An iSAX representation of X, with 4 segments and different cardinalities
[12, 12, 014, 02].

Fig. 2: A time series X is discretized by obtaining a PAA represen-
tation and then using predetermined break-points to map the
PAA coefficients into SAX symbols. Here, the symbols are
given in binary notation, where 00 is the first symbol, 01 is
the second symbol, etc. The time series of Figure 2a in the
representation of Figure 2d is [fourth, third, second, second]
(which becomes [11, 10, 01, 01] in binary). The representation
of that time series in Figure 2c becomes [12, 12, 014, 02], where
1(2) means that 1 is the selected symbol among 2 possible
choices, 01 is the selected symbol among 4 possible choices,
etc.

0 0
0 1

1 0
1 1

0 01 0 00

00 01 01 01

Root

N2 N3 N4 N5

N6 N7 N8 N9

N11 N13

00 00 01 00

1 00
1 01

iSAX Index

N10 N12

Fig. 3: Example of iSAX Index

, where the function dist(x′i, y
′
i) is the distance between two

iSAX symbols x′i and y′i. The lower bounding condition is
formulated as:

MINDIST (iSAX(X), iSAX(Y)) ≤ ED(X,Y)

Using a variable cardinality allows the iSAX representa-
tion to be indexable. We can build a tree index as follows.
Given a cardinality b, an iSAX word length w and leaf
capacity th, we produce a set of bw children for the root
node, insert the time series to their corresponding leaf, and
gradually split the leaves by increasing the cardinality by
one character if the number of time series in a leaf node
rises above the given threshold th.
Example 3. Figure 3 illustrates an example of iSAX index,

where each iSAX word has 2 symbols and a maximum
cardinality of 4. The root node has 22 children while each
child node forms a binary sub-tree. There are three types
of nodes: root node, internal node (N2, N5, N6, N7) and
terminal node or leaf node (N3, N4, N8, N9, N10, N11, N12,
N13). Each leaf node links to a disk file that contains the
corresponding time series (up to th time series).

Note that previous studies have shown that the iSAX
index is robust with respect to the choice of parameters
(word length, cardinality, leaf threshold) [4], [31], [38].
Moreover, it can also be used to answer queries with the
Dynamic Time Warping (DTW) distance, through the use of
the corresponding lower bounding envelope [13].

2.2 Similarity Queries
The problem of similarity queries is one of the main prob-
lems in time series analysis and mining. In information
retrieval, finding the k nearest neighbors (k-NN) of a query
is a fundamental problem. In this section, we define two
kinds of k nearest neighbors based queries.
Definition 1. (EXACT k NEAREST NEIGHBORS) Given a

query time series Q and a set of time series D, let
R = ExactkNN(Q,D) be the set of k nearest neighbors
of Q from D. Let ED(X,Y) be the Euclidean distance
between the points X and Y , then the set R is defined as
follows:

(R ⊆ D) ∧ (|R| = k) ∧
(∀a ∈ R,∀b ∈ (D −R), ED(a,Q) ≤ ED(b,Q))

Definition 2. (APPROXIMATE k NEAREST NEIGHBORS) Given
a set of time series D, a query time series Q, and ε >
0. We say that R = AppkNN(Q,D) is the approximate

4

k nearest neighbors of Q from D, if ED(a,Q) ≤ (1 +
ε)ED(b,Q), where a is the kth nearest neighbor from R
and b is the true kth nearest neighbor.

2.3 Spark
For implementing our parallel algorithms we use Spark [36],
which is a parallel programming framework aiming to effi-
ciently process large datasets. This programming model can
perform analytics with in-memory techniques to overcome
disk bottlenecks. Similar to MapReduce [5], Spark can be
deployed on the Hadoop Distributed File System (HDFS)
[28]. Unlike traditional in-memory systems, the main fea-
ture of Spark is its distributed memory abstraction, called
resilient distributed datasets (RDD), that is an efficient and
fault-tolerant abstraction for distributing data in a cluster.
With RDD, the data can be easily persisted in main memory
as well as on the hard drive. Spark is designed to support
the execution of iterative algorithms.

To execute a Spark job, we need a master node to
coordinate job execution, and some worker nodes to execute
a parallel operation. These parallel operations are summa-
rized to two types: (i) Transformations: to create a new RDD
from an existing one (e.g., Map, MapToPair, MapPartition,
FlatMap); and (ii) Actions: to return a final value to the user
(e.g., Reduce, Aggregate or Count).

2.4 Problem Definition
The problem we address is as follows. Given a (potentially
huge) set of time series, find the results of exact and ap-
proximate k-NN queries as presented in definitions 1 and 2,
by means of an index and query processing performed in
parallel.

3 DISTRIBUTED ISAX (DISAX)
DiSAX, our first parallel index construction, sequentially
splits the dataset for distribution into partitions. Then each
worker builds an independent iSAX index on its partition,
with the iSAX representations having the highest possi-
ble cardinalities. Representing each time series with iSAX
words of high cardinalities allows us to decide later what
cardinality is really needed, by navigating ”on the fly”
between cardinalities. The word of lower cardinality being
obtained by removing the trailing bits of each symbol in the
word of higher cardinality. The output of this phase, with a
cluster of W nodes, is a set of W iSAX indexes built on each
split.

The pseudo-code of this index construction can be seen
in Algorithm 1. The input is a data partitions that contains
time series in ASCII form. First, the algorithm obtains the
iSAX representation of all time series using the highest
possible cardinalities (lines 2-4). Then each worker builds
an independent iSAX index on its partition (lines 5-9) using
the iSAX index insertion function (lines 10-26).

3.1 Query Processing
Given a collection of queries Q, in the form of time series,
and the index constructed in the previous section for a
database D, we consider the problem of finding time series

Algorithm 1: DiSAX Index construction

Input: Data partitions P = {P1, P2, . . . , Pn} of a
database D, w the length of the iSAX word

Output: Index structures
1 D.cache(); //cache all the database in the cluster, where

each time series has a unique ID
2 MapToPair(ID of Time series: ID ,Time Series: X)
3 Convert time series X to iSAX word with high

cardinalities and size w
4 emit (ID ,iSAX word)

5 MapPartition(Set of <ID,iSAX word>:
iSAX words)

6 rootNode = new RootNode
7 foreach <ID,iSAX word> in iSAX words do
8 rootNode.insert(ID ,iSAX word)

9 emit (rootNode)

10 Function insert(ID ,iSAX word)
11 if the subtree corresponding to iSAX word exists

then
12 node = the node corresponding to

iSAX word
13 if node is leaf node then
14 if node is not full then
15 node.insert(ID ,iSAX word)
16 else
17 newNode = new InternalNode
18 newNode.insert(ID ,iSAX word)
19 foreach iSAX word in node do
20 newNode.insert(ID ,iSAX word)

21 remove(node)

22 else
23 node.insert(ID ,iSAX word)

24 else
25 newNode = new TerminalNode
26 newNode.insert(ID ,iSAX word)

that are similar to Q in D, as presented in definitions 1
and 2. We perform such queries with two search methods:
approximate and exact.

3.1.1 Approximate Search

Given a batch B of queries, the master node duplicates B on
each worker (node) keeping an index for a subset of the data
(i.e, a data split). Each worker uses its local index to retrieve
time series that correspond to each query Q ∈ B, according
to the approximate k-NN criteria. On each local index, the
approximate search is done by traversing the local index to
the terminal node that has the same iSAX representation as
the query. The target terminal node contains at least one
and at most th iSAX words, where th is the leaf threshold.
A main memory sequential scan over these iSAX words is
performed in order to obtain the k nearest neighbors using
the Euclidean distance. Each worker w sends all the found
time series to the master. Let |W | be the number of workers,
the master thus receives k × |W | nearest neighbors for each

5

Algorithm 2: DiSAX Approximate Search
Input: iSAX Indexes, where each partition has one

index I = {I1, I2, . . . , In} and a collection Q
of queries time series

Output: k nearest neighbors
1 MapToPair(ID of Time series: ID ,Time Series: q)
2 Convert time series X to iSAX word with high

cardinalities and size w.
3 emit (ID ,iSAX word)

4 Duplicate Q on each partition
5 MapPartition(iSAX index, Set of <ID,iSAX word>:
iSAX words)

6 get the rootNode from iSAX index
7 foreach <ID,iSAX word> in iSAX words do
8 rootNode.ApprSearch(ID ,iSAX word)

9 emit (ApprSearch results)

10 Function ApprSearch(ID ,iSAX word)
11 node = the node corresponding to iSAX word
12 if node is a terminal node then
13 Find the k nearest neighbors using Euclidean

distance
14 else
15 node.ApprSearch(ID ,iSAX word);

query Q, sorts them by decreasing order of their distance to
Q, and selects the k top ones.

The algorithm, described in Algorithm 2, starts by obtain
the iSAX representation of all queries time series using the
highest possible cardinalities (lines 1-3). Then the master
node duplicates the queries on each partition (worker) (line
4), and each worker uses its local index to retrieve time
series that correspond to each query (lines 5-9), using the
approximate search function (lines 10-15).

3.1.2 Exact Search

The exact search proceeds in two steps. In Step 1, the
algorithm firstly uses the approximate search described in
Section 3.1.1 to obtain AKNN, an approximate k nearest
neighbours set. Then each worker creates a priority queue
to examine the index nodes that may contain the time series
that are probably more similar to Q than those of AKNN.
Such nodes are identified as in the original iSAX [30], [31],
where the lower bound distance used for priority queue
ordering is computed using MINDIST PAA iSAX ac-
cording to AKNN. The difference is that, instead of a sequen-
tial scan of the series found in the identified leaf nodes, we
emit the IDs of the series. In step 2, the algorithm retrieves
all the time series that match the IDs emitted by the workers,
and then finds the k nearest neighbors using the Euclidean
distance.

The algorithm, described in Algorithm 3. The master
node duplicates the queries on each partition (worker) (line
1), and each worker uses its local index and starts by putting
all the children of the root in priority queue using their
lower distance bound towards the query (line 8), Then the
one with the best minimum distance is explored (line 9), if
the best lower bound is bigger than the BSF distance (line

Algorithm 3: DiSAX Exact Search
Input: iSAX Indexes where each partition has one

index I = {I1, I2, . . . , In} and a collection Q
of queries time series

Output: k nearest neighbors
1 Duplicate Q on each partition
2 MapPartition(iSAX index, Q)
3 get the rootNode from iSAX index
4 foreach q in Q do
5 bsf = rootNode.ApprSearch(ID ,iSAX word of

q) rootNode.ExactSearch(ID ,q,bsf)

6 emit (ExactSearch results)

7 Function ExactSearch(ID ,q)
8 bsfDist = Infinite; queue = Initialize a priority

queue with all the children of the root;
9 while node = pop next node from queue do

10 if node is terminal node and MinDist(q,node) <
bsfDist then

11 bsf = Find the k nearest neighbors
12 else if MinDist(q, node) ≥ bsfDist then
13 break;
14 else
15 Add the children of the node to priority

queue ;

12) the algorithm stops. If node is an internal node (line 15)
then all children are added into the priority queue.

3.2 Limitations of DiSAX
The parallel index constructed by DiSAX in a distributed en-
vironment is effective but calls for improvements. Actually,
it leads to query response times that sometimes are high,
because the query processing work is not well distributed
among the computing nodes. The reason is that each node
should examine all queries in the index, even if the index
contains no similar result for the query.

Furthermore the index obtained by iSAX2+ would be
very different from the union of the local distributed iSAX
indexes. This also has an impact on the size of the index.
Since merging all the local indexes would call for specific
algorithms (if it is even possible) the size of the global index
of distributed iSAX is higher than the index of centralized
iSAX2+.

4 DISTRIBUTED PARTITIONED ISAX (DBA-
SICPISAX AND DPISAX)
In this section, we present a novel parallel partitioned index
construction algorithms, along with very fast parallel query
processing techniques.

Our approach is based on a sampling phase that al-
lows anticipating the distribution of time series among the
computing nodes. Such anticipation is mandatory for an
efficient query processing, since it will allow, later on, to
decide what partition contains the time series that actually
correspond to the query. To do so, we first extract a sample
from the time series dataset, and analyze it in order to decide

6

TABLE 1: A sample S of 8 time series converted to iSAX represen-
tations with iSAX words of length 2

Time series iSAX words Time series iSAX words
TS1 {01, 00} TS5 {00, 10}
TS2 {00, 01} TS6 {01, 11}
TS3 {01, 01} TS7 {10, 00}
TS4 {00, 00} TS8 {10, 01}

1

0

10

bb

b b

b bb

b

bb

TS1 TS3

TS4 TS2

TS5

TS6

TS7
TS8

(a) Partitioning according to
DbasicPiSAX.

1

0

101

bb

b b

b bb

b

bb

TS1 TS3

TS4 TS2

TS5

TS6

TS7
TS8

00

(b) Partitioning according to
DPiSAX.

Fig. 4: The result of the partitioning algorithms (DPiSAX and Dba-
sicPiSAX) on sample S (from Table 1) into four partitions.

how to distribute the time series in the splits, according
to their iSAX representation. However, deciding the good
split criteria calls for careful attention since bad choices
may lead to highly imbalanced partitions, as illustrated
in this section with i) DbasicPiSAX, a first version of our
partitioned indexing technique and ii) DPiSAX, the final
version with, to the best of our knowledge, the best load
balance and the best querying performances obtained for
time series indexing in distributed environments.

4.1 Sampling

In Distributed Partitioned iSAX, our index construction
combines two main phases which are executed one after
the other. First, the algorithm starts by sampling the time
series dataset and creates a partitioning table. Then, the
time series are partitioned into groups using the partitioning
table. Finally, each group is processed to create an iSAX
index for each partition.

More formally, our sampling is done as follows. Given
a number of partitions P and a time series dataset D, the
algorithm takes S sample time series of size L from D using
stratified sampling, and distributes them among the W
available workers. Each worker takes S/W time series and
emits its iSAX words SWs = {iSAX(tsi), i = 1, ..., L}. The
master collects all the workers’ iSAX words and performs
the partitioning algorithm accordingly. In the following, we
describe two partitioning methods that enable separating
the dataset into non-overlapping subsets based on iSAX rep-
resentations, namely ”the basic approach” (or DbasicPiSAX)
and ”the statistical approach” (or DPiSAX). Both methods
proceed with a common simple strategy: successively divide
the sample by splitting the biggest partition into two sub-
partitions, until the number of partitions is equal to the
number of workers. However, at each step, once the biggest
partition is identified, the main difference is in the assign-
ment strategy (i.e., how is each time series in the sample
assigned to one or the other of the new partitions?).

4.2 Basic Approach: DbasicPiSAX

In the basic approach, splitting the biggest partition is done
according to the first bit of each symbol in the iSAX words,
as we can see in Algorithm 4 (line 1-4). Let us consider the
nth splitting step, each time series is assigned to a new
partition depending on the first bit of its nth symbol. Of
course, when the number of symbols has been reached for
a partition (i.e., it cannot be divided anymore because the
last symbol has been reached) then we need to consider the
remaining partitions for new splits.

Example 4. Let’s consider Table 1, where we use iSAX words
of length two to represent the time series of a sample
S. Suppose that we need to generate four partitions.
First, we use the first bit of the first segment to define
two partitions. The first partition contains all the time
series having their first iSAX word starting with 1, and
the second partition contains the time series having their
first iSAX word starting with 0. We obtain two partitions:
”0” and ”1”. The biggest partition is ”0” (i.e., containing
the time series TS1 to TS6). This partition is split
again, according to the first bit of the second symbol.
We now have the following partitions: from the first
step, partition ”1”, and from the second step, partitions
”00”, and ”01”. Now, partition ”00” is the biggest one.
However, it cannot be split anymore since the maximum
number of symbols has been reached. We choose the next
biggest partition, i.e., ”1”. After splitting this partition
using the first bit of the second segment, we obtain two
new partitions:”11” and ”10”. Partition ”10” contains all
the time series of the old partition (i.e., partition ”1”).
Consequently, we have four partitions, where partition
”11” is empty. Figure 4a shows the obtained partitions
and Figure 5a shows the indexes obtained with these
partitions.

The partitioning Algorithm achieves two goals: 1) gener-
ating P partitions; and 2) preserving vertical division of the
iSAX tree. Notice that the second goal is achieved because
our partitioning algorithm uses the first bit of each symbol.
Therefore, iSAX words having cardinality 2 are used to
produce a set of, at most, 2w partitions. In the original iSAX
index, when the construction starts with a cardinality of 2, a
set of 2w children is produced at the root node. Intuitively,
in our running example, when we compare the centralize
index (the original iSAX index) in Figure 3, and the parallel
indexes in the Figure 5a obtained with the basic partitioning
approach, we observe the vertical division of the original
iSAX index.

4.3 Limitations of the Basic Approach

Obviously, the partitions obtained with the basic partition-
ing approach are not balanced. This is due to two main
reasons. First, the partitioning algorithm preserves vertical
division of the original iSAX index and the iSAX index is
not balanced. The second reason is that, the partitioning
algorithm does not take into account the data distribution
in the partitions. Because of the limits in the number of
symbols, it is possible to end up with highly imbalanced
partitions, as illustrated by Figure 5a and also by our exper-
iments. Because of this imbalanced distribution of the data,

7

0 1

1 1

0 01 0 00

00 01 01 01

Root

Root

N3

N4

Root

N6 N7

N8 N9

N10 N11 N12 N13

00 00 01 00

1 00 1 01

RootRoot0 0 0 1

1 1 1 0

(a) DbasicPiSAX indexes after partitioning and indexing. Partition
”11” is empty for the sampling step, but may contain data after
indexing.

0 1 1 1

00 01 01 01

N3 N4

Root

N8 N9

N10 N11 N12 N13

00 00 01 00

1 00 1 01

Root

Root Root

– 11 0

0 000 01

(b) DPiSAX indexes after partitioning and indexing. The partitioning
principle of DPiSAX allows better balance.

Fig. 5: The indexes built by DPiSAX and DbasicPiSAX on sample S (from Table 1) on four partitions.

the basic approach is limited in the size of datasets it can
process. If the capacity of a computing node is reached (i.e.,
the node in charge of the biggest partition cannot handle the
data that corresponds to it), then the index building process
cannot progress.

Moreover, the maximum number of partitions that can
be generated is 2w (where w is the SAX word length). Since
each partition is managed by a computing node for the
local index construction, if the number of partitions is lower
than the number of available computing nodes, then there
will be idle nodes. This is a threat for the speed-up of the
approach and calls for better solutions, as presented in the
next subsection.

Algorithm 4: DbasicPiSAX Partitioning Function
Input: Sample S of iSAX words, p number of

partitions
Output: Partition Table BT

1 while the number of partitions is less than p do
2 BigPartition = the biggest partition
3 //In the first iteration BigPartition = S
4 Divide BigPartition into two partitions

4.4 Statistical Approach: DPiSAX
Here, our partitioning paradigm considers the splitting
power of each bit in the iSAX symbols, before actually
splitting the partition. As in the basic approach, the biggest
partition is considered for splitting at each step of the parti-
tioning process. The main difference is that we don’t use the
first bit of the nth symbol for splitting the partition. Instead,
we look for all bits (whatever the symbol) (Algorithm 5
lines 7-11) with the highest probability to equally distribute
the time series of the partition among the two new sub-
partitions that will be created. To this effect, we compute for
each segment the µ ± σ interval (lines 4-5), where µ is the

mean and σ is the standard deviation, and we examine for
each segment if the break-point of the additional bit (i.e., the
bit used to generate the two new partitions) lies within the
interval µ ± σ (line 9). From the segments for which this is
true, we choose the one having µ closer to the break-point
(line 10).

In order to illustrate this, let us consider the blue boxes
of the diagrams in Figure 5a. We choose the biggest blue
box that ensures the best splitting by considering the next
break-point.

Example 5. Let’s consider the same case as described in
Example 4. Figure 4b shows the obtained partitions
and Figure 5b shows the indexes obtained with these
partitions. To generate four partitions, we compute the
µ ± σ interval for the first segment and the second
segment, and choose the first bit of the second segment
to define two partitions. The first partition contains all
the time series having their second segment in iSAX
word starting with 0, and the second partition contains
the time series having their second segment in iSAX
word starting with 1. We obtain two partitions: ”0” and
”1”. The biggest partition is ”0” (i.e., the one containing
time series TS1 to TS4, TS7 and TS8). We compute the
µ ± σ interval for all segment over all the time series in
this partition. Then, the partition is split again, according
to the first bit of the first symbol. We now have the
following partitions: from the first step, partition ”1”,
and from the second step, partitions ”00”, and ”10”.
Now, partition ”00” is the biggest one. This partition is
split for the third time, according to the second bit of the
first symbol and we obtain four partitions.
We also illustrate, in Figure 5a, the variability of the
distribution of time series for each symbol. For instance,
in partition ”00”, for node N6, there is a much higher
variability in the first symbol (marked ”0” in the dia-
gram, and represented by the blue box) than the second
symbol (marked ”01”, blue box).

8

Algorithm 5: DPiSAX Partitioning Function
Input: Sample S of iSAX words, p number of

partitions
Output: Partition Table BT

1 while the number of partitions is less than p do
2 BigPartition = the biggest partition
3 //In the first iteration BigPartition = S
4 mean[] = ComputeSymbolsMean(BigPartition)
5 stdev[] = ComputeSymbolsStDev(BigPartition)
6 segmentToSplit = null
7 foreach segment s in BigPartition do
8 b = getbreak-point(s)
9 if b within mean[s] ± stdev[s] then

10 if mean[s] close to b then segmentToSplit
then

11 segmentToSplit = s

12 Divide BigPartition into two partitions in
segmentToSplit

Optimization. Because many time series have the same
iSAX representation, we may end up with groups of iSAX
words that are the same, even when using the maximum
cardinality (as it is our case). Therefore, we turn this data
duplication into an advantage. Actually, the index construc-
tion is done as in Section 3, but the difference is that in the
insertion function, we provide the algorithm with a bulk
insertion function. The goal of this function is to better
consider iSAX words with the same representation and to
improve the index construction cost. This is done by linking
all the IDs of time series having the same representation to
only one corresponding iSAX word.

The pseudo-code of the parallel index construction by
DPiSAX is shown in Algorithm 6. Given a time series
dataset, the algorithm firstly creates the iSAX representation
of each time series in parallel (lines 2-4). Then, it inserts
the representations in parallel to the index by using the
bulkInsertion function (lines 5-9). Each time series t is in-
serted to the index by the worker (i.e., the processor) that
is responsible for the partition to which t belongs. If the
subtree of the partition does not exist, it will be created
(lines 23- 25). Then, the time series t is inserted to its
corresponding leaf node in the subtree (lines 14-15). If the
node gets full (i.e., its size gets higher than the threshold),
then it will be split (lines 16-20).

4.5 Query Processing
Given a collection of queries Q, in the form of time series,
and the index constructed in the previous section for a
database D, we consider the problem of finding time series
that are similar to Q in D, according to the definitions of
approximate k-NN and exact k-NN search as presented
in definitions 1 and 2. Approximate and exact search are
performed as follows:

• Approximate search: searching for the approximate
k nearest neighbors of the time series Q is done as
in Section 3.1.1. The difference is that just one iSAX
index is queried instead of all the parallel indexes.

Algorithm 6: DPiSAX Index construction

Input: Data partitions P = {P1, P2, . . . , Pn} of a
database D, w the length of the iSAX word, p
number of partitions

Output: Index structures
1 D.cache(); //cache all the database in the cluster, where

each time series has a unique ID
2 MapToPair(ID of Time series: ID ,Time Series: X)
3 Convert the time series X to iSAX word with

high cardinalities and size w
4 emit (ID ,iSAX word)

5 MapPartition(Set of Set<ID,iSAX word>:
iSAX words)

6 rootNode = new RootNode
7 foreach Set <ID,iSAX word> in iSAX words do
8 rootNode.bulkInsertion(Set<ID,iSAX word>)

9 emit (rootNode)

10 Function bulkInsertion(Set <ID,iSAX word>:
iSAX words)

11 if the subtree corresponding to iSAX words exists
then

12 node = the node corresponding to
iSAX words

13 if node is leaf node then
14 if node is not full then
15 node.bulkInsertion(iSAX words)
16 else
17 newNode = new InternalNode
18 newNode.bulkInsertion(iSAX words)
19 newNode.bulkInsertion(all iSAX words

of node)
20 remove(node)

21 else
22 node.bulkInsertion(iSAX words)

23 else
24 newNode = new TerminalNode
25 newNode.bulkInsertion(iSAX words)

Actually, we are able to identify the right partition,
where the index is stored and send the corresponding
query by using its iSAX words. Then, we send each
query to the partition that has the same iSAX word as
the query. The algorithm, described in Algorithm 7,
starts by obtain the iSAX representation of all queries
time series using the highest possible cardinalities
(lines 1-3). The master sends each query to the par-
tition (worker) that has the same iSAX word as the
query (line 4), and each worker uses its local index
to retrieve time series that correspond to each query
(lines 5-9), using the approximate search function
(lines 10-15).

• Exact search: for retrieving the exact k nearest neigh-
bors of a given query time series q, we first use the
approximate search, described above, in order to ob-
tain an approximate best-so-far k nearest neighbors.
Then, each worker performs the exact search algo-

9

Algorithm 7: DPiSAX Approximate Search
Input: iSAX Indexes, where each partition has one

index I = {I1, I2, . . . , In} and a collection Q
of Query time series

Output: k nearest neighbors
1 MapToPair(ID of Time series: ID ,Time Series: q)
2 Convert time series X to iSAX word with high

cardinalities and size w.
3 emit (ID ,iSAX word)

4 Send each query to the partition that has the same
iSAX word as the query

5 MapPartition(iSAX index, Set of <ID,iSAX word>:
iSAX words)

6 get the the rootNode from iSAX index
7 foreach <ID,iSAX word> in iSAX words do
8 rootNode.ApprSearch(ID ,iSAX word)

9 emit (ApprSearch results)

10 Function ApprSearch(ID ,iSAX word)
11 node = the node corresponding to iSAX word
12 if node is terminal node then
13 Find the k nearest neighbors using Euclidean

distance
14 else
15 node.ApprSearch(ID ,iSAX word);

rithm as described in Section 3.1.2. This is described
in Algorithm 8. The master sends each query to the
partition (worker) that has the same iSAX word as
the query (line 1), and each worker uses its local
index and starts by putting all the children of the root
in priority queue using their lower distance bound
towards the query (line 8). Then, the one with the
best minimum distance is explored (line 9). If the best
lower bound is bigger than the BSF distance (line 12)
then the algorithm stops. If the node is an internal
node (line 15) then all its children are added to the
priority queue.

5 PERFORMANCE EVALUATION

In this section, we report experimental results that show the
quality and the performance of DPiSAX for indexing time
series.

The parallel experimental evaluation was conducted on
a cluster of 32 machines, each operated by Linux, with 64
Gigabytes of main memory, Intel Xeon CPU with 8 cores
and 250 Gigabytes hard disk. The iSAX2+ approach was
executed on a single machine with the same characteristics.

We evaluate the performance of three versions of our
solution: 1) DiSAX is the parallel implementation of iSax as
described in Section 3 ; 2) DbasicPiSAX is the sampling-
based indexing algorithm with basic partitioning as de-
scribed in Section 4.2; 3) DPiSAX is our complete solution,
with the statistical partitioning described in Section 4.4.
Furthermore, we compare our solutions to two state of the
art baselines: the most efficient centralized version of iSAX
index (i.e., iSAX2+ [4]), and Parallel Linear Search (PLS),
which is a parallel version of the UCR Suite fast sequential

Algorithm 8: DPiSAX Exact Search
Input: iSAX Indexes, where each partitions has one

index I = {I1, I2, . . . , In} and a collection Q
of queries time series

Output: k nearest neighbors
1 Send each query to the partition that has the same

iSAX word as the query
2 MapPartition(iSAX index, Q)
3 get the rootNode from iSAX index
4 foreach q in Q do
5 bsf = rootNode.ApprSearch(ID ,iSAX word of

q) rootNode.ExactSearch(ID ,q,bsf)

6 emit (ExactSearch results)

7 Function ExactSearch(ID ,q)
8 bsfDist = Infinite; queue = Initialize a priority

queue with all the children of the root;
9 while node = pop next node from queue do

10 if node is terminal node and MinDist(q,node) <
bsfDist then

11 bsf = Finds the k nearest neighbors
12 else if MinDist(q, node) ≥ bsfDist then
13 break;
14 else
15 Add the children of the node to priority

queue ;

TABLE 2: Default parameters

Parameters Value Parameters Value
iSAX word length 8 Leaf capacity 1,000
Basic cardinality 2 Number of machines 32
Maximum cardinality 512 Sampling fraction 10%

search (with all applicable optimizations in our context: no
computation of square root, and early abandoning) [25].

Our experiments are divided into two sections. In Sec-
tion 5.2, we measure the index construction times with
different parameters. In Section 5.3, we focus on the query
performance of our approach.

The splitting strategy of DPiSAX, described in Section 4.4
is essentially the same to the centralized state of the art one,
iSAX2+, described in [4]. Therefore, the results retrieved in
our experiments are the same as those retrieved by iSAX2+.
In the interest of space, we do not show graphs for retrieval
performances, since they would systematically show a 100%
agreement to those of iSAX2+.

Reproductibility: we implemented our approaches on
top of Apache-Spark [36], using the Java programming
language. The iSAX2+ index is also implemented with Java.
Our code is available at https://djamelinfo.github.io/test/
projects/DPiSAX/.

5.1 Datasets and Settings

We carried out our experiments on two real world and
synthetic datasets, up to 6 Terabytes and 4 billion series.
The first real world data represents seismic time series
collected from the IRIS Seismic Data Access repository [10].
After preprocessing, it contains 40 million time series of 256

https://djamelinfo.github.io/test/projects/DPiSAX/
https://djamelinfo.github.io/test/projects/DPiSAX/

10

values, for a total size of 150Gb. The second real world data
is the TexMex corpus [11]. It contains 1 Billion SIFT feature
vectors of 128 points each (derived from 1 Billion images).
Our synthetic datasets are generated using a Random Walk
principle, each data series consisting of 256 points. At each
time point the generator draws a random number from a
Gaussian distribution N(0,1), then adds the value of the
last number to the new number. This type of generator
has been widely used in the past [1], [2], [3], [4], [8], [30],
[37]. Table 2 shows the default parameters (unless otherwise
specified in the text) used for each approach. The iSAX
word length, PAA size, leaf capacity, basic cardinality, and
maximum cardinality were chosen to be optimal for iSAX,
which previous works [3], [4], [30], [31], [37] have shown to
work well across data with very different characteristics.

5.2 Index Construction Time
In this section, we measure the index construction time in
DPiSAX, DbasicPiSAX and DiSAX, and compare it to the
construction time of the iSAX2+ index.

Figure 6 reports the index construction times for all
approaches on our Random Walk dataset. The index con-
struction time increases with the number of time series for
all approaches. This time is much lower in the case of all
parallel approaches, than that of the centralized iSAX2+. On
32 machines, and for a dataset of one billion time series,
DPiSAX builds the index in 65 minutes, DbasicPiSAX in 76
minutes and DiSAX in 64 minutes, while the iSAX2+ index
is built in more than 5 days on a single node.

 10

 100

 1000

 10000

200M 400M 600M 800M 1B

 C
o
n
s
tr

u
c
ti
o
n

 t
im

e
 (

M
in

u
te

s
)

Number of Time Series

DPiSAX
DbasicPiSAX
DiSAX
iSAX2+

Fig. 6: Logarithmic scale. Construction time as a function of dataset
size. Parallel algorithms (DiSAX and DPiSAX) are run on
a cluster of 32 nodes. iSAX2+ is run on a single node. With
1 billion Random Walk TS, iSAX2+ needs 5 days and our
distributed algorithms need less than 2 hours.

Figure 7 shows the same evaluation on the TexMex
dataset. We can observe very similar behavior of our parallel
approaches. As for the previous experiment, reported in
Figure 6, the centralized version of iSAX2+ builds the index
on a single machine in up to 4 days. We only report the
response time of scalable approaches in Figure 7, for a better
visual comparison of their performances.

Figure 8 reports an extended view on the index construc-
tion times, only for parallel approaches, and with datasets
having size up to 4 billion time series (6.2TB). The running
time increases with the number of time series for DPiSAX
and DiSAX. DbasicPiSAX does not scale and cannot execute

 0

 10

 20

 30

 40

 50

 60

 70

 80

200M 400M 600M 800M 1B

 C
o

n
s
tr

u
c
ti
o

n
 t

im
e
 (

M
in

u
te

s
)

Number of Time Series

DPiSAX
DbasicPiSAX
DiSAX

Fig. 7: Construction time as a function of dataset size. Parallel
algorithms (DiSAX and DPiSAX) are run on a cluster of
32 nodes. With 1 billion TS from TexMex dataset.

on datasets having size above 1Tb. This is due to its imbal-
anced partitions, where one of the computing node receives
so much data that it cannot build the index. This will be
better discussed with Figure 14.

 50

 100

 150

 200

 250

 300

1B 2B 3B 4B

 C
o
n
s
tr

u
c
ti
o
n

 t
im

e
 (

M
in

u
te

s
)

Number of Time Series

DPiSAX
DiSAX
DbasicPiSAX

Fig. 8: Construction time as a function of dataset size, for parallel
algorithms on a cluster of 32 nodes, and with datasets up to 4
billion Random Walk time series.

Figures 9 and 10 illustrate the parallel speed-up of our
approach on the Random Walk (Figure 9) and the TexMex
(Figure 10) datasets. The results show a near optimal gain
for DPiSAX and DiSAX on our dataset. From the figure 9,
we observe that the construction time for DbasicPiSAX is
the same with 32 nodes and 40 nodes, this is because Dba-
sicPiSAX does not use all the available processors. Actually,
the basic partitioning algorithm (as described in Section 4.2)
is limited in the number of partitions it can generate. By
construction, it is able to generate up to 28 = 256 partitions
(more generally, 2w partitions, where w is the SAX word
length). In order to fully exploit the computing of all 320
cores, we need to build 320 partitions. This is over the
maximum number of partitions that DbasicPiSAX is able
to manage (i.e., in this case, 256).

Figure 14 reports our measures of load balance, on 32
nodes and one billion time series, where partitions are
sorted by decreasing order of the measured criteria: number
of nodes in the local trees (11), number of time series
in the partitions (Figure 12) and index depth (Figure 13).
Our results illustrate the near ideal balance of our DPiSAX

11

 0

 50

 100

 150

 200

 8 16 24 32 40

 C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
M

in
u

te
s
)

Number of Nodes

DPiSAX
DbasicPiSAX

DiSAX

Fig. 9: Construction time as a function of cluster size. DPiSAX and
DiSAX have has a near optimal parallel speed-up. With 1
billion TS from the Random Walk dataset.

 0

 50

 100

 150

 200

 8 16 24 32

 C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
M

in
u

te
s
)

Number of Nodes

DPiSAX
DbasicPiSAX

DiSAX

Fig. 10: Construction time as a function of cluster size. DPiSAX and
DiSAX have has a near optimal parallel speed-up. With 1
billion TS from the TexMex dataset.

approach, while DbasicPiSAX is totally unbalanced. The
number of time series, for instance, in the case of Dba-
sicPiSAX, ranges from 0 (which means an empty partition)
to 100 millions (i.e., 10% of the data is indexed on one
partition out of 320). DiSAX is perfectly balanced in the
index construction phase owing to its sequential split of
the data in the partitioning phase, but totally imbalanced in
querying because it has to send the whole batch of queries
to all partitions, leading to poor performances as illustrated
in the remaining of our experiments.

Figure 15 reports the performance gains of our parallel
approaches on the centralized version of iSAX2+ on our
synthetic and real datasets. The results show that DPiSAX
is between 40 and 120 times faster than iSAX2+. We observe
that the performance gain depends on the dataset size in
relation to the number of Spark nodes used in the deploy-
ment. As seen, the speedup of DPiSAX compared to the
centralized iSAX2+ is higher than the number of cluster
nodes, i.e. 32. The reason is that each node of the cluster
has 8 cores, and for each core, Spark can create one worker
(thread). Thus, the speedup is not higher than the number
of cluster cores.

Note that the time Spark needs to deploy on 32 nodes
is accounted for in our measurements. Thus, given the

very short time needed to construct the DPiSAX index on
the seismic dataset (420 seconds), the proportion of time
taken by the Spark deployment when compared to index
construction, is higher than the much larger Random Walk
dataset.

Our experiments with varying leaf capacity show that
this parameter has a negligible effect on performance (re-
sults omitted for brevity). This is because the RDD imple-
mentation used by Spark avoids the performance penalty
related to disk I/O, which is heavily affected by the choice
of the leaf capacity [4].

5.3 Query Performance
In the following experiments, we evaluate the querying
performance of our algorithms, and compare them to the
state of the art. In the case of our synthetic data, we gen-
erate Random Walk queries with the same distribution as
described in Section 5.1. For the seismic data, we obtained
seismic time series from the same IRIS Seismic Data Access
repository [10] to be used as queries. In the case of the
TexMex corpus, similar series correspond to similar images.
The corpus contains 104 example queries together with
information about which image in the corpus is the nearest
neighbor. In any dataset, for each time series t in the query
batch, the goal is to check if the approach is able to find the k
time series that are considered to be the most similar to t in
this dataset, both with exact and approximate K-NN search.

Figure 16 compares the search time of approximate k
nearest neighbors queries for the parallel approaches pro-
posed in this work. We can observe that the response time
increases with the number of queries for all approaches.
However, for DPiSAX the search time is lower than Dba-
sicPiSAX (owing to the better partition balancing) and much
better than DiSAX (owing to DPiSAX’s cability of splitting
the query batch and redirect the queries to the adequate
partitions). In our experiments, we also compared the search
time of parallel approaches to that of iSAX2+ for answering
approximate k nearest neighbors queries with a varying size
of query batch. We observed that the approximate search
time of DPiSAX is better than that of the iSAX2+ by a factor
of up to 16 (e.g., the search time for 10 millions queries is
2270 sec for iSAX2+ and 138 sec for DPiSAX).

Figure 17 gives the exact search run time of our parallel
approaches on the index constructed over 1 billion time
series. We observe that DPiSAX is always faster than Dba-
sicPiSAX and DiSAX, owing to its near ideal load balance.

Figure 18 compares cumulative time (Indexing + Exact
10-NN) of DPiSAX, DbasicPiSAX and DiSAX to PLS. A
direct use of PLS is justified under 1K queries. Above
that limit, the cumulative time of building the index and
querying is much lower for our approaches, which are the
clear winners.

Figure 19 illustrates the performance gains of our ap-
proaches on the centralized version of iSAX2+ and on
PLS on synthetic and real world datasets, with batches
of 10K queries (indexing time not included). We observe
that DPiSAX and DbasicPiSAX have the best performance,
owing to their query redirection mechanisms. However,
DbasicPiSAX is not always as efficient as DPiSAX because
of a less balanced partitioning. DPiSAX is generally between
19 and 43 times faster than iSAX2+ and PLS.

12

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

N
u
m

b
e
r

o
f
n
o
d
e
s
 i
n
 l
o
c
a
l
in

d
e
x

Partition

DPiSAX
DbasicPiSAX

DiSAX
Average iSAX2+

Fig. 11: number of nodes

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200 250

N
u
m

b
e
r

o
f
ti
m

e
 s

e
ri
e
s

Partition

DPiSAX

DbasicPiSAX

DiSAX

Fig. 12: number of time series

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

L
o
c
a
l
in

d
e
x
 d

e
p
th

Partition

DPiSAX
DbasicPiSAX

DiSAX

Fig. 13: Local index depth

Fig. 14: Load balance in partitions: distribution of the number of nodes (a), of the number of time series (b), and of index depth (c), sorted by
decreasing order in the partitions. The strong imbalance of DbasicPiSAX is the main reason of failure on massive datasets (ı.e., above
1 billion TS).

20X

40X

60X

80X

100X

120X

Vs. iSAX2+

over Seismic

Vs. iSAX2+

over RW

Vs. iSAX2+

over TexMex

P
e

rf
o

rm
a

n
c
e

 G
a

in

DPiSAX

DbasicPiSAX

DiSAX

Fig. 15: Performance gain on iSAX2+ in construction time, over
seismic (40 millions TS), Random Walk (RW, 1 billion TS)
and TexMex (1 billion TS), with a cluster of 32 nodes.

 0

 100

 200

 300

 400

 500

 600

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

S
e

a
rc

h
 T

im
e

 (
S

e
c
o

n
d

s
)

Number of Queries

DPiSAX
DbasicPiSAX
DiSAX

Fig. 16: Run time of approximate 10-NN queries over Random Walk
dataset (limited to 1 billion TS because DbasicPiSAX does
not scale on bigger datasets), cluster of 32 nodes,.

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

S
e

a
rc

h
 T

im
e

 (
S

e
c
o

n
d

s
)

Number of Queries

DPiSAX
DbasicPiSAX
DiSAX

Fig. 17: Run time of exact 10-NN queries over Random Walk dataset
(limited to 1 billion TS because DbasicPiSAX does not scale
on bigger datasets), cluster of 32 nodes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 1k 10k

C
u

m
u

la
te

d
 T

im
e

 (
S

e
c
o

n
d

s
)

Number of Queries

DPiSAX
DbasicPiSAX
DiSAX
PLS

Fig. 18: Cumulative time (Indexing + Exact 10-NN) over Random
Walk dataset (limited to 1 billion TS because DbasicPiSAX
does not scale on bigger datasets), cluster of 32 nodes.

13

10X

20X

30X

40X

Vs. iSAX2+

 over

 Seismic

Vs. iSAX2+

 over

 RW

Vs. iSAX2+

 over

 TexMex

Vs. PLS

 over

 Seismic

Vs. PLS

 over

 RW

Vs. PLS

 over

 TexMex

P
e
rf

o
rm

a
n
c
e
 G

a
in

DPiSAX

DbasicPiSAX

DiSAX

Fig. 19: Performance gain (query only) of our parallel approaches on
iSAX2+ and PLS, for exact 10-NN search time, batches of
10k queries, over seismic, Random Walk (RW) and TexMex
datasets.

6 RELATED WORK

In the context of time series data mining, several techniques
have been developed and applied to time series data, e.g.,
clustering, classification, outlier detection, pattern identifi-
cation, motif discovery, and others. The idea of indexing
time series is relevant to all these techniques. Note that,
even though several databases have been developed for the
management of time series (such as Informix Time Series,
InfluxDB, OpenTSDB, and DalmatinerDB based on RIAK),
they do not include similarity search indexes, focusing on
(temporal) SQL-like query workloads. Thus, they cannot
efficiently support similarity search queries, which is the
focus of our study.

In order to speed up similarity search, different works
have studied the problem of indexing time series datasets,
such as Indexable Symbolic Aggregate approXimation
(iSAX) [30], [31], iSAX 2.0 [3], [4], iSAX2+ [4], Adaptive
Data Series Index (ADS Index) [37], Dynamic Splitting
Tree (DSTree) [32], Compact and Contiguous Sequence In-
frastructure (Coconut) [14], Parallel Index for Sequences
(ParIS) [24], and Ultra Compact Index for Variable-Length
Similarity Search (ULISSE) [18]. A recent study is comparing
the performance of several different time series indexes [6].

The iSAX index family (iSAX 2.0, iSAX2+, ADS Index)
is based on SAX representation [16] of time series, which is
a symbolic representation for time series that segments all
time series into equi-length segments and symbolizes the
mean value of each segment. As an index structure specif-
ically designed for ultra-large collections of time series,
iSAX 2.0 proposes a new mechanism and also algorithms
for efficient bulk loading and node splitting policy, wich is
not supported by iSAX index. In [4], the authors propose
two extensions of iSAX 2.0, namely iSAX 2.0 Clustered and
iSAX2+. These extensions focus on the efficient handling of
the raw time series data during the bulk loading process,
by using a technique that uses main memory buffers to
group and route similar time series together down the tree,
performing the insertion in a lazy manner. In addition to
that, DSTree based on extension of APCA representation,
called EAPCA [32] segments time series into variable length
segment. Unlike iSAX which only supports horizontal split-

ting, and only the mean values can be used in splitting, the
DSTree uses multiple splitting strategies. All these indexes
have been developed for a centralized environment, and
cannot scale up to very high volumes of time series.

The ParIS index [24] was recently proposed for taking
advantage of the modern hardware parallelization opportu-
nities within a single compute node. ParIS describes tech-
niques that use the Single Instruction Multiple Data (SIMD)
instructions, as well as the multi-core and multi-socket ar-
chitectures, for parallel index creation and query answering.
As such, ParIS is complementary to our approach.

In this paper, we propose a parallel solution that takes
advantage of distributed environments to efficiently build
iSAX-based indices over billions of time series, and to query
them in parallel with very small running times. To the best
of our knowledge, this is the first paper that proposes such
a solution.

7 CONCLUSIONS

We proposed DPiSAX, a novel and efficient parallel solu-
tion to index and query billions of time series, or high-
dimensional vectors, in general. We evaluated the perfor-
mance of our solution over large volumes of real world and
synthetic datasets (up to 4 billion time series, for a total
volume of 6TBs).

The experimental results illustrate the excellent perfor-
mance of DPiSAX (e.g., an indexing time of less than 2
hours for more than one billion time series, while the state
of the art centralized algorithm needs several days). The
results also show that the distributed querying algorithm
of DPiSAX is able to process millions of similarity queries
over collections of billions of time series with very fast
execution times (e.g., 140s for 10M queries), thanks to our
load balancing mechanism. Overall, the results show that
by using our parallel techniques, the indexing and mining
of very large volumes of time series can now be done in
very small execution times, which are impossible to achieve
using traditional centralized approaches.

In our future work, we intend to combine our approach
with techniques that exploit modern hardware parallelism
inside each computing node (i.e., SIMD, multi-core, multi-
socket, and GPU) [23], [24].

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020, under grant
agreement No. 732051.

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity
search in sequence databases. In Int. Conf.on FODO, 1993.

[2] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The
ts-tree: Efficient time series search and retrieval. In EDBT, 2008.

[3] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. isax 2.0: Indexing
and mining one billion time series. In ICDM Conf., pages 58–67,
2010.

[4] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J.
Keogh. Beyond one billion time series: indexing and mining very
large time series collections with i SAX2+. Knowl. Inf. Syst., 2014.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

14

[6] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and
Houda Benbrahim. The lernaean hydra of data series similarity
search: An experimental evaluation of the state of the art. PVLDB,
2019.

[7] Philippe Esling and Carlos Agon. Time-series data mining. ACM
Comput. Surv., 45(1):12:1–12:34, December 2012.

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subse-
quence matching in time-series databases. SigRec, 23(2):419–429,
1994.

[9] Pablo Huijse, Pablo A. Estévez, Pavlos Protopapas, Jose C.
Principe, and Pablo Zegers. Computational intelligence challenges
and applications on large-scale astronomical time series databases.
IEEE Comp. Int. Mag., 9(3):27–39, 2014.

[10] IRIS. Seismic data access. http://ds.iris.edu/data/access/.
[11] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in

one billion vectors: re-rank with source coding. In ICASSP , 2011.
[12] Kunio Kashino, Gavin Smith, and Hiroshi Murase. Time-series

active search for quick retrieval of audio and video. In ICASSP,
1999.

[13] Eamonn J. Keogh. Exact indexing of dynamic time warping. In
VLDB, 2002.

[14] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and
Themis Palpanas. Coconut: A scalable bottom-up approach for
building data series indexes. PVLDB, 11(6), 2018.

[15] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representa-
tion of time series, with implications for streaming algorithms. In
SIGMOD, 2003.

[16] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: A novel
symbolic representation of time series. Data Min. Knowl. Discov.,
2007.

[17] Michele Linardi and Themis Palpanas. ULISSE: ultra compact
index for variable-length similarity search in data series. In ICDE,
2018.

[18] Michele Linardi and Themis Palpanas. Scalable, variable-length
similarity search in data series: The ulisse approach. PVLDB, 2019.

[19] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J.
Keogh. Matrix profile X: VALMOD - scalable discovery of
variable-length motifs in data series. In SIGMOD, 2018.

[20] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J.
Keogh. VALMOD: A suite for easy and exact detection of variable
length motifs in data series. In SIGMOD, 2018.

[21] Themis Palpanas. Data series management: The road to big
sequence analytics. SIGMOD Record, 44(2):47–52, 2015.

[22] Themis Palpanas. Big sequence management: A glimpse of the
past, the present, and the future. In SOFSEM, 2016.

[23] Themis Palpanas. The parallel and distributed future of data series
mining. In International Conference on High Performance Computing
& Simulation, HPCS, 2017.

[24] Botao Peng, Themis Palpanas, and Panagiota Fatourou. ParIS:
The Next Destination for Fast Data Series Indexing and Query
Answering. IEEE BigData, 2018.

[25] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions of
time series subsequences under dynamic time warping. In KDD,
2012.

[26] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Pal-
panas, and Gian Pietro Picco. Practical data prediction for real-
world wireless sensor networks. IEEE Trans. Knowl. Data Eng.,
accepted for publication, 2015.

[27] W.H.Baumgartner et al. G.Ponti C.R.Shrader P. Lubinski
H.A.Krimm F. Mattana J. Tueller S. Soldi, V. Beckmann. Long-
term variability of agn at hard x-rays. Astronomy & Astrophysics,
2014.

[28] J. Shafer, S. Rixner, and A. L. Cox. The hadoop distributed
filesystem: Balancing portability and performance. In Int. ISPASS,
2010.

[29] Dennis Shasha. Tuning time series queries in finance: Case studies
and recommendations. IEEE Data Eng. Bull., 22(2):40–46, 1999.

[30] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized
time series. In KDD Conf., pages 623–631, 2008.

[31] J. Shieh and E. Keogh. isax: Disk-aware mining and indexing of
massive time series datasets. DMKD, 19(1):24–57, 2009.

[32] Yang W., Peng W., Jian P., Wei W., and Sheng H. A data-adaptive
and dynamic segmentation index for whole matching on time
series. PVLDB, 2013.

[33] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and
Themis Palpanas. Dpisax: Massively distributed partitioned isax.
In ICDM, pages 1135–1140, 2017.

[34] Lexiang Ye and Eamonn J. Keogh. Time series shapelets: a new
primitive for data mining. In KDD, 2009.

[35] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A.
Dau, D. F. Silva, A. Mueen, and E. J. Keogh. Matrix profile I: all
pairs similarity joins for time series: A unifying view that includes
motifs, discords and shapelets. In ICDM, 2016.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. In HotCloud,
2010.

[37] K Zoumpatianos, S Idreos, and T Palpanas. Indexing for interac-
tive exploration of big data series. In SIGMOD Conf., 2014.

[38] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. ADS:
the adaptive data series index. VLDB J., 25(6):843–866, 2016.

[39] Kostas Zoumpatianos and Themis Palpanas. Data series manage-
ment: Fulfilling the need for big sequence analytics. In ICDE, 2018.

Djamel-Edine Yagoubi is a data scientist at
StarClay. He did his PhD in Computer Science
at Inria, in the Zenith team and the University
of Montpellier. He has worked in the field of Big
Data analytics, particularly Massively Distributed
Time Series Indexing and Querying.

Reza Akbarinia is a research scientist at In-
ria. He received his Ph.D. degree in Computer
Science from the University of Nantes in 2007.
His research focuses on data management and
analysis in large-scale distributed systems (P2P,
grid, Cloud) and data privacy. He has authored
and co-authored two books and several techni-
cal papers in main DB conferences and journals.
He has served as PC member in several confer-
ences, such as SIGMOD, VLDB, ICDE, EDBT,
CIKM, etc.

Florent Masseglia is a scientific researcher in
computer science at Inria since 2002. He works
in Montpellier, in the Zenith team of Inria, on
the analysis of very large scientific data. These
data, derived from observations, experiments
and simulation are indeed complex, often very
large, and are at the heart of important issues to
better understand the studied domains (agron-
omy, biology, medicine).
http://www.florent-masseglia.info

Themis Palpanas is Senior Member of the
French University Institute (IUF), and Professor
of computer science at Paris Descartes Univer-
sity. He is the author of 9 US patents (3 imple-
mented in world-leading commercial data man-
agement products). He is the recipient of 3 Best
Paper awards, and the IBM Shared University
Research (SUR) Award. He is serving as Editor
in Chief for BDR Journal, Associate Editor for
PVLDB 2019 and TKDE journal, and Editorial
Advisory Board member for IS journal.

http://www.florent-masseglia.info

	Introduction
	Problem Definition and Background
	iSAX Representation
	Similarity Queries
	Spark
	Problem Definition

	Distributed iSAX (DiSAX)
	Query Processing
	Approximate Search
	Exact Search

	Limitations of DiSAX

	Distributed Partitioned iSAX (DbasicPiSAX and DPiSAX)
	Sampling
	Basic Approach: DbasicPiSAX
	Limitations of the Basic Approach
	Statistical Approach: DPiSAX
	Query Processing

	Performance Evaluation
	Datasets and Settings
	Index Construction Time
	Query Performance

	Related Work
	Conclusions
	References
	Biographies
	Djamel-Edine Yagoubi
	Reza Akbarinia
	Florent Masseglia
	Themis Palpanas

