
HAL Id: lirmm-02265932
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02265932

Submitted on 12 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Runtime Capture of Multiworkflow Data Using
Provenance

Renan Souza, Leonardo Azevedo, Raphael Thiago, Elton Soares, Marcelo
Nery, Marco Netto, Emilio Vital Brazil, Renato Cerqueira, Patrick Valduriez,

Marta Mattoso

To cite this version:
Renan Souza, Leonardo Azevedo, Raphael Thiago, Elton Soares, Marcelo Nery, et al.. Efficient Run-
time Capture of Multiworkflow Data Using Provenance. eScience 2019 - 15th International Conference
on eScience, Sep 2019, San Diego, United States. pp.359-368, �10.1109/eScience.2019.00047�. �lirmm-
02265932�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02265932
https://hal.archives-ouvertes.fr

R. Souza et al. Efficient Runtime Capture of Multiworkflow Data Using Provenance. Author preprint of paper accepted at the
15th IEEE International Conference on e-Science, San Diego, California, USA (eScience 2019).

Efficient Runtime Capture of
Multiworkflow Data Using Provenance

Renan Souza§,°, Leonardo Azevedo§, Raphael Thiago§, Elton Soares§, Marcelo Nery§
Marco A. S. Netto§, Emilio Vital Brazil§, Renato Cerqueira§, Patrick Valduriez#, Marta Mattoso°

§IBM Research, Rio de Janeiro, Brazil
°COPPE/Federal University of Rio de Janeiro, Brazil

#Inria & LIRMM, U. Montpellier, France

Abstract—Computational Science and Engineering (CSE)
projects are typically developed by multidisciplinary teams. Despite
being part of the same project, each team manages its own workflows,
using specific execution environments and data processing tools.
Analyzing the data processed by all workflows globally is a core task
in a CSE project. However, this analysis is hard because the data
generated by these workflows are not integrated. In addition, since
these workflows may take a long time to execute, data analysis needs
to be done at runtime to reduce cost and time of the CSE project. A
typical solution in scientific data analysis is to capture and relate the
data in a provenance database while the workflows run, thus allowing
for data analysis at runtime. However, the main problem is that such
data capture competes with the running workflows, adding significant
overhead to their execution. To mitigate this problem, we introduce in
this paper a system called ProvLake, which adopts design principles
for providing efficient distributed data capture from the workflows.
While capturing the data, ProvLake logically integrates and ingests
them into a provenance database ready for analyses at runtime. We
validated ProvLake in a real use case in the O&G industry
encompassing four workflows that process 5 TB datasets for a deep
learning classifier. Compared with Komadu, the closest solution that
meets our goals, our approach enables runtime multiworkflow data
analysis with much smaller overhead, such as 0.1%.

I. INTRODUCTION
Computational Science and Engineering (CSE) projects are

typically developed by multidisciplinary teams, each managing its
own workflows with specific execution environments and data
transformation tools. Each workflow processes (consuming and
generating) large amounts of complex and heterogeneous data.
Analyzing the data transformed by all workflows globally allows for
understanding each data transformation by monitoring, debugging,
and inspecting input and output datasets while workflows run, i.e., at
runtime—which is necessary to reduce cost and time of the CSE
project. However, this analysis is hard because the data generated by
these workflows are not related to their data transformations, which
also impacts such relationship determinations.

To illustrate, consider an example of a CSE project, our case
study (Figure 1), whose goal is to deliver deep learning models
with high quality for an application in the Oil and Gas (O&G)
industry. These four workflows generate data that are implicitly
related through their data transformations but analyzing them
globally after the data have been generated is complex because
each data store is distributed with no information on the data
transformations or how to relate the stores. There is no point in
moving and integrating all data in a single repository for a
global analysis. However, a complementing data representation
on how the data in the data stores relate to each other
contributes to a logically integrated multiworkflow data

analysis, while keeping the autonomy of each data store. In this
example (Figure 1), there is also the challenge of relating data
from heterogeneous representations.

A typical solution in scientific data analysis is to capture and
relate the data in a provenance database at runtime [1]–[4].
Provenance data representation has a W3C recommendation,
PROV [5], which has been used as a reference model to represent
relationships between datasets and their data transformations in
workflows. PROV-based databases follow a uniform way of
representing “consumed” and “generated” data relationships
between datasets and their data transformations, and other
workflow data relationships. However, the main problem in
runtime data capture is that it competes with the running
workflows, adding significant overhead to their execution.

One exception in low overhead provenance data capture is
DfAnalyzer [4], however this approach limits its analysis to
isolated workflows, characterizing a single-workflow data
capture solution. Also, its data capture is limited to raw data in
file systems, unlike the data stores in Figure 1. In typical CSE
projects, the execution autonomy of each single-workflow
participating in a multiworkflow prevents data capture to be
managed by a single-workflow data capture solution.

Some limitations in single-workflow data capture solutions
are caused by the lack of: (i) capturing and relating data from
autonomous workflow executions; (ii) globally identifying data
to establish relationships from multiworkflow data (i.e., data
processed by a multiworkflow) in multiple stores; and (iii)
overhead management strategies for capturing provenance data
from one workflow while capturing data from another
workflow potentially running in parallel.

The closest solution to meet our goals, Komadu is a distributed
data capture solution that integrates provenance data in a
multiworkflow execution [6,7]. Komadu captures provenance data
generated by workflows running on multiple data processing

Fig. 1. Four workflows using five data stores.

Wf2

Wf4
Wf1

Wf3

Parallel File System

R-DBMS Doc
DBMS

Graph
DBMS

Geological raw data files

Kubernetes
Volume

Inter-workflow
Data Relationships

Multi-store Data
Relationships

Legend

Deep learning
training datasets

systems. Users can run forward and backward provenance queries,
integrating provenance traces generated in the multiworkflow.
Despite its originality in addressing the limitations of single-
workflow data capture, Komadu still suffers from capture
overhead, which is particularly significant in CSE workflows, as
shown in our experiments. In Komadu, performance issues related
to runtime data capture are left for future work [8], since it
integrates the provenance graphs for queries only after all
workflow executions end. Finally, a limitation found in all related
work [4], [6]–[12] is the lack of query support from workflow data
stored in heterogeneous databases.

To mitigate these problems, we propose a system called
ProvLake, which adopts design principles for providing
efficient distributed domain data capture in a multiworkflow
execution. While capturing the data, ProvLake logically
integrates and ingests them into a provenance database, named
ProvLake Data View (PLView), ready for analyses at runtime.
We validated ProvLake by implementation of the real use case in
Figure 1 with four workflows that process 5 TB datasets for a deep
learning classifier. We evaluate runtime data analysis exploring
heterogeneous multiworkflow data represented in our provenance
database. We compare ProvLake and Komadu with extensive
experiments and demonstrate ProvLake’s overhead for runtime data
capture to be negligible.

The main contributions of this paper are the following:
• Design principles for efficient distributed provenance data
capture with low overhead.
• A provenance data representation aware of multiworkflows
and multiple stores, following W3C PROV [5] standards.
• Lessons learned on efficiently keeping the overhead low
while integrating captured provenance data.

The rest of this paper is organized as follows. Section II
presents multiworkflow data representation as provenance data.
Section III introduces the ProvLake system with its design
principles for introducing low overhead in provenance data
capture. Section IV has the experimental evaluation. Section V
discusses related work and Section VI concludes.

II. MULTIWORKFLOW DATA PROVENANCE
A provenance database in a multiworkflow is the main

source of runtime data analysis. Provenance data do not
replicate data from the data stores. Instead, they contain
lightweight references to the physical data residing in the data
stores; strategic data values (e.g., quantities of interest,
performance indicators, or any other relevant value) extracted
from the datasets in the multiple stores; and the data
relationships among these data, providing the logical data
integration, thus forming a data view over the multiworkflow
data using provenance. PLView data only contain relatively
small but relevant data that can be used for runtime analysis and
to guide deeper analyses in the data store contents. Moreover,
we adopt a strategy to promote the cooperation of the teams to
decide on which data are relevant to them to set the provenance
granularity. We present the fundamentals of the PLView and a
methodology to select strategic data for analysis in Sections
II.A and II.B, respectively.

A. PLView Provenance Data Representation
To relate distributed data from multiworkflow executions,

including workflow data stored in heterogeneous databases, the
PLView adopts data provenance relationships following a well
stablished W3C standard among provenance data systems: PROV
[5]. The PLView is represented as a provenance data directed
graph, where vertices are instances of PROV entity, activity, or
agent and edges are data relationships between vertices [5].
Despite PROV’s high level representation, it can be specialized to
represent workflow data relationships. The PLView represents
data related through data transformations and relationships of data
distributed in heterogeneous databases.

A workflow is a composition of data transformations (e.g.,
programs, services, functions) that can consume and produce
datasets, where an output dataset produced by a data transformation
can be consumed as an input dataset by another data transformation,
forming a coherent flow. A dataset can be modeled as a set of data
elements, where each element is composed of data values. Each
value has a data attribute, which gives the name and data type (e.g.,
integer, string, array). Theses attribute names are typically specific
for the domain and familiar to the teams. Data transformation
executions are modeled as instances of activities and data values
as instances of entities. The “consumption” data relationship
between a data transformation execution and its data values is
modeled as the used PROV relationship, whereas the
“generation” of data values by a data transformation execution is
modeled as the generated PROV relationship.

To improve data analysis, the PLView adds semantics for the
attributes of the data values. The semantics refer to the meaning that
the data value has in a data transformation. Possible values for
attribute semantics are: a parameter or output value of a data
transformation; data reference to a data element of a dataset
physically residing in a data store; or data value extracted from a
dataset in a data store. These fundamental concepts for workflow
provenance are precisely defined in background work [3], which we
base on to extend to represent data references (i.e., data values that
have attributes with semantics of data reference) to data
relationships in heterogeneous databases.

To help the logical integration between data that are physically
distributed into multiple stores, the PLView creates the referred
to represent data relationships between data references. PLView
goes one step further to relate data from heterogeneous databases.
Examples of data references are file reference, document
reference, relational tuple reference, graph vertex reference, RDF
triple reference, etc. Therefore, the data reference is
complemented via the hadStore relationship to relate it to its data
store (also a PROV entity), that analogously can be a File System,
Document DBMS, Relational DBMS, Graph DBMS, Triple
Store, etc.

In addition, the PLView adds properties to vertices to improve
runtime data analysis. For example, properties of data
transformation executions are information about where they were
physically executed, start time and end time and data references
contain meaningful information about the data being referred,
e.g., size of files in case of file reference.

Altogether, the PLView is represented as a multiworkflow
provenance data graph that provides a data view over the data in

the CSE project while the multiworkflow executes. We illustrate
the PLView’s provenance data representation in ProvLake’s
website [13] and a concrete example is presented in Section IV.

B. Methodology to Select Strategic Data for Analysis
To select strategic data for multiworkflow data analysis, we

present a methodology that helps users decide which data are
relevant and should be captured. This decision is made by the teams
participating in the CSE project and is guided by the provenance
questions that the teams want to answer at runtime. The granularity
of captured data impacts both quality of its analysis and overhead for
its acquisition. Considering this trade-off, we propose a
methodology, which extends a single-workflow methodology [14],
to drive the teams to design the data that will form the PLView.
Using prospective provenance data representation [2], the
methodology aims at specifying only the relevant data that should be
captured and related as retrospective provenance data [2]. The
methodology is analogous to modeling a relational schema, with the
relationships between relations, in a relational DBMS.

The methodology phases are: (i) identification of data to be
analyzed; (ii) specification of data capture points at workflow
codes; and (iii) specification of attributes and relationships
between data references. The phases are followed initially for
each single-workflow, and then for the multiworkflow,
globally. For phase (i), users anticipate interesting questions for
data analysis within each workflow and the multiworkflow.
Workflow modelers and data provenance specialist collaborate
with the application developers, who are often computational
scientists or engineers, and domain scientists to identify such
questions, which will drive the identification of strategic data
to be analyzed. By strategic we mean the input and output data
values that are of high interest and should be captured. For
phase (ii), the developers and workflow modelers identify, in
the workflow code, all data transformations and their strategic
input and output data anticipated in phase (i). The result of this
phase drives the insertion of data capture calls in the
corresponding workflow code. Finally, for phase (iii), they
specify the semantics of data captured in the workflows,
particularly attributes that are data references and how they are
related to form the relationships between data references,
similarly to what is done when designing join attributes in a
relational schema.

All three phases are followed for each workflow, resulting in
a design specification that represents the prospective
provenance data of all data transformations for each workflow.
Then, to form the multiworkflow provenance database, the
teams collaborate, working in phases (i) and (ii), to specify
(prospectively) the relationships between provenance data
graphs of the single-workflows. For each pair of workflows, the
teams decide on new attributes, the provenance data
relationships between workflows, and data reference
relationships between workflows for phase (iii). The result is
the same prospective provenance specification, but with these
added attributes and relationships.

The notion of “strategic data” may change over time. Thus, the
methodology is iterative, and workflows’ specifications can
suffer adjustments during a CSE project’s timeline as new data
become of interest. Finally, after the multiworkflow specification

using prospective provenance data, ProvLake captures
retrospective provenance data as the multiworkflow executes.

III. PROVLAKE ARCHITECTURE
This section presents ProvLake’s architecture, beginning with an
overview and design principles, then details of each component.

A. Overview and Design Principles
CSE users need to analyze multiworkflow data at runtime but

cannot afford high computational overhead on their running
workflows. Thus, ProvLake architectural design is focused on
attaining low runtime data capture overhead.

ProvLake has a microservices architecture composed of three
services (ProvCapturer, ProvManager, and PolyProvQueryEngine),
a lightweight ProvLake library, a messaging system, and the
PLView (Figure 2). These components capture data, transform them
to the provenance database representation, insert them into the
database, and help runtime data analysis through query submissions.
We implement ProvLake following these main principles:

 (i) Lightweight library. ProvLake provides a lightweight
library to be imported into the workflows (clients), which adds
little code for instrumentation; thus, avoiding significant
pollution in the original workflows’ code. The library only
contains simple methods to capture input and output data values,
exactly as they are in order to take advantage of cached data
during capture (in-situ) and leave to the server the management
of transformation of workflow data into provenance data,
provenance-specific relationships, semantics, parallel insertions
in the database, and other more heavyweight operations.
Moreover, the server runs in a different address space of the
running workflows, following in-transit strategies [15],
contributing to avoid contention between clients and server.
Additionally, to increase isolation between clients and server,
ProvLake server components are suggested to be deployed on a
separate hardware from where the workflows run. For instance,
in an HPC cluster machine, ProvLake server runs on a node
whereas the workflows run on the remainder nodes.

(ii) Asynchronicity. The communication between clients and
server during execution of the data transformations is
asynchronous. That is, requests are non-blocking and return
almost instantaneously with simple “ACK” messages to clients.

(iii) Work queues. Clients do not communicate to server at
each data capture, but they simply enqueue capture calls, which
is a fast and local operation. When the queue reaches a certain
limit or time constraint (both adjustable), the capture requests are

Fig. 2. Architectural components of ProvLake.

Polystore

ProvLake Server
PLView

Prov
Manager

Prov
Capturer

PLView
DBMS

Poly Prov
Query Engine

Multi-
workflows

Pr
ov

La
ke

 Li
br

ar
y

Multiple stores

DBS1

DBS|Ψ-1|

DBS|Ψ|

…

Client
queries

Messaging
System

sent in a batch to the server. This reduces network traffic as the
clients do fewer but larger requests.

In addition to these design principles, which are the main ones
for keeping low overhead added to the workflows, other strategies
collaborate to the overall server performance. The server services
also employ queues and parallel workers to consume them. Also,
the services maintain auxiliary in-memory data structures to store,
for instance, the workflows’ specifications, which data should be
captured, and the data references to be related. Thus, ProvLake
avoids reading data from disk, from the PLView, or any other
external data store out of main memory during execution.

B. ProvLake library
 ProvLake library follows the three design principles. They

lower the overhead and the changed workflow code remains as
close as possible to its original code. Figure 3 illustrates a small
excerpt of Workflow 2 of our case study (Section IV.B), written
in Python, with added library calls.

The library is imported (Line 1) in the code of each single-
workflow composing the multiworkflow. As a result of the
methodology (Section II.B), prospective provenance data of each
single-workflow are specified in a separate configuration file,
stored externally to the workflow code. This file is loaded only
once, at the constructor of the library, to an in-memory data
structure (Line 2). Then, each execution of a data transformation is
wrapped by two data capture calls, one to capture the input (Line
9) and other for the output (Line 11) data values. These calls are
queued, and the arguments of each data capture are often small lists
and hash-tables, with data values in their original formats. Other
calls or data conversions specifically related to provenance data are
designed to remain separate from the workflow code and left to
ProvLake server. The library also captures runtime information,
such as start and end times of each data transformation execution,
and information about the physical machine running the workflow.
Figure 3 also exemplifies the library capturing a reference to data
stored in heterogeneous data stores: the file system (by a file
reference to a seismic data file in Line 4) and the MongoDB
DBMS (by a reference to a document in Line 10).

C. ProvCapturer
ProvCapturer service has two main goals. First, to convert the

workflow data coming from the library calls into W3C PROV data
following PLView data representation and, second, to capture the
data relationships. The service follows the prospective provenance
data specification, loaded to its main memory.

As requests arrive, they are just appended to its in-memory
queue, so the service can immediately “ACK” the message. This
reduces waiting time in the workflows caused by the
communication between the library and the service. This queue
of requests is processed in parallel by the service.

To convert the data values coming from the workflows to the
PLView data representation, the service matches the workflow data
with the prospective provenance specification. Each data
transformation execution call carries the identifiers of the data
transformation and of the workflow with it. With this, ProvCapturer
looks into the prospective provenance data to find the data attributes
corresponding to the data values coming from the workflows, and
how they should be converted to retrospective provenance data. The

workflow data are transformed into JSON format following the
W3C PROV-TEMPLATE specification extending the vocabulary
utilized in the PLView data representation. These JSON objects are
sent to the ProvManager service.

To capture the data relationships between data transformations
and workflows, which are given by the consumed and generated data
values, the service uses unique identifiers to every data value that
flows through it. Using unique identifiers for maintaining
relationships of captured data is used in several provenance systems
[8,12]. Thus, every data value receives a unique identifier in the
PLView. If a same data value that is generated by a data
transformation execution is consumed by another, the service
captures this and creates the data relationships that represent the
shared data between these data transformations. Similarly, if this
same data value generated in a workflow is consumed in another
workflow, the service captures this, forming the data relationships
between the provenance data graph of these workflows. To specify
the unique identifier, the service uses a deterministic rule, which uses
a hash function over the data value, the attribute, and CSE project
identifier. When a new data transformation uses an already captured
data value, the service gives the same identifier to it, creates the
provenance relationships, and creates the JSON objects.

Special cases occur when the captured data values are data
references. In those cases, the service creates the provenance
relationship hadStore between the data reference and its physical
data store. Information about the data store includes the data model
and credentials for accessing the data store, if applicable. Another
special case occurs when the data references participate in a
relationship between data references. In this case, the service
maintains the references in another in-memory data structure.
When a data reference participating in a pair of data values that
form the relationship flows into the service, the service checks if
the other value in the pair has already been captured. If yes, it
creates the provenance relationship referred between the data
values. If not, it saves the value in the in-memory structure and the
value will remain there until the other value in the pair flows into
the service.

Furthermore, we design the service so that it does not make
any assumption about execution dependencies or centralization
of the multiworkflow execution. It is the service’s responsibility
to distinguish between the workflows sending data and to create
the data relationships between provenance graphs of different
workflows as the workflows execute. After processing the calls
coming from the workflows, captured provenance data are sent
via RESTful HTTP calls to ProvManager, also asynchronously.

Fig. 3. Part of a workflow code with ProvLake library calls.

1. from provlake import ProvLake, DT
2. prov = ProvLake(wf_specification_path)
3. args = [
4. segy_path,
5. inline_byte,
6. xline_byte,
7. geox_byte,
8. geoy_byte]
9. with DT(prov, "import_seismic", args) as dt:

10. document_id = import_seismic(args)
11. dt.output(document_id)

Workflow code

D. ProvManager
ProvManager is responsible for inserting provenance data into the

PLView’s DBMS and for generating queries (in the query langue of
PLView’s DBMS) to be sent to the DBMS. When ProvManager
receives the provenance data, it converts the data into a data format
that can be inserted into the DBMS. In current implementation, the
PLView Provenance Data Representation is instantiated as an
ontology that extends W3C PROV-O, using AllegroGraph1 as its
Triple Store. Thus, ProvManager converts provenance data into
RDF triples, and inserts them into AllegroGraph. ProvManager
manages a queue of triples, to be inserted as a bulk to the DBMS,
aiming at reducing contention at the DBMS. For queries,
ProvManager receives calls from PolyProvQueryEngine service and
builds the SPARQL queries to answer the calls.

E. PolyProvQueryEngine
To query PLView for multiworkflow data analysis through

queries at runtime, ProvLake exposes a provenance query API
via PolyProvQueryEngine, which implements parametrized
predefined queries for multiworkflow provenance graph
traversals and analytics. Users specify parameters, such as a
source and target data attributes, to be traversed in the
provenance graph stored in the PLView. PolyProvQueryEngine
sends a query request to ProvManager only, which builds a
SPARQL query to the DBMS and returns the result set.
However, in certain cases, when data were not captured by
ProvLake and still the user needs to query the data, with their
provenance, PolyProvQueryEngine also sends a request to a
Polystore and joins with the result set coming from a
provenance query to ProvManager. Exploring the polystore
queries aspect in depth is out of the scope of this paper.

F. Messaging System
 Since the communication between components in ProvLake

is done asynchronously during the data transformations and
only return simple “ACK” messages, keeping track of their
status is not trivial. “ACK” is not enough to determine whether
the requests were completely processed. For this, we make use
of a messaging system as a central log of status of the
asynchronous requests. In current implementation, we use
Apache Kafka. Each service publishes messages in its own
channel to register the beginning and end of each processing of
a request, and a status code and callback message (e.g.,
“success” or a specific error message). In this way, users can
check if their requests were fully processed (i.e., sent to
ProvCapturer, then to ProvManager, and finally inserted into
the PLView) or an error occurred in a specific component.

IV. EXPERIMENTAL EVALUATION
In this section, we provide an experimental evaluation of

ProvLake. In Section IV.A, we present the analysis of data capture
overhead using 36 synthetic workloads. In Section IV.B, we
present a real case study, showing multiworkflow data analysis and
overhead analysis. In Section IV.C we discuss lessons learned.

1 https://franz.com/agraph/allegrograph/
2 https://kubernetes.io

Hardware setup. All tests are conducted on a cluster of 12
machines, where each has 128GB RAM, two CPU Intel Xeon
v2 2.8GHz with 20 cores when using hyper-threading, i.e., 40
cores per machine summing 480 cores. They share GPFS with
24TB and are interconnected via an InfiniBand network.

Software setup. ProvLake services (ProvCapturer,
ProvManager, and PolyProvQueryEngine) and its PLView DBMS
are deployed on a Kubernetes2 cluster of Docker containers on top
of the physical cluster. The services are implemented using Python
and deployed with uWSGI3 with C++ Cython plugin with multi-
process and multi-thread parallelism enabled. The DBMS is
AllegroGraph 6.3. For Komadu deployment, we use the most up-
to-date version available [17]. Komadu’s services were compiled
as indicated in its documentation. We also deploy Komadu on the
same Kubernetes cluster.

A. Overhead Analysis
The experiments in this section aim at evaluating the overhead

ProvLake adds to clients, i.e., the workflows, under several
synthetic workloads. To analyze overhead, we measure the
execution of the workflows with and without data capturing
enabled. Two dimensions are typically analyzed when evaluating
scientific applications: task duration and number of tasks [18].
Since we are analyzing data capture overhead, we add a third
dimension: number of captured data values per task. This
quantity represents the amount of captured data for both input
and output data values for each task; each data value is about
same size. First, we present an overview of execution times and
comparison with Komadu, then we discuss the overhead in detail.

Experiment setup. To vary in these three dimensions, we use
a benchmark with synthetic workloads based on existing
workflows, including for example the workflows in our case study,
and on past work on scientific applications [18]. They mimic a
prespecified number of chained data transformations, each
processing multiple parallel tasks. There is a synchronization point
between two chained data transformations, i.e., before a new data
transformation begins, all tasks of the current data transformation
finish, which is a typical behavior in scientific applications. We
generate quantities for the three analyzed dimensions following a
normal distribution where the mean values are according to Table
1 and a standard deviation of 10.0. We use three chained data
transformations in these experiments. In total, we generate 36

3 https://uwsgi-docs.readthedocs.io/en/latest

Table 1. Mean values to generate the synthetic workloads.
Number of tasks – 30 300 3000
Task duration (s) 0.1 1 10 100

Data values per task – 20 100 200

Fig 4. Synthetic workflow. The data values per transformation vary as in Table 1.

Data
Transformation 1

Data
Transformation 2

Data
Transformation 3

d11

d12

d1n

d21

d22

d31

d32

d41

d42

File SystemFile

File File

File

d2m d3p d4q

d data value with other attribute semantics
d data value with attribute semantics of data reference

workloads, which corresponds to the permutation of the values in
Table 1. An illustration of this workflow is presented in Figure 4.

We increase the order of magnitude for each dimension to
analyze the system under various workloads. An exception is
number of data values because we do not know any realistic case
that captures thousands of data values for one single task. For
each data transformation, one of the input data values is a
reference to a file in the file system. We use only one data store
in this test to generate synthetic workloads that could be used
within Komadu as well, and in ProvLake one data store is enough
to test the overhead in the client-side. Also, for task duration, we
use another case to investigate the system’s performance for very
short duration tasks (e.g., each lasting for 0.1 seconds on
average). Although tasks in scientific applications are often long-
lasting [18], we produce workloads dominated by thousands of
short-term tasks. This is a way to stress the system, which is one
of the objectives of this experiment. Thus, for the largest case,
there are about 3000 tasks (1000 parallel tasks on average per
data transformation), each with a mean duration of 1.7 min (100
seconds), and for each task there is a mean amount of data values
of 200 to be captured. To compare with Komadu, we implement
an analogous version of the same workflow we use to test
ProvLake. We add Komadu calls to capture data during
execution of the workflow, similarly to what we do for ProvLake
calls. We followed user guides and documentation publicly
provided to fine tune configuration parameters, such as
increasing queue sizes, so to better accommodate a high number
of parallel tasks. Then, we test Komadu using the exact same 36
workloads of the synthetic workflow we use to test ProvLake.

Overview of execution times. Each of the 36 workloads is
executed with the following three scenarios: (i) without any data

capture, (ii) with ProvLake data capturers, and (iii) with Komadu
data capturers. The total execution times to process the workloads
are not deterministic and do not follow a normal distribution, thus
we report the medians of a batch of repetitions. For each scenario,
for each workload, we repeat at least 50 times and until the 95%
confidence interval of the median is within 5% of our reported
medians. Similarly, we do not plot error bars as they represent less
than 5% of the medians. Results are in Figure 5. We organize the
results using a 3x3 matrix, where each chart in the matrix is
represented with a letter (A)—(I). The y-axis of each chart shows
the Log Execution Time and we vary the mean task duration in the
x-axis. In the matrix, by varying in the rows, we vary the log
number of tasks. By varying in the columns, we vary the mean
amount of captured data values per task.

Finding: execution times with ProvLake data capture remain
close to the execution times without capture, in all 36 workloads.
When the number of parallel tasks or data values per task increases,
ProvLake runs significantly faster than Komadu.

Comparing with Komadu, in 10 workloads Komadu data
capturers run at least one order of magnitude slower than with
ProvLake’s. For small number of tasks (A—C) and long-lasting
tasks, both systems perform similarly. For workloads with
hundreds of tasks (D—F), Komadu performs similarly to
ProvLake only for 100 seconds of mean task duration. For all
other cases, the difference is significant. The greatest difference
occurs in chart (F), i.e., hundreds of millisecond-sized tasks
with 200 data values on average per task. While ProvLake
executes 1.1x slower than without data capturers, Komadu
executes 369x slower. Thus, ProvLake performs over two
orders of magnitude faster than Komadu and in all tested cases
ProvLake adds less overhead. We could not run the workloads

Fig. 5. Execution times with ProvLake, Komadu, and with no data capture on 36 workloads.

Mean data values per task

Lo
g

Ex
ec

ut
io

n
Ti

m
e

(s
)

10
00

10
10

0
Lo

g
Nu

m
be

r o
f T

as
ks

20 100 200

With ProvLake Data CapturingWithout Data Capturing With Komadu Data Capturing

with thousands of parallel tasks (G—I) using Komadu because
despite varying several settings following its user guides,
Komadu throws timeout errors after thousands of parallel tasks
are launched in our deployment.

Thus, we observe that the design principles adopted by
ProvLake help to keep the overhead small. Komadu does not
adopt the principle to provide a lightweight library, requiring
the workflow code to be instrumented with W3C PROV
activities, entities, and agents, and PROV relationships,
embedded in the workflow code. In ProvLake, such PROV-
specific modeling remains in the server (ProvCapturer) rather
than in its client library. At runtime, it leads to more API,
operating system, and service calls, increasing the competition
between Komadu data capturers and the running workflow.
Improving current instrumentation of the workflow code is
planned as future work in Komadu [8].

Analyzing time overhead in more detail. Figure 6 shows the
runtime data capture overhead of each of the 36 workloads. The
percentages are obtained by measuring the relative difference
between with and without ProvLake calls. Three charts are plotted,
where each has a fixed number of tasks. In the x-axis, we vary the
mean task duration and for each task duration, we plot three bars,
each representing the amount of data values captured per task. The
y-axis is the overhead percentage. We annotate the total execution
time above the bars of the workloads without data capture for 200
mean data values per task.

Finding: the number of tasks has higher influence than the
mean data values per task and the overhead decreases with task
duration (i.e., total execution time).

An exception is for the millisecond-sized tasks workloads, as
the overhead increases as the number of data values captured
increases. This occurs because of ProvLake’s initialization
overhead, which is incurred for reading a workflow specification
file from disk (prospective provenance) and populating in-
memory data structures. When the workload has only tasks that
execute in milliseconds, the execution time is dominated by this
initialization time. This happens because with so many fast tasks,
ProvLake queues get overloaded. Both the ProvCapturer API in
the client-side takes longer to send requests and the ProvCapturer
server takes longer to process all requests. However, these small
workloads are useful to perform stress tests against the system,
as realistic workloads usually last for several seconds or minutes.

For longer workloads, ProvLake’s overhead is quite low. Even
when capturing a larger amount of data values per task, it is not
enough to significantly increase the execution time. When tasks
last at least 10 seconds on average per task, the overhead is

around 1%. For the workloads dominated by long-lasting tasks,
as of 100 seconds on average, it adds about 0.1% of overhead,
which is negligible.

B. Case Study and Multiworkflow Data Analysis
This section presents the case study that motivates this work.

We start with an overview, then we describe the workflows, and
queries which ProvLake can answer.

Discovery of oil reserves is paramount for the O&G industry
and involves a broad spectrum of activities, including seismic
image interpretation. Typically, these images cover large
extents of the earth and by inspecting the images, geoscientists
try to identify geological features, such as salt bodies. Trying to
automate such activity is of high interest in both academia and
O&G industry [19] and deep learning is a promising machine
learning technique for this [20].

Managing the data lifecycle to train deep learning models is
necessary to deliver models of high quality and this is
particularly true in geoscience problems [21], such as
identification of textures in seismic images [20]. It requires
preprocessing, cleaning, and performing complex integrated
data analysis. To deal with such complexity, the lifecycle is
decomposed into parts, each addressed by different,
collaborating teams of geoscientists, computational scientists,
engineers, among others. Each team has a preferred way to
automate tasks and store data, and a team consumes data
generated by another. This case study focuses on activities that
range from preprocessing large raw geological data files to the
generation of training and validation datasets for deep learning
models. Decomposing the problem into many workflows
makes the problem feasible, however it creates a new problem:
how to consume the data in an integrated way. Managing
provenance in the data lifecycle in a well-structured manner
becomes a major requirement as it facilitates the understanding
of how models were generated and improves trust in the results.

The preprocessing part of the lifecycle is composed of four
workflows (c.f. Figure 1). Workflow 1 processes about 5 TB of
geological raw data files (mainly seismic files in SEG-Y format and
intersecting horizons stored in CSV format). Despite its formal
specification [22], SEG-Y files very often do not follow it, so lots of
preprocessing and cleaning are needed. If erroneous raw data are used
or if the data were not cleaned correctly, the generated training and
validation datasets for the deep learning classifier, hence its results,
cannot be trusted. To address this, Workflow 1 parses the files in the
file system of the HPC cluster, extracts strategic data from the files,
and automates data cleaning. Extracted data are stored in PostgreSQL.

Fig. 6. ProvLake overhead using 36 workloads. Execution times are annotated above the bars.

Based on the outputs of Workflow 1, users inform which seismic and
horizon files should proceed to the Workflows 2 and 3, respectively.
These workflows generate intermediate data files and bounding boxes
and populate a MongoDB database. Furthermore, knowledge and
annotations about the seismic and horizons, known to geoscientists,
are inserted in a knowledge graph database managed by the
AllegroGraph DBMS. Finally, Workflow 4 consumes data from
Workflows 2 and 3 to generate training and validation datasets, which
are stored as files in a Kubernetes volume [23]. In the following steps
of the data lifecycle, these files are used as input to train the models.

Multiworkflow Queries. Based on this case study, we identify
distinct queries ProvLake was made to answer. In this analysis, the
user is a computational scientist and a machine learning
practitioner, with deep knowledge in the domain. When reporting
results, she requires detailed information, such as which SEG-Y
files, intermediate files, and documents in MongoDB were used to
generate a set of training and validation files. Thus, the typical
queries are multiworkflow data analysis:
Q1: What were the data references, stored in datasets

distributed over multiple stores, consumed and generated in the
data generation process, throughout the workflows, of a given
pair of training and validation files?
Q2: What are the relationships between the data references

obtained in Q1?
To provide detailed domain-specific information, such as which

in-line and cross-line slices of the seismic cube, she explores the
semantics of attributes of the data values (Section II.A) to inspect
the inner contents of each data reference returned in Q1:
Q3: List all data values (extracted from the files and datasets,

parameters and output values of data transformations) to
generate a given pair of training and validation files.

In addition to comprehensive queries, she runs debugging
queries. She observes that training and validation datasets that
Workflow 4 is generating are producing models with unusual poor
accuracy. She suspects that Workflow 1, which extracts strategic
values (e.g., geographic coordinates) from SEG-Y files, did not
extract data correctly, and asks:
Q4: How the geographic coordinates were extracted from

the SEG-Y file that is being used to produce training and

4A detailed version of this figure is available online [13].

validation files? What is the spatial resolution between slices in
the seismic data?

Answering Q1—Q4. Figure 7 shows an excerpt of PLView’s
contents when the four workflows execute4. Rectangles with
dashed strokes represent data store instances and the ones without
dashed strokes are instances of data references. Also, all data
references that are in a same data store follow the grayscale
background color of the data store instance, illustrating the
hadStore relationship (dashed arrow). The excerpt shows the data
relationships when data containing a seismic cube acquired in
Netherlands basin are processed in the four workflows. When
ProvLake captures data values (like x, y coordinates of a seismic
cube) extracted from datasets, it creates the corresponding
relationships to the data references. Similarly, parameter values
of a data transformation execution and data values that are output
of the data transformation execution are related to the data
transformation executions. These relationships of the data values
that are not data references are not shown in the figure for the
sake of its comprehension. We see the relationships between
provenance data of different workflows and the relationships
between data references in heterogeneous data stores in Figure 7.
During an execution of a data transformation in Workflow 1,
ProvLake registers that the data transformation used a seismic
file (netherlands.sgy), extracted raw data from it, and generated
a tuple in a relational table, which is stored in PostgreSQL. In
addition, ProvLake creates relationships between PostgreSQL1
and the data references, and stores the referred (solid arrow)
relationship between the seismic file and the instance in the
relational table. Similarly, as the other workflows execute,
unique identifiers to every data value provide the relationships.
Then, users send API calls to PolyProvQueryEngine.

Q1 and Q2. To illustrate, let us suppose that the user inputs of
query Q1 are the training and validation files generated by
Workflow 4 in Figure 7. In this case, the user sends an API call to
return all data references related to the generation of training and
validation TensorFlow records files, from raw seismic files to the
TensorFlow records files. To return the results,
PolyProvQueryEngine executes a query that takes training and
validation file references (represented as files stored in the
Kubernetes volume) as source nodes and traverses the data graph

Fig. 7. Excerpt of PLView contents generated during the multiworkflow execution.

/data/
netherlands.sgy

netherlands-doc

netherlands-
relational

netherlands-rdf

/data/
seabottom.xyz

/data/
top.xyz

seatop-doc

seabottom-doc

/tfdata/o1/
train1.tfrecords

Filesystem1

PostgreSQL1

Kubernetes-
volume1

AllegroGraph1 hadStore

Database
Reference Value

Data Store

Legend

Workflow1 Workflow 2 Workflow 4

referred

Workflow 3

MongoDB1

backwards until the farthest data reference attribute values, which
are seismic (netherlands.sgy) and horizon files (seabottom.xyz and
top.xyz) and return the related references, via referred. Because the
query is to answer all data references in the provenance data path,
PolyProvQueryEngine uses SPARQL features (e.g., property
paths) to traverse the graph. The result set returns all data
references displayed in Figure 7. For Q2, the result set is similar,
but it shows the data references in Figure 7 and the edges of the
graph between references.

Q3 and Q4. For Q3, the result shows the data references
consumed and generated in all data transformations for all
workflows and data values with other attribute semantics. The
result of Q3 has the data needed by the user to compose a report
on how the training and validation datasets for the deep learning
classifier were generated from raw data, passing through all
workflows. For Q4, the user specifies to show the values for
data attributes used by the data transformation “SEG-Y data
extraction” (i.e., parameters of the transformation) and the x, y
coordinates generated by it (i.e., the extracted data from the
SEG-Y data), and specifies to display the spatial resolution,
which is a data attribute stored in MongoDB.

Then, the result is the geographic coordinates (coordx, coordy),
extracted from the seismic file netherlands.sgy and stored in
PostgreSQL in Workflow 1, along with parameters that were used
to execute that data transformation that extracted the data. The
parameters of this data transformation provide information about
how the data extraction was run. Spatial resolution of seismic slices
is stored in the document reference (generated in Workflow 2) which
is related (referred) to the seismic file.

Overhead analysis. Most real workloads are composed of
mixed tasks (short/long duration, few/many tasks and data
values). This is the case of our real case study, where the
characteristic of each task, hence the whole workload, can be
mapped to the nearest workload tested in the previous
experiments. For example, tasks in Workflow 1 last for up to
few minutes and generate over 100 data values, depending on
the size of the seismic file the task is processing. Some tasks in
Workflows 2 and 3 are short (taking few seconds), whereas
most of them last from few minutes to hours, depending on the
seismic and horizon files being processed by a task. Each task
in these workflows generates less than 30 data values. Tasks in
Workflow 4 last several minutes, depending on the size of the
region of the seismic cube being processed. Each task generates
about 50 data values to be captured. Thus, the majority of tasks
of the workloads are mapped to long duration tasks with dozens
to hundreds of data values. Few tasks are mapped to short
duration tasks and very few last for less than one second.
Considering space overhead, Workflow 1 produces about 5.3
million provenance tuples in the PLView’s DBMS, Workflows
2 and 3 together produce about 400,000 tuples, and Workflow
4 produces about 100,000 tuples. In total, the DBMS storage
used about 4.5 GB, whereas the workflows processed over 5
TB of geological data files. Therefore, for the real workflows,
ProvLake adds about 0.1% of time overhead to each workflow
individually and generates about 5.8 M tuples and 4.5 GB in
the PLView’s DBMS.

In addition to the experiments presented, we also
investigated other aspects of ProvLake, such as different work
queue sizes observed that when sizes are set to one, PLView
has high frequent data insertions, which increases overhead, but
provides near real time data available for runtime queries. Due
to space limitations, we provide examples and further
implementation details in ProvLake’s website [13].

C. Lessons Learned
For runtime data capture, in all presented workloads,

ProvLake has shown a predictable behavior and managed to
maintain low data capture overhead. Particularly, when
workloads are dominated by tasks that last for 10 seconds or
more, ProvLake’s overhead is negligible, even for a large
number of parallel tasks and captured data values. Since CSE
workloads are typically dominated by long-lasting tasks that
last more than a minute each [18], ProvLake is a good solution
for this class of applications. When comparing with Komadu,
we see that when the amount of parallel tasks and amount of
data values per task are small, both systems perform similarly.
Nevertheless, when the workload scale grows, as is the case
with CSE workflows, the design principles adopted by
ProvLake keep the overhead low. A major difference in both
systems’ design is that providing a lightweight library is a
design principle in ProvLake. Aligning this with asynchronous
calls and work queues with parallel processing were critical
design decisions that contributed to achieving the results. As a
result, the design principles adopted by ProvLake allowed for
having an overhead two orders of magnitude lower than
Komadu in CSE workflows.

For the runtime analytical queries, the methodology to
design the data in the PLView promoted cooperation among the
multidisciplinary teams so they could specify relationships, and
which data should be captured at runtime, driving success to
answer the multiworkflow queries. ProvLake’s ontology, with
its adherence to W3C PROV [5], also contributed to the queries.

V. RELATED WORK
We organize the related work according to addressed issues: (i)

runtime data analysis with low workflow overhead and (ii) capturing
data relationships from multiworkflow data. We group related work
as: runtime single-workflow data capture; multiworkflow
orchestration systems; integration of heterogeneous provenance
databases; and runtime multiworkflow provenance data capture.

Runtime single-workflow data capture. Solutions in this
group capture data of workflows at runtime and store as
provenance data [4], [9]. For instance, DfAnalyzer [4] captures
implicit relationships between data files, associating them to data
extracted from files. This raw data extraction is convenient for
analyzing related domain data directly from its provenance
database. DfAnalyzer has low data capture overhead in large-
scale CSE workflows and influenced ProvLake’s design
principles. However, solutions in this group are limited to data
analysis of single isolated workflows. They do not address the
issue that workflows run autonomously but implicitly sharing
data. Captured data are specific to a single workflow, without
explicit interconnections between workflows. Also, these

solutions disregard that multiworkflow data analysis often
requires data integration of data in multiple stores.

Runtime multiworkflow provenance data capture.
Komadu [8,12] is the only solution we found in this group.
Different from the previous groups, Komadu aims at generating
integrated provenance data as a multiworkflow runs. Users add
data capturers to existing workflows to collect and relate data
that flow in the workflows. Then, Komadu allows for forward
and backward provenance queries, and joining provenance
traces in the multiworkflow. It can integrate provenance of data
generated in data lakes and by workflow orchestration systems,
like Spark or WMSs. However, its data representation, hence
data capturing capabilities, disregard that data are often
processed in multiple stores, jeopardizing the multiworkflow
analysis. Additionally, regarding the overhead, the authors
report significant overhead added to the running workflows. In
the experimental evaluation of this paper, we show that
ProvLake outperforms Komadu in a wide variety of workloads.

Multiworkflow orchestration systems. QoX [10] and PAW
[11] aim at optimizing the execution of multiworkflows that
process data in a variety of parallel execution engines (e.g.,
Hadoop MapReduce and Spark) and use multiple stores (e.g.,
HDFS, NoSQL, and relational DBMSs). SHIWA [24] provides
efficient execution management in a multiworkflow environment,
focusing on scalable mechanisms for orchestrating workflows in
single Workflow Management Systems (WMSs). However,
WMSs and parallel execution engines are often not adopted by
CSE users, who frequently adopt libraries with their own parallel
execution control, which conflicts with a workflow scheduling
engine [14]. In addition, none of these solutions provide an
integrated view over the multiworkflow.

Integration of heterogeneous provenance databases.
Solutions in this group [6,7] aim at interoperability in
heterogeneous provenance databases. This is useful in
multiworkflow environments where each workflow engine
generates provenance data using its own specific format.
However, the drawbacks of these solutions are that they also
provide provenance data integration offline.

To summarize, we did not find any solution that copes with
the two issues addressed by our solution and combining
existing approaches into one is hard. It requires new concepts
for multiworkflow provenance data, a practical methodology
for multiworkflow data design, and design principles for
runtime multiworkflow data capture with low overhead.

VI. CONCLUSION
In this paper, we introduced ProvLake, a system that addresses

the challenge of efficient multiworkflow provenance data capture
with low overhead. By capturing strategic data values and their
data relationships, ProvLake maintains the PLView to provide a
logical integration of multiworkflow data at runtime.

We proposed a specialization of a provenance data
representation, which stem from relationships between data
references stored in distributed and heterogeneous data stores
and provenance graphs of different workflows. We followed
W3C PROV to design an ontological data representation for the
PLView. To enable the instantiation of the PLView to

multiworkflows, we organized a set of phases in a methodology
to specify which data values should be captured driven by the
relevant queries. Finally, we proposed design principles that
contributed to providing the runtime analysis, as evidenced in
our real case study, while keeping the overhead as low as 0.1%.
Compared with Komadu [8,24], the closest solution that meets
our goals, our approach enabled runtime multiworkflow data
analysis with much smaller overhead.

VII. ACKNOWLEDGMENTS
The authors would like to thank Marcelo Costalonga, Lucas Villa Real, Rodrigo
Ferreira, Daniel Salles, Daniela Szwarcman, Maximilien de Bayser, Viviane
Torres, and Marcio Moreno from IBM Research for their help during the
development of this work. This work was partially funded by CNPq, FAPERJ,
and Inria Associated Team SciDISC.

VIII. REFERENCES
[1] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, “Scientific

workflows: past, present and future,” FGCS, vol. 75, pp. 216–227, 2017.
[2] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on

provenance: What for? What form? What from?,” VLDB J., vol. 26, no.
6, pp. 881–906, 2017.

[3] R. Souza, V. Silva, J. J. Camata, A. L. G. A. Coutinho, P. Valduriez, and
M. Mattoso, “Keeping track of user steering actions in dynamic
workflows,” FGCS, vol. 99, pp. 624–643, 2019.

[4] V. Silva, D. de Oliveira, P. Valduriez, and M. Mattoso, “DfAnalyzer:
runtime dataflow analysis of scientific applications using provenance,”
PVLDB, vol. 11, no. 12, pp. 2082–2085, 2018.

[5] P. Groth and L. Moreau, “W3C PROV: an overview of the PROV family
of documents,” 2013. https://www.w3.org/TR/prov-overview/.

[6] A. Gaignard, K. Belhajjame, and H. Skaf-Molli, “SHARP: harmonizing
and bridging cross-workflow provenance,” in The Semantic Web: ESWC
2017 Satellite Events, 2017, pp. 219–234.

[7] P. Missier et al., “Linking multiple workflow provenance traces for
interoperable collaborative science,” in WORKS, 2010.

[8] I. Suriarachchi and B. Plale, “Crossing analytics systems: a case for
integrated provenance in data lakes,” IEEE eScience, pp. 349–354, 2016.

[9] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “noWorkflow: a
tool for collecting, analyzing, and managing provenance from Python
scripts,” PVLDB, vol. 10, no. 12, pp. 1841–1844, 2017.

[10] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, “Optimizing
analytic data flows for multiple execution engines,” in SIGMOD, 2012.

[11] K. Doka et al., “Optimizing, planning and executing analytics workflows
over multiple engines,” in EDBT/ICDT Workshops, 2016.

[12] I. Suriarachchi, S. Withana, and B. Plale, “Big provenance stream
processing for data intensive computations,” in IEEE eScience, 2018.

[13] “ProvLake website,” 2019. https://ibm.biz/provlake.
[14] V. Silva, R. Souza, J. Camata, A. L. G. A. Coutinho, P. Valduriez, and M.

Mattoso, “Capturing provenance for runtime data analysis in
computational science and engineering applications,” in IPAW, 2018, pp.
183–187.

[15] A. C. Bauer et al., “In situ methods, infrastructures, and applications on
high performance computing platforms,” Computer Graphics Forum, vol.
35, no. 3, pp. 577–597, 2016.

[16] L. Bavoil et al., “VisTrails: enabling interactive multiple-view
visualizations,” in IEEE Visualization, 2005, pp. 135–142.

[17] “Komadu website,” https://pti.iu.edu/impact/data-sets/komadu.html.
[18] I. Raicu, I. T. Foster, and Y. Zhao, “Many-Task Computing for Grids and

Supercomputers,” in MTAGS, 2008.
[19] T. Randen et al., “Three-dimensional texture attributes for seismic data

analysis,” in SEG Technical Program Expanded Abstracts, 2000.
[20] D. S. Chevitarese, D. Szwarcman, E. V. Brazil, and B. Zadrozny,

“Efficient classification of seismic textures,” in IJCNN, 2018.
[21] Y. Gil et al., “Intelligent systems for geosciences: an essential research

agenda,” CACM, vol. 62, no. 1, pp. 76–84, 2018.
[22] K. Barry, D. Cavers, and C. Kneale, “Recommended standards for digital

tape formats,” Geophysics, vol. 40, no. 2, pp. 344–352, 1975.
[23] “Kubernetes Volumes,” 2019. https://kubernetes.io/docs/concepts/storage/volumes.
[24] D. Rogers et al., “Bundle and Pool Architecture for Multi-Language,

Robust, Scalable Workflow Executions,” J. Grid Comp., 2013.

