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Abstract: This paper addresses the problem of continuously finding highly correlated pairs of time series over the most 

recent time window and possibly use the discovered correlations to select features for training a regression 

model for prediction. The implementation builds upon the ParCorr parallel method for online correlation 

discovery and is designed to run continuously on top of the UPM-CEP data streaming engine through efficient 

streaming operators.

1 INTRODUCTION 

Consider a big number of streams of time series data 

(e.g. stock trading quotes), where we need to find 

highly correlated pairs for the latest window of time 

(say, one hour), and then continuously slide this 

window to repeat the same search (say, every 

minute). Doing this efficiently and in parallel could 

help gather important insights from the data in real 

time (Figure 1). This has been recently addressed by 

the ParCorr parallel incremental sketching approach 

(Yagoubi et al., 2018), which scales to 100s of 

millions of parallel time series, and achieves 95% 

recall and 100% precision. An interesting aspect of 

the method is the discovery of time series that are 

highly correlated to a certain subset of the time series, 

which we call targets (Figure 2). This concept has 

many applications in different domains (finance,  

 

Figure 1: Example of a pair of time series that the method 

found to be highly correlated over the first several sliding 

windows of 500 time points, but not thereafter. 

retail, etc.), where we would like to use the correlates 

of a target as predictors to forecast the value of the 

target for the next time window. 

Such challenges have been identified by use case 

scenarios, defined in the scope of the 

CloudDBAppliance project (CDBA, 2019), which 

aims to provide a database-as-a-service appliance 

integrating several data management technologies, 

designed to scale vertically on many-core 

architectures. These include an operational database, 

an analytical database, a data lake, and a data 

streaming engine. To face these requirements, the 

ParCorr method was implemented as a continuous 

query for the highly scalable streaming engine and 

enhanced with regression capabilities to provide for 

per-window prediction of target values. In this paper, 

we present the details of this implementation, 

following a brief overview of the streaming engine 

and the ParCorr method. 

 

Figure 2: Example of a target time series (red) and its top 

correlates (green) discovered by the method. 



2 STREAMING ENGINE 

OVERVIEW 

Stream Processing (SP) is a novel paradigm for 

analyzing in real-time data captured from 

heterogeneous data sources. Instead of storing the 

data and then processing it, the data is processed on 

the fly, as soon as it is received, or at most a window 

of data is stored in memory. SP queries are 

continuous queries run on a (infinite) stream of 

events. Continuous queries are modeled as graphs 

where nodes are SP operators and arrows are streams 

of events. SP operators are computational boxes that 

process events received over the incoming stream and 

produce output events on the outgoing streams. SP 

operators can be either stateless (such as projection, 

filter) or stateful, depending on whether they operate 

on the current event (tuple) or on a set of events (time 

window or number of events window). Several 

implementations went out to the consumer market 

from both academy and industry, such as Borealis 

(Ahmad et al., 2005), Infosphere (Pu et al., 2001), 

Storm 1 , Flink 2  and StreamCloud (Gulisano et al., 

2012). Storm and Flink followed a similar approach 

to the one of StreamCloud in which a continuous 

query runs in a distributed and parallel way over 

several machines, which in turn increases the system 

throughput in terms of number of tuples processed per 

second. The streaming engine UPM-CEP (Complex 

Event Processing) adds efficiency to this parallel-

distributed processing being able to reach higher 

throughput using less resources. It improves the 

network management, reduces the inefficiency of the 

garbage collection by implementing techniques such 

as object reutilization and takes advantage of the 

novel Non Uniform Memory Access (NUMA) 

multicore architectures by minimizing the time spent 

in context switching of SP threads/processes. 

The UPM-CEP JCEPC (Java CEP Connectivity) 

driver hides from the applications the complexity of 

the underlying cluster. Applications can create and 

deploy continuous queries using the JCEPC driver as 

well as register to the source streams and subscribe to 

output streams of these queries. During the 

deployment the JCEPC driver takes care of splitting a 

query into sub-queries and deploys them in the CEP 

cluster. Some of those sub-queries can be 

parallelized. 

                                                                                              

1 http://storm.apache.org/ 

3 METHOD OVERVIEW 

The ParCorr time series correlation discovery 

algorithm (Yagoubi et al., 2018) is based on a work 

on fast window correlations over time series of 

numerical data (Cole et al., 2005), and concentrates 

on adapting the approach for the context of a big 

number of parallel data streams. The analysis is done 

on sliding windows of time series data, so that recent 

correlations are being continuously discovered in 

nearly real-time. At each move of the sliding window, 

the latest elements of the time series are taken as 

multi-dimensional vectors. As a similarity measure 

between such vectors, we take the Euclidean distance, 

since it is related to the Pearson correlation 

coefficient if applied to normalized vectors. Since the 

sliding window can result in a very high number of 

dimensions of time series vectors, which makes them 

very expensive to be compared to each other, a major 

challenge the algorithm addresses is the reduction of 

the dimensionality in a way that nearly preserves the 

Euclidean distances. For this purpose, random 

projection approach is adopted, where each high-

dimensional vector is transformed into a low-

dimensional one (called “sketch” of the vector), by 

applying a product with a specific transformation 

matrix, the elements of which are randomly selected 

from the values of either -1 or 1. This approach 

guarantees with high probability that the distance 

between any pair of original vectors correspond to the 

distance between their sketches. Furthermore, to 

simplify the comparing across sketches, each sketch 

vector is partitioned into subvectors (e.g. two-

dimensional), so that for example a 30-dimensional 

sketch vector is broken into 15 two-dimensional 

subvectors. Then, discrete grid structures (in the 

example, 15 two-dimensional grids) are built and 

subvectors are assigned to grid cells, so that close 

subvectors are grouped in the same grid cells. This 

process essentially performs a locality-sensitive 

hashing of high-dimensional time series vectors, 

where close vectors are discovered by searching for 

pairs of vectors, which are represented together in a 

high number of grid cells. Since this can output false 

positives, the candidate pairs are explicitly verified by 

computing the actual distance between them. 

This outlines four main steps of the algorithm: 

 Sketching: computation and partitioning of 

sketches; 

 Collocation: grouping together all time series 

assigned to the same grid cell; 

 Correlation: finding frequently collocated pairs as 

2 https://flink.apache.org/ 



 

Figure 3: The four main steps of the time series correlation discovery algorithm, implemented as parallel stateful streaming 

operators, with intermediate shuffles of data. 

candidates for correlation; 

 Verification: computing the actual correlation of 

each candidate pair to filter out false positives. 

To provide prediction capabilities, an additional step 

trains a regression model that takes into account the 

correlates of time series that are considered of interest 

for prediction and called “targets”. Only correlated 

pairs that involve at least one target time series are 

considered for discovery. All correlates of a target are 

considered as predictors and passed to a linear 

regression model, which approximates the target as a 

linear function of its correlates. 

4 IMPLEMENTATION 

The implementation involves four stateful streaming 

operators (Figure 3), each processing incoming tuples 

in the context of the current window, taking into 

account the current state of the window. Thanks to the 

flexible API of the streaming engine that provides 

low level primitives for implementing custom 

operators, each operator can process incoming tuples 

on-the-fly and hence emit resulting tuples as early as 

possible. This guarantees a real pipelined flow of data 

that allows for outputting early results. 

4.1 Data Input and Output 

All tuples processed by the streaming engine must 

contain associated timestamps. The schemas of the 

input stream and the two output streams are as 

follows: 

 Input stream 
o timestamp timestamp 

o tsId  string 

o value  float 

 Basic output stream 
o timestamp timestamp 

o tsId1  string 

o tsId2  string 

o correlation float 

 Extended output stream 
o timestamp timestamp 

o target  string 

o predictors string[] 

o coefs  float[] 

For input data tuples, timestamp identifies the point 

in time, for which the value of a particular time 

series (tsId) is taken. Examples can be product price 

at a given moment, volume of sales for a given time 

unit (say 1 minute), etc. For the method to work 

correctly, each time series must have value at each 

timestamp. If such is not provided, the sketching 

operator will assume repetition of the last value. 

Normally, time units should be aligned to data update 

frequencies. 

Basic output tuples show pairs of identifiers of the 

time series (tsId1 and tsId2), which were found to 

be highly correlated at the window, represented by the 

provided timestamp, together with the Pearson 

correlation coefficient. 

For the regression extensions, each of the 

extended output tuples shows the approximation of a 

specific target, as a list of its predictors and the 

corresponding coeficients for each predictor in 

the linear model. Thus, the next value of target can 

be predicted as function of predictors, using the 

formula: 

𝑇 =  𝐶0 + ∑ 𝐶𝑖 ∗ 𝑃𝑖
𝑛
𝑖=1   (1) 

where n is the number of predictors, Pi is the next 

value of the time series whose identifier is stored in 

predictors[i-1], Ci is the regression coefficient 

of Pi stored in coefs[i], and C0 is the intercept of 

the linear regression model stored in coefs[0]. 

The arrays predictors and coefs are actually 

output as pipe-separated list of values. For example, 

the following output tuple: 
target:     "Demand", 

predictors: "Price|Discount|Precip", 



 
                                          (a) a sample of time series sketches                                                    (b) sketch partitioning 

Figure 4: The sketching operator computes sketches at each sliding window and assigns time series (identifiers) to grid cells. 

coefs:      "1.3|3.9|2.5|-0.7" 

says that the next value of demand can be 

approximated once the values of price, discount, and 

precip are known, with the following expression: 
Demand ~= 1.3 + 3.9*Price 

+ 2.5*Discount - 0.7*Precip 

4.2 Model Parameters 

The model can be configured by a number of 

parameters, which can be roughly divided in two 

groups: functional parameters and method 

parameters. 

Functional parameters are determined by the 

application requirements. Sliding windows are 

defined in terms of size of the window (windowSize) 

and size of a basic window (windowSlide, the step 

at which a sliding window advances). For example, if 

we consider a time unit of one minute, a basic window 

of size 5 and a window of size 60, this means that 

method execution will be triggered every 5 minutes 

and will run on time series data for the last 60 

minutes. Other functional parameters are the desired 

correlation threshold minCorr (e.g., the application 

needs all pairs with Pearson correlation above 0.9) 

and the searchInverse flag that indicates whether 

highly negative correlations (e.g., less than -0.9) are 

to be also discovered. The optional targets 

parameter is a regular expression that specifies the 

identifiers of target time series; the simplest form is a 

pipe-separated list of time series identifiers that will 

be considered as targets. 

Method parameters can control the tradeoff 

between efficiency (the time to response at each 

window slide) and accuracy (what percentage of all 

highly correlated pairs will be discovered). That is 

mostly determined by the grid cell size and the 

candidate threshold, i.e. the minimum number of 

grids, in which two time series should be collocated 

in order to be considered as candidates for correlation. 

Larger grid cells (i.e. more time series assigned to the 

same cell) and lower candidate threshold lead to 

higher number of candidate pairs to process (slower 

execution), but lower probability to miss a true 

positive (higher accuracy). Another important 

parameter is the sketch size, which determines the 

reduced dimensionality and can also control the same 

tradeoff (lower dimensional sketch vectors lead to 

faster execution, but also to lower probability of 

preserving the distances). If linearSearch is set to 

true, an exhaustive search through all possible pairs 

will be done, instead of running the sketching 

method, hence all other method parameters will be 

ignored. Linear search is also parallelized, but much 

slower, as it naively explores the full search space. 

However, it guarantees to discover 100% of the 

correlations, so might be the preferred method for 

applications with a smaller number of time series that 

need exact responses. This parameter has also been 

used for comparing and evaluating the performance 

benefits of the sketching method and its accuracy 

tradeoff. 

The model parameters are summarized below: 

 Functional parameters: 
o windowSize  integer 

o windowSlide  integer 

o minCorr   float 

o searchInverse boolean 

o targets   string 

 Method parameters: 
o sketchSize  integer 

o cellSize  float 

o threshold  integer 

o linearSearch  boolean 

4.3 Streaming Operators 

Figure 3 depicts the algorithm workflow across the  



 
(a) each grid cell contains the ids of 

collocated time series 

(b) candidate clusters are explored for 

frequently collocated time series ids 

Figure 5: The collocation and correlation operators explore grid cells to identify candidate pairs. 

streaming operators. The parallelization of the 

algorithm is quite straightforward – sketches of time 

series vectors on parallel data streams are computed 

in parallel, which is followed by an additional shuffle 

step that groups together the identifiers of time series 

that fit in the same grid cell; then groups are explored 

for discovering frequent pairs. Since the streaming 

engine operates in a distributed environment, 

operators have multiple instances, handling different 

partitions of data in parallel. This requires shuffles of 

intermediate data across operator instances and the 

partitioning is based on a key from the schema of the 

intermediate dataset. In figures, we use the 

Key=>Value notation to show which fields are used 

as partition keys. 

4.3.1 Sketching 

The first operator consumes the incoming data, 

represented as a stream of (timestamp, tsId, value) 

tuples. Its incoming data partitioning ensures that all 

values of the same time series id (tsId) are routed to 

the same operator instance. 

First, the operator identifies sliding windows and 

at each window computes the sketch of each time 

series. This computation is done incrementally, i.e. at 

each slide of the window, the sketches are simply 

incrementally updated (instead of recomputed), 

taking into account only the difference compared to 

the previous position of the sliding window. Since the 

method requires that sketches be computed on 

normalized vectors, means and standard deviations 

are computed (also incrementally) for each sliding 

window. Then, they are applied directly in the 

formula for computing the sketches, which results in 

sketch values as if computed on a normalized 

window.  

As a running example, let us consider seven time 

series with sketches as shown on Figure 4a. Each 

sketch vector is partitioned into three pairs 

(subvectors). The ith pair of the sketch vector for each 

time series s goes to a grid i. The values of the ith pair 

determine where in that grid the identifier s is placed. 

Thus, each time series id is associated to exactly 3 

grid cells – one at each grid (Figure 4b). Each cell is 

identified by cellId, composed by the grid index and 

the two dimensions of the grid cell. After this 

processing, the sketching operator emits these 

associations as (cellId, tsId) pair tuples. 

4.3.2 Collocation 

The second operator uses cellId as key and groups in 

partitions all time series identifiers that belong to the 

same cell (Figure 5a). Then, for each identifier in a 

partition, the operator emits a key-value pair that 

maps the time series identifier to its relevant part of 

the partition (Figure 5b). The relevant part of a 

partition with respect to a time series t consists of t 

itself and the time series with identifiers higher than 

t. We call that a “candidate cluster of time series”. 

Clusters with just one element are ignored, because 

pairs cannot be derived out of them. If the targets 

parameter is specified, a filter is applied so that only 

those key-value tuples that correspond to targets be 

emitted at this step. 

4.3.3 Correlation 

The third operator uses tsId as key and for each time  

TS ID TS clusters candidate pairs

(f ≥ 2/3)

ts1 ts1, ts2, ts5

ts1, ts2, ts6, ts7

ts1, ts2

ts2 ts2, ts5

ts2, ts3, ts4

ts2, ts6, ts7

ts3 ts3, ts4, ts7

ts3, ts4

ts3, ts4, ts5

ts3, ts4

ts4 ts4, ts7

ts4, ts5

ts5 ts5, ts6, ts7

ts6 ts6, ts7

ts6, ts7

ts6, ts7

grid cell TS IDs

1

(11, 12) ts1, ts2, ts5

(21, 22) ts3, ts4, ts7

(31, 32) ts6

2

(13, 14) ts2, ts3, ts4

(23, 24) ts1

(33, 34) ts5, ts6, ts7

3
(15, 16) ts1, ts2, ts6, ts7

(25, 26) ts3, ts4, ts5



 

Figure 6: The architecture of the streaming operators, with all intermediate streams. The correlation and verification operators 

keep copies of the current window of raw time series data, needed for computing the actual correlations. 

series identifier t explores its associated candidate 

clusters to find those time series ids that are 

frequently collocated with t. In the example on Figure 

5b, three pairs satisfy the given candidate threshold f 

(i.e. they are seen together in the same cell in 2 out of 

3 grids) and are hence considered as candidates for 

correlation.  

To facilitate the next step, the Correlation operator 

keeps a copy of the current window of time series raw 

data (Figure 6), partitioned by identifier. This assures 

that every candidate pair (tsi, tsj) will be collocated 

with the raw time series (datai) of tsi at the same 

operator instance, since the candidate pair is keyed by 

tsi. Thus, each instance of the Correlation operator 

performs a join between its candidate pairs and the 

local partition of the raw time series table and emits 

the triplet (tsj, tsi, datai).  

4.3.4 Verification 

Each candidate (tsj, tsi) emitted by the Correlation 

operator must be now explicitly verified by 

computing the actual Pearson correlation between the 

two time series to check whether it satisfies the 

desired correlation threshold. This requires another 

lookup into the original time series window, in order 

to get the raw time series (dataj), this time of tsj. For 

this reason, the Verification operator also keeps a 

copy of the current window of time series raw data, 

this time having tsj as key (Figure 6). Finally, the 

correlation of (datai, dataj) is computed and, if higher 

than the threshold, the candidate is emitted to the 

correlations output. 

4.3.5 Regression 

The Verification operator makes sure that the data 

processed by it is already partitioned by target time 

series id, i.e. all the predictors of a particular target, 

together with their data for the last window, are 

collocated at the same instance with the target. This 

                                                                                              

3 http://commons.apache.org/proper/commons-math/ 

userguide/stat.html 

avoids additional shuffles of intermediate data and 

makes it easy for Regression to train a linear 

regression model for each of the target time series, 

consuming immediately the output of the Verification 

operator. So, Regression is stateless and is simply 

implemented as a class that operates within the 

Verification operator (R box of Figure 6). The 

implementation uses the Statistics package of the 

Apache Commons Math library3. 

5 CONCLUSIONS 

We presented a parallel streaming implementation of 

the ParCorr method for window correlation discovery 

on time series data, enhanced with regression 

capabilities, in the context of the CloudDBAppliance 

project. The implementation leverages the 

development of custom streaming operators that 

boosts the performance and minimizes the response 

time by optimizing intra-operator communication and 

utilizing pipelining of intermediate data. As a subject 

to further work, we will study experimentally the 

performance benefits of this implementation, 

compared to other streaming architectures, with 

respect to latency of the first results and response time 

of the entire output at each time window. 
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