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Abstract. As sensors improve in both bandwidth and quantity over
time, the need for high performance sensor fusion increases. This re-
quires both better (quasi-linear time if possible) algorithms and paral-
lelism. This demonstration uses financial and seismic data to show how
two state-of-the-art algorithms construct indexes and answer similarity
queries using Spark. Demo visitors will be able to choose query time
series, see how each algorithm approximates nearest neighbors and com-
pare times in a parallel environment.

Keywords: Time series · Indexing · Similarity search · Distributed data
processing · Spark.

1 Introduction

As hardware technology improves for sensors, the need for efficient and scaleable
algorithms increases to fuse the resulting time series. Sensors produce thousands
and up to billions of time series, so the first step in fusion is often to find similar
time series. Applications include statistical arbitrage strategies in finance and
the detection of earthquakes in seismic data.

To handle such large numbers of time series, algorithms require high perfor-
mance indexing. Creating an index over billions of time series by using traditional
centralized approaches is highly time consuming.

An appealing opportunity for improving performance of the index construc-
tion and similarity search on such massive sets of time series, therefore, is to take
advantage of the computing power of distributed systems and parallel frame-
works. However, a naive parallel implementation of existing techniques would
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under-exploit the available computing power. We have implemented parallel al-
gorithms for two state-of-the-art approaches to construct indexes and to provide
similarity search on large sets of time series by carefully distributing the work
load. Our solution takes advantage of the computing power of distributed sys-
tems by using parallel frameworks, in this case Spark.

2 Parallel Similarity Search Methods

This section reviews similarity search methods with specific attention to parallel
index construction both to increase speed and improve quality.

2.1 parSketch

parSketch [3] is a parallel implementation of the sketch / random projection-
based method, both for index construction and querying. The basic idea is to
multiply each time series in a database (or in a sliding window context, each
window of a time series) with a set of random vectors, yielding a dot product.
The vector of those dot products is a ”sketch” for each time series. Then two time
series can be compared by comparing sketches with approximation guarantees[1]
that improve the more random vectors there are.

In our implementation of this idea, given a length m time series or a window of
a time series, t ∈ Rm, we compute its dot product with N -1/+1 random vectors
ri ∈ {1,−1}m. This results in N inner products (dot products) called the sketch
(or random projection) of ti. Specifically, sketch(ti) = (ti •r1, ti •r2, ..., ti •rN).
We compute sketches for t1, ..., tb using the same random vectors r1, ..., rN . By
the Johnson-Lindenstrauss lemma [1], the distance ‖sketch(ti)− sketch(tj)‖ is
a good appproximation of ‖ti − tj‖. Specifically, if ‖sketch(ti)− sketch(tj)‖ <
‖sketch(tk) − sketch(tm)‖, then it’s very likely that ‖ti − tj‖ < ‖tk − tm‖.
Our index is a set of grid structures to hold the time series sketches. Each grid
maintains the sketch values corresponding to a specific set of random vectors
over all time series.

Our implementation of the sketch-based approach parSketch parallelizes ev-
ery step of algorithm: the computation of sketches, the creation of multiple grid
structures, and the computation of pairwise similarity, thus exploiting each avail-
able core and taking full advantage of parallel data processing

2.2 DPiSAX

DPiSAX [4] is a parallel solution to construct the state-of-the-art iSAX-based
index [2]. The iSAX representation is based on the PAA representation which
allows for dimensionality reduction while providing the important lower bound-
ing property. The idea of PAA is to have a fixed segment size, and minimize
dimensionality by using the mean values of each segment.

The SAX representation takes as input the reduced time series obtained using
PAA. It discretizes this representation into a predefined set of symbols, with a
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given cardinality, where a symbol is a binary number. The iSAX representation
uses a variable cardinality for each symbol of SAX representation, each symbol
is accompanied by a number that denotes its cardinality.

Our parallel partitioned version of iSAX algorithm is based on a sampling
phase that allows anticipating the distribution of time series among the comput-
ing nodes. DPiSAX splits the full dataset for distribution into partitions using
the partition table constructed at the sampling stage. Then each worker builds
an independent iSAX index on its partition.

3 Experimental evaluation

In order to provide an unbiased comparison, (i) all methods were implemented
using the same tools, (ii) all the experiments were run in the same pre-deployed
computing environment, and (iii) on the same datasets. Applications were im-
plemented with Scala and Apache Spark. A distributed relational storage, set
up as a number of PostgreSQL instances, is used for parSketch to store indexed
data (grids). The implementation makes use of indexes to achieve efficient query
processing. The DPiSAX implementation uses an HDFS cluster to keep index
data in distributed files, so that partitions of the index are stored and retrieved
in parallel.

Experiments were conducted on a cluster4 of 16 compute nodes with two 8
cores Intel Xeon E5-2630 v3 CPUs, 128 GB RAM, 2x558GB capacity storage
per node. The cluster is running under Hadoop version 2.7, Spark v. 2.4 and
PostgreSQL v. 9.4 as a relational database system.

Search methods were evaluated over two real datasets and two synthetic ones.
The real datasets are: Seismic that contains 40 million time series, and Finance
with 72 million time series. For the purpose of experimentation, we generated
synthetic Random Walk input datasets, whose sizes/volumes vary between 50M
to 500M time series size of 256 points. At each time point, a random walk
generator cumulatively adds to the value of the previous time point a random
number drawn from a Gaussian distribution N(0,1). Another synthetic dataset
is Random, containing 200M series, each of which is a close approximation to
”white noise.”

4 Demonstration

The user can observe and compare search method performances on a range
of input datasets. The demonstration GUI enables the user to use drop-downs
to choose the input dataset and set of queries, to vary specific parameters for
methods: grid cell size (affects only the output of parSketch), Search type (only
for DPiSAX ) and then to observe the difference in performance (Figure 4).

A bar chart compares 3 methods in terms of time performance per batch
of queries. We use three quality metrics: (i) Quality Ratio is defined to be cor-
relation of the 10th time series found by a particular method divided by the

4 http://www.grid5000.fr
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10th closest time series found by direct computation of correlation. (ii) Recall
is calculated as a fraction of relevant items in the top 10 time series found by
particular method over the top 10 time series found by direct correlations. (iii)
Mean Average Precision which considers the order of top 10 time series found by
particular search method over ranked sequence of time series returned by direct
correlations.

Line charts on the right side of the screen depict the top 10 time series found
for the given input. The scroll bar allows the user to examine each query in the
batch using visual plots and the quality ratio, for the different search methods.

Fig. 1. Users can select input dataset and number of queries to execute, and can exam-
ine individual queries and answers, as well as quality and execution time of searches.
The demonstration GUI and video are available at: http://imitates.gforge.inria.fr/
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