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Abstract—Computational Science and Engineering (CSE) 
projects are typically developed by multidisciplinary teams. Despite 
being part of the same project, each team manages its own workflows, 
using specific execution environments and data processing tools. 
Analyzing the data processed by all workflows globally is a core task 
in a CSE project. However, this analysis is hard because the data 
generated by these workflows are not integrated. In addition, since 
these workflows may take a long time to execute, data analysis needs 
to be done at runtime to reduce cost and time of the CSE project. A 
typical solution in scientific data analysis is to capture and relate the 
data in a provenance database while the workflows run, thus allowing 
for data analysis at runtime. However, the main problem is that such 
data capture competes with the running workflows, adding significant 
overhead to their execution. To mitigate this problem, we introduce in 
this paper a system called ProvLake, which adopts design principles 
for providing efficient distributed data capture from the workflows. 
While capturing the data, ProvLake logically integrates and ingests 
them into a provenance database ready for analyses at runtime. We 
validated ProvLake in a real use case in the O&G industry 
encompassing four workflows that process 5 TB datasets for a deep 
learning classifier. Compared with Komadu, the closest solution that 
meets our goals, our approach enables runtime multiworkflow data 
analysis with much smaller overhead, such as 0.1%. 

I. INTRODUCTION  
Computational Science and Engineering (CSE) projects are 

typically developed by multidisciplinary teams, each managing its 
own workflows with specific execution environments and data 
transformation tools. Each workflow processes (consuming and 
generating) large amounts of complex and heterogeneous data. 
Analyzing the data transformed by all workflows globally allows for 
understanding each data transformation by monitoring, debugging, 
and inspecting input and output datasets while workflows run, i.e., at 
runtime—which is necessary to reduce cost and time of the CSE 
project. However, this analysis is hard because the data generated by 
these workflows are not related to their data transformations, which 
also impacts such relationship determinations. 

To illustrate, consider an example of a CSE project, our case 
study (Figure 1), whose goal is to deliver deep learning models 
with high quality for an application in the Oil and Gas (O&G) 
industry. These four workflows generate data that are implicitly 
related through their data transformations but analyzing them 
globally after the data have been generated is complex because 
each data store is distributed with no information on the data 
transformations or how to relate the stores. There is no point in 
moving and integrating all data in a single repository for a 
global analysis. However, a complementing data representation 
on how the data in the data stores relate to each other 
contributes to a logically integrated multiworkflow data 

analysis, while keeping the autonomy of each data store. In this 
example (Figure 1), there is also the challenge of relating data 
from heterogeneous representations.  

A typical solution in scientific data analysis is to capture and 
relate the data in a provenance database at runtime [1]–[4]. 
Provenance data representation has a W3C recommendation, 
PROV [5], which has been used as a reference model to represent 
relationships between datasets and their data transformations in 
workflows. PROV-based databases follow a uniform way of 
representing “consumed” and “generated” data relationships 
between datasets and their data transformations, and other 
workflow data relationships. However, the main problem in 
runtime data capture is that it competes with the running 
workflows, adding significant overhead to their execution.  

One exception in low overhead provenance data capture is 
DfAnalyzer [4], however this approach limits its analysis to 
isolated workflows, characterizing a single-workflow data 
capture solution. Also, its data capture is limited to raw data in 
file systems, unlike the data stores in Figure 1. In typical CSE 
projects, the execution autonomy of each single-workflow 
participating in a multiworkflow prevents data capture to be 
managed by a single-workflow data capture solution.  

Some limitations in single-workflow data capture solutions 
are caused by the lack of: (i) capturing and relating data from 
autonomous workflow executions; (ii) globally identifying data 
to establish relationships from multiworkflow data (i.e., data 
processed by a multiworkflow) in multiple stores; and (iii) 
overhead management strategies for capturing provenance data 
from one workflow while capturing data from another 
workflow potentially running in parallel.  

The closest solution to meet our goals, Komadu is a distributed 
data capture solution that integrates provenance data in a 
multiworkflow execution [6,7]. Komadu captures provenance data 
generated by workflows running on multiple data processing 

 
Fig. 1. Four workflows using five data stores. 
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systems. Users can run forward and backward provenance queries, 
integrating provenance traces generated in the multiworkflow. 
Despite its originality in addressing the limitations of single-
workflow data capture, Komadu still suffers from capture 
overhead, which is particularly significant in CSE workflows, as 
shown in our experiments. In Komadu, performance issues related 
to runtime data capture are left for future work [8], since it 
integrates the provenance graphs for queries only after all 
workflow executions end. Finally, a limitation found in all related 
work [4], [6]–[12] is the lack of query support from workflow data 
stored in heterogeneous databases. 

To mitigate these problems, we propose a system called 
ProvLake, which adopts design principles for providing 
efficient distributed domain data capture in a multiworkflow 
execution. While capturing the data, ProvLake logically 
integrates and ingests them into a provenance database, named 
ProvLake Data View (PLView), ready for analyses at runtime. 
We validated ProvLake by implementation of the real use case in 
Figure 1 with four workflows that process 5 TB datasets for a deep 
learning classifier. We evaluate runtime data analysis exploring 
heterogeneous multiworkflow data represented in our provenance 
database. We compare ProvLake and Komadu with extensive 
experiments and demonstrate ProvLake’s overhead for runtime data 
capture to be negligible. 

The main contributions of this paper are the following: 
• Design principles for efficient distributed provenance data 
capture with low overhead. 
• A provenance data representation aware of multiworkflows 
and multiple stores, following W3C PROV [5] standards. 
• Lessons learned on efficiently keeping the overhead low 
while integrating captured provenance data. 

The rest of this paper is organized as follows. Section II 
presents multiworkflow data representation as provenance data. 
Section III introduces the ProvLake system with its design 
principles for introducing low overhead in provenance data 
capture.  Section IV has the experimental evaluation. Section V 
discusses related work and Section VI concludes. 

II. MULTIWORKFLOW DATA PROVENANCE 
A provenance database in a multiworkflow is the main 

source of runtime data analysis. Provenance data do not 
replicate data from the data stores. Instead, they contain 
lightweight references to the physical data residing in the data 
stores; strategic data values (e.g., quantities of interest, 
performance indicators, or any other relevant value) extracted 
from the datasets in the multiple stores; and the data 
relationships among these data, providing the logical data 
integration, thus forming a data view over the multiworkflow 
data using provenance. PLView data only contain relatively 
small but relevant data that can be used for runtime analysis and 
to guide deeper analyses in the data store contents. Moreover, 
we adopt a strategy to promote the cooperation of the teams to 
decide on which data are relevant to them to set the provenance 
granularity. We present the fundamentals of the PLView and a 
methodology to select strategic data for analysis in Sections 
II.A and II.B, respectively. 

A. PLView Provenance Data Representation 
To relate distributed data from multiworkflow executions, 

including workflow data stored in heterogeneous databases, the 
PLView adopts data provenance relationships following a well 
stablished W3C standard among provenance data systems: PROV 
[5]. The PLView is represented as a provenance data directed 
graph, where vertices are instances of PROV entity, activity, or 
agent and edges are data relationships between vertices [5]. 
Despite PROV’s high level representation, it can be specialized to 
represent workflow data relationships. The PLView represents 
data related through data transformations and relationships of data 
distributed in heterogeneous databases.   

A workflow is a composition of data transformations (e.g., 
programs, services, functions) that can consume and produce 
datasets, where an output dataset produced by a data transformation 
can be consumed as an input dataset by another data transformation, 
forming a coherent flow. A dataset can be modeled as a set of data 
elements, where each element is composed of data values. Each 
value has a data attribute, which gives the name and data type (e.g., 
integer, string, array). Theses attribute names are typically specific 
for the domain and familiar to the teams. Data transformation 
executions are modeled as instances of activities and data values 
as instances of entities. The “consumption” data relationship 
between a data transformation execution and its data values is 
modeled as the used PROV relationship, whereas the 
“generation” of data values by a data transformation execution is 
modeled as the generated PROV relationship. 

To improve data analysis, the PLView adds semantics for the 
attributes of the data values. The semantics refer to the meaning that 
the data value has in a data transformation. Possible values for 
attribute semantics are: a parameter or output value of a data 
transformation; data reference to a data element of a dataset 
physically residing in a data store; or data value extracted from a 
dataset in a data store. These fundamental concepts for workflow 
provenance are precisely defined in background work  [3], which we 
base on to extend to represent data references (i.e., data values that 
have attributes with semantics of data reference) to data 
relationships in heterogeneous databases. 

To help the logical integration between data that are physically 
distributed into multiple stores, the PLView creates the referred 
to represent data relationships between data references.  PLView 
goes one step further to relate data from heterogeneous databases. 
Examples of data references are file reference, document 
reference, relational tuple reference, graph vertex reference, RDF 
triple reference, etc.  Therefore, the data reference is 
complemented via the hadStore relationship to relate it to its data 
store (also a PROV entity), that analogously can be a File System, 
Document DBMS, Relational DBMS, Graph DBMS, Triple 
Store, etc.  

In addition, the PLView adds properties to vertices to improve 
runtime data analysis. For example, properties of data 
transformation executions are information about where they were 
physically executed, start time and end time and data references 
contain meaningful information about the data being referred, 
e.g., size of files in case of file reference.  

Altogether, the PLView is represented as a multiworkflow 
provenance data graph that provides a data view over the data in 



the CSE project while the multiworkflow executes. We illustrate 
the PLView’s provenance data representation in ProvLake’s 
website [13] and a concrete example is presented in Section IV. 

B. Methodology to Select Strategic Data for Analysis 
To select strategic data for multiworkflow data analysis, we 

present a methodology that helps users decide which data are 
relevant and should be captured. This decision is made by the teams 
participating in the CSE project and is guided by the provenance 
questions that the teams want to answer at runtime. The granularity 
of captured data impacts both quality of its analysis and overhead for 
its acquisition. Considering this trade-off, we propose a 
methodology, which extends a single-workflow methodology [14], 
to drive the teams to design the data that will form the PLView. 
Using prospective provenance data representation [2], the 
methodology aims at specifying only the relevant data that should be 
captured and related as retrospective provenance data [2]. The 
methodology is analogous to modeling a relational schema, with the 
relationships between relations, in a relational DBMS.  

The methodology phases are: (i) identification of data to be 
analyzed; (ii) specification of data capture points at workflow 
codes; and (iii) specification of attributes and relationships 
between data references. The phases are followed initially for 
each single-workflow, and then for the multiworkflow, 
globally. For phase (i), users anticipate interesting questions for 
data analysis within each workflow and the multiworkflow. 
Workflow modelers and data provenance specialist collaborate 
with the application developers, who are often computational 
scientists or engineers, and domain scientists to identify such 
questions, which will drive the identification of strategic data 
to be analyzed. By strategic we mean the input and output data 
values that are of high interest and should be captured. For 
phase (ii), the developers and workflow modelers identify, in 
the workflow code, all data transformations and their strategic 
input and output data anticipated in phase (i). The result of this 
phase drives the insertion of data capture calls in the 
corresponding workflow code. Finally, for phase (iii), they 
specify the semantics of data captured in the workflows, 
particularly attributes that are data references and how they are 
related to form the relationships between data references, 
similarly to what is done when designing join attributes in a 
relational schema. 

All three phases are followed for each workflow, resulting in 
a design specification that represents the prospective 
provenance data of all data transformations for each workflow. 
Then, to form the multiworkflow provenance database, the 
teams collaborate, working in phases (i) and (ii), to specify 
(prospectively) the relationships between provenance data 
graphs of the single-workflows. For each pair of workflows, the 
teams decide on new attributes, the provenance data 
relationships between workflows, and data reference 
relationships between workflows for phase (iii). The result is 
the same prospective provenance specification, but with these 
added attributes and relationships. 

The notion of “strategic data” may change over time. Thus, the 
methodology is iterative, and workflows’ specifications can 
suffer adjustments during a CSE project’s timeline as new data 
become of interest. Finally, after the multiworkflow specification 

using prospective provenance data, ProvLake captures 
retrospective provenance data as the multiworkflow executes. 

III. PROVLAKE ARCHITECTURE  
This section presents ProvLake’s architecture, beginning with an 
overview and design principles, then details of each component. 

A. Overview and Design Principles 
CSE users need to analyze multiworkflow data at runtime but 

cannot afford high computational overhead on their running 
workflows. Thus, ProvLake architectural design is focused on 
attaining low runtime data capture overhead.  

ProvLake has a microservices architecture composed of three 
services (ProvCapturer, ProvManager, and PolyProvQueryEngine), 
a lightweight ProvLake library, a messaging system, and the 
PLView (Figure 2). These components capture data, transform them 
to the provenance database representation, insert them into the 
database, and help runtime data analysis through query submissions. 
We implement ProvLake following these main principles: 

 (i) Lightweight library. ProvLake provides a lightweight 
library to be imported into the workflows (clients), which adds 
little code for instrumentation; thus, avoiding significant 
pollution in the original workflows’ code. The library only 
contains simple methods to capture input and output data values, 
exactly as they are in order to take advantage of cached data 
during capture (in-situ) and leave to the server the management 
of transformation of workflow data into provenance data, 
provenance-specific relationships, semantics, parallel insertions 
in the database, and other more heavyweight operations. 
Moreover, the server runs in a different address space of the 
running workflows, following in-transit strategies [15], 
contributing to avoid contention between clients and server. 
Additionally, to increase isolation between clients and server, 
ProvLake server components are suggested to be deployed on a 
separate hardware from where the workflows run. For instance, 
in an HPC cluster machine, ProvLake server runs on a node 
whereas the workflows run on the remainder nodes. 

(ii) Asynchronicity. The communication between clients and 
server during execution of the data transformations is 
asynchronous. That is, requests are non-blocking and return 
almost instantaneously with simple “ACK” messages to clients.  

(iii) Work queues. Clients do not communicate to server at 
each data capture, but they simply enqueue capture calls, which 
is a fast and local operation. When the queue reaches a certain 
limit or time constraint (both adjustable), the capture requests are 

 
Fig. 2. Architectural components of ProvLake. 
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sent in a batch to the server. This reduces network traffic as the 
clients do fewer but larger requests. 

In addition to these design principles, which are the main ones 
for keeping low overhead added to the workflows, other strategies 
collaborate to the overall server performance. The server services 
also employ queues and parallel workers to consume them. Also, 
the services maintain auxiliary in-memory data structures to store, 
for instance, the workflows’ specifications, which data should be 
captured, and the data references to be related. Thus, ProvLake 
avoids reading data from disk, from the PLView, or any other 
external data store out of main memory during execution.  

B. ProvLake library 
 ProvLake library follows the three design principles. They 

lower the overhead and the changed workflow code remains as 
close as possible to its original code. Figure 3 illustrates a small 
excerpt of Workflow 2 of our case study (Section IV.B), written 
in Python, with added library calls. 

The library is imported (Line 1) in the code of each single-
workflow composing the multiworkflow. As a result of the 
methodology (Section II.B), prospective provenance data of each 
single-workflow are specified in a separate configuration file, 
stored externally to the workflow code. This file is loaded only 
once, at the constructor of the library, to an in-memory data 
structure (Line 2). Then, each execution of a data transformation is 
wrapped by two data capture calls, one to capture the input (Line 
9) and other for the output (Line 11) data values. These calls are 
queued, and the arguments of each data capture are often small lists 
and hash-tables, with data values in their original formats. Other 
calls or data conversions specifically related to provenance data are 
designed to remain separate from the workflow code and left to 
ProvLake server. The library also captures runtime information, 
such as start and end times of each data transformation execution, 
and information about the physical machine running the workflow. 
Figure 3 also exemplifies the library capturing a reference to data 
stored in heterogeneous data stores: the file system (by a file 
reference to a seismic data file in Line 4) and the MongoDB 
DBMS (by a reference to a document in Line 10). 

C. ProvCapturer 
ProvCapturer service has two main goals. First, to convert the 

workflow data coming from the library calls into W3C PROV data 
following PLView data representation and, second, to capture the 
data relationships. The service follows the prospective provenance 
data specification, loaded to its main memory. 

As requests arrive, they are just appended to its in-memory 
queue, so the service can immediately “ACK” the message. This 
reduces waiting time in the workflows caused by the 
communication between the library and the service.  This queue 
of requests is processed in parallel by the service. 

To convert the data values coming from the workflows to the 
PLView data representation, the service matches the workflow data 
with the prospective provenance specification. Each data 
transformation execution call carries the identifiers of the data 
transformation and of the workflow with it. With this, ProvCapturer 
looks into the prospective provenance data to find the data attributes 
corresponding to the data values coming from the workflows, and 
how they should be converted to retrospective provenance data. The 

workflow data are transformed into JSON format following the 
W3C PROV-TEMPLATE specification extending the vocabulary 
utilized in the PLView data representation. These JSON objects are 
sent to the ProvManager service. 

To capture the data relationships between data transformations 
and workflows, which are given by the consumed and generated data 
values, the service uses unique identifiers to every data value that 
flows through it. Using unique identifiers for maintaining 
relationships of captured data is used in several provenance systems 
[8,12]. Thus, every data value receives a unique identifier in the 
PLView. If a same data value that is generated by a data 
transformation execution is consumed by another, the service 
captures this and creates the data relationships that represent the 
shared data between these data transformations. Similarly, if this 
same data value generated in a workflow is consumed in another 
workflow, the service captures this, forming the data relationships 
between the provenance data graph of these workflows. To specify 
the unique identifier, the service uses a deterministic rule, which uses 
a hash function over the data value, the attribute, and CSE project 
identifier. When a new data transformation uses an already captured 
data value, the service gives the same identifier to it, creates the 
provenance relationships, and creates the JSON objects.  

Special cases occur when the captured data values are data 
references. In those cases, the service creates the provenance 
relationship hadStore between the data reference and its physical 
data store. Information about the data store includes the data model 
and credentials for accessing the data store, if applicable. Another 
special case occurs when the data references participate in a 
relationship between data references. In this case, the service 
maintains the references in another in-memory data structure. 
When a data reference participating in a pair of data values that 
form the relationship flows into the service, the service checks if 
the other value in the pair has already been captured. If yes, it 
creates the provenance relationship referred between the data 
values. If not, it saves the value in the in-memory structure and the 
value will remain there until the other value in the pair flows into 
the service. 

Furthermore, we design the service so that it does not make 
any assumption about execution dependencies or centralization 
of the multiworkflow execution. It is the service’s responsibility 
to distinguish between the workflows sending data and to create 
the data relationships between provenance graphs of different 
workflows as the workflows execute. After processing the calls 
coming from the workflows, captured provenance data are sent 
via RESTful HTTP calls to ProvManager, also asynchronously. 

 
Fig. 3. Part of a workflow code with ProvLake library calls. 

1.  from provlake import ProvLake, DT
2.  prov = ProvLake(wf_specification_path)
3.  args = [
4.     segy_path,
5. inline_byte,
6. xline_byte,
7. geox_byte,
8. geoy_byte ]
9.  with DT(prov, "import_seismic", args) as dt:

10.     document_id = import_seismic(args)
11.     dt.output(document_id)

Workflow code



D. ProvManager 
ProvManager is responsible for inserting provenance data into the 

PLView’s DBMS and for generating queries (in the query langue of 
PLView’s DBMS) to be sent to the DBMS.  When ProvManager 
receives the provenance data, it converts the data into a data format 
that can be inserted into the DBMS. In current implementation, the 
PLView Provenance Data Representation is instantiated as an 
ontology that extends W3C PROV-O, using AllegroGraph1 as its 
Triple Store. Thus, ProvManager converts provenance data into 
RDF triples, and inserts them into AllegroGraph. ProvManager 
manages a queue of triples, to be inserted as a bulk to the DBMS, 
aiming at reducing contention at the DBMS. For queries, 
ProvManager receives calls from PolyProvQueryEngine service and 
builds the SPARQL queries to answer the calls.  

E. PolyProvQueryEngine 
To query PLView for multiworkflow data analysis through 

queries at runtime, ProvLake exposes a provenance query API 
via PolyProvQueryEngine, which implements parametrized 
predefined queries for multiworkflow provenance graph 
traversals and analytics. Users specify parameters, such as a 
source and target data attributes, to be traversed in the 
provenance graph stored in the PLView. PolyProvQueryEngine 
sends a query request to ProvManager only, which builds a 
SPARQL query to the DBMS and returns the result set. 
However, in certain cases, when data were not captured by 
ProvLake and still the user needs to query the data, with their 
provenance, PolyProvQueryEngine also sends a request to a 
Polystore and joins with the result set coming from a 
provenance query to ProvManager. Exploring the polystore 
queries aspect in depth is out of the scope of this paper. 

F. Messaging System 
 Since the communication between components in ProvLake 

is done asynchronously during the data transformations and 
only return simple “ACK” messages, keeping track of their 
status is not trivial. “ACK” is not enough to determine whether 
the requests were completely processed.  For this, we make use 
of a messaging system as a central log of status of the 
asynchronous requests. In current implementation, we use 
Apache Kafka. Each service publishes messages in its own 
channel to register the beginning and end of each processing of 
a request, and a status code and callback message (e.g., 
“success” or a specific error message). In this way, users can 
check if their requests were fully processed (i.e., sent to 
ProvCapturer, then to ProvManager, and finally inserted into 
the PLView) or an error occurred in a specific component. 

IV. EXPERIMENTAL EVALUATION 
In this section, we provide an experimental evaluation of 

ProvLake. In Section IV.A, we present the analysis of data capture 
overhead using 36 synthetic workloads. In Section IV.B, we 
present a real case study, showing multiworkflow data analysis and 
overhead analysis. In Section IV.C we discuss lessons learned. 

                                                        
1 https://franz.com/agraph/allegrograph/ 
2 https://kubernetes.io 

Hardware setup. All tests are conducted on a cluster of 12 
machines, where each has 128GB RAM, two CPU Intel Xeon 
v2 2.8GHz with 20 cores when using hyper-threading, i.e., 40 
cores per machine summing 480 cores. They share GPFS with 
24TB and are interconnected via an InfiniBand network. 

Software setup. ProvLake services (ProvCapturer, 
ProvManager, and PolyProvQueryEngine) and its PLView DBMS 
are deployed on a Kubernetes2 cluster of Docker containers on top 
of the physical cluster. The services are implemented using Python 
and deployed with uWSGI3 with C++ Cython plugin with multi-
process and multi-thread parallelism enabled. The DBMS is 
AllegroGraph 6.3. For Komadu deployment, we use the most up-
to-date version available [17]. Komadu’s services were compiled 
as indicated in its documentation. We also deploy Komadu on the 
same Kubernetes cluster. 

A. Overhead Analysis 
The experiments in this section aim at evaluating the overhead 

ProvLake adds to clients, i.e., the workflows, under several 
synthetic workloads. To analyze overhead, we measure the 
execution of the workflows with and without data capturing 
enabled. Two dimensions are typically analyzed when evaluating 
scientific applications: task duration and number of tasks [18]. 
Since we are analyzing data capture overhead, we add a third 
dimension: number of captured data values per task. This 
quantity represents the amount of captured data for both input 
and output data values for each task; each data value is about 
same size. First, we present an overview of execution times and 
comparison with Komadu, then we discuss the overhead in detail. 

Experiment setup. To vary in these three dimensions, we use 
a benchmark with synthetic workloads based on existing 
workflows, including for example the workflows in our case study, 
and on past work on scientific applications  [18]. They mimic a 
prespecified number of chained data transformations, each 
processing multiple parallel tasks. There is a synchronization point 
between two chained data transformations, i.e., before a new data 
transformation begins, all tasks of the current data transformation 
finish, which is a typical behavior in scientific applications. We 
generate quantities for the three analyzed dimensions following a 
normal distribution where the mean values are according to Table 
1 and a standard deviation of 10.0. We use three chained data 
transformations in these experiments. In total, we generate 36 

3 https://uwsgi-docs.readthedocs.io/en/latest 

 

Table 1. Mean values to generate the synthetic workloads.  
Number of tasks –  30 300 3000 
Task duration (s) 0.1 1 10 100 

Data values per task – 20 100 200 
 

 
Fig 4. Synthetic workflow. The data values per transformation vary as in Table 1. 
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workloads, which corresponds to the permutation of the values in 
Table 1. An illustration of this workflow is presented in Figure 4. 

We increase the order of magnitude for each dimension to 
analyze the system under various workloads. An exception is 
number of data values because we do not know any realistic case 
that captures thousands of data values for one single task. For 
each data transformation, one of the input data values is a 
reference to a file in the file system. We use only one data store 
in this test to generate synthetic workloads that could be used 
within Komadu as well, and in ProvLake one data store is enough 
to test the overhead in the client-side. Also, for task duration, we 
use another case to investigate the system’s performance for very 
short duration tasks (e.g., each lasting for 0.1 seconds on 
average). Although tasks in scientific applications are often long-
lasting [18], we produce workloads dominated by thousands of 
short-term tasks. This is a way to stress the system, which is one 
of the objectives of this experiment. Thus, for the largest case, 
there are about 3000 tasks (1000 parallel tasks on average per 
data transformation), each with a mean duration of 1.7 min (100 
seconds), and for each task there is a mean amount of data values 
of 200 to be captured. To compare with Komadu, we implement 
an analogous version of the same workflow we use to test 
ProvLake. We add Komadu calls to capture data during 
execution of the workflow, similarly to what we do for ProvLake 
calls. We followed user guides and documentation publicly 
provided to fine tune configuration parameters, such as 
increasing queue sizes, so to better accommodate a high number 
of parallel tasks. Then, we test Komadu using the exact same 36 
workloads of the synthetic workflow we use to test ProvLake. 

Overview of execution times. Each of the 36 workloads is 
executed with the following three scenarios: (i) without any data 

capture, (ii) with ProvLake data capturers, and (iii) with Komadu 
data capturers. The total execution times to process the workloads 
are not deterministic and do not follow a normal distribution, thus 
we report the medians of a batch of repetitions. For each scenario, 
for each workload, we repeat at least 50 times and until the 95% 
confidence interval of the median is within 5% of our reported 
medians. Similarly, we do not plot error bars as they represent less 
than 5% of the medians. Results are in Figure 5. We organize the 
results using a 3x3 matrix, where each chart in the matrix is 
represented with a letter (A)—(I). The y-axis of each chart shows 
the Log Execution Time and we vary the mean task duration in the 
x-axis. In the matrix, by varying in the rows, we vary the log 
number of tasks. By varying in the columns, we vary the mean 
amount of captured data values per task. 

Finding: execution times with ProvLake data capture remain 
close to the execution times without capture, in all 36 workloads. 
When the number of parallel tasks or data values per task increases, 
ProvLake runs significantly faster than Komadu. 

Comparing with Komadu, in 10 workloads Komadu data 
capturers run at least one order of magnitude slower than with 
ProvLake’s. For small number of tasks (A—C) and long-lasting 
tasks, both systems perform similarly. For workloads with 
hundreds of tasks (D—F), Komadu performs similarly to 
ProvLake only for 100 seconds of mean task duration. For all 
other cases, the difference is significant. The greatest difference 
occurs in chart (F), i.e., hundreds of millisecond-sized tasks 
with 200 data values on average per task. While ProvLake 
executes 1.1x slower than without data capturers, Komadu 
executes 369x slower. Thus, ProvLake performs over two 
orders of magnitude faster than Komadu and in all tested cases 
ProvLake adds less overhead. We could not run the workloads 

 
 

 
Fig. 5. Execution times with ProvLake, Komadu, and with no data capture on 36 workloads. 
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with thousands of parallel tasks (G—I) using Komadu because 
despite varying several settings following its user guides, 
Komadu throws timeout errors after thousands of parallel tasks 
are launched in our deployment. 

Thus, we observe that the design principles adopted by 
ProvLake help to keep the overhead small. Komadu does not 
adopt the principle to provide a lightweight library, requiring 
the workflow code to be instrumented with W3C PROV 
activities, entities, and agents, and PROV relationships, 
embedded in the workflow code. In ProvLake, such PROV-
specific modeling remains in the server (ProvCapturer) rather 
than in its client library. At runtime, it leads to more API, 
operating system, and service calls, increasing the competition 
between Komadu data capturers and the running workflow. 
Improving current instrumentation of the workflow code is 
planned as future work in Komadu [8]. 

Analyzing time overhead in more detail. Figure 6 shows the 
runtime data capture overhead of each of the 36 workloads. The 
percentages are obtained by measuring the relative difference 
between with and without ProvLake calls. Three charts are plotted, 
where each has a fixed number of tasks. In the x-axis, we vary the 
mean task duration and for each task duration, we plot three bars, 
each representing the amount of data values captured per task. The 
y-axis is the overhead percentage. We annotate the total execution 
time above the bars of the workloads without data capture for 200 
mean data values per task. 

Finding: the number of tasks has higher influence than the 
mean data values per task and the overhead decreases with task 
duration (i.e., total execution time). 

An exception is for the millisecond-sized tasks workloads, as 
the overhead increases as the number of data values captured 
increases. This occurs because of ProvLake’s initialization 
overhead, which is incurred for reading a workflow specification 
file from disk (prospective provenance) and populating in-
memory data structures. When the workload has only tasks that 
execute in milliseconds, the execution time is dominated by this 
initialization time. This happens because with so many fast tasks, 
ProvLake queues get overloaded. Both the ProvCapturer API in 
the client-side takes longer to send requests and the ProvCapturer 
server takes longer to process all requests. However, these small 
workloads are useful to perform stress tests against the system, 
as realistic workloads usually last for several seconds or minutes. 

For longer workloads, ProvLake’s overhead is quite low. Even 
when capturing a larger amount of data values per task, it is not 
enough to significantly increase the execution time. When tasks 
last at least 10 seconds on average per task, the overhead is 

around 1%. For the workloads dominated by long-lasting tasks, 
as of 100 seconds on average, it adds about 0.1% of overhead, 
which is negligible.  

B. Case Study and Multiworkflow Data Analysis  
This section presents the case study that motivates this work. 

We start with an overview, then we describe the workflows, and 
queries which ProvLake can answer. 

Discovery of oil reserves is paramount for the O&G industry 
and involves a broad spectrum of activities, including seismic 
image interpretation. Typically, these images cover large 
extents of the earth and by inspecting the images, geoscientists 
try to identify geological features, such as salt bodies. Trying to 
automate such activity is of high interest in both academia and 
O&G industry [19] and deep learning is a promising machine 
learning technique for this [20]. 

Managing the data lifecycle to train deep learning models is 
necessary to deliver models of high quality and this is 
particularly true in geoscience problems [21], such as 
identification of textures in seismic images [20]. It requires 
preprocessing, cleaning, and performing complex integrated 
data analysis. To deal with such complexity, the lifecycle is 
decomposed into parts, each addressed by different, 
collaborating teams of geoscientists, computational scientists, 
engineers, among others. Each team has a preferred way to 
automate tasks and store data, and a team consumes data 
generated by another. This case study focuses on activities that 
range from preprocessing large raw geological data files to the 
generation of training and validation datasets for deep learning 
models. Decomposing the problem into many workflows 
makes the problem feasible, however it creates a new problem: 
how to consume the data in an integrated way. Managing 
provenance in the data lifecycle in a well-structured manner 
becomes a major requirement as it facilitates the understanding 
of how models were generated and improves trust in the results. 

The preprocessing part of the lifecycle is composed of four 
workflows (c.f. Figure 1). Workflow 1 processes about 5 TB of 
geological raw data files (mainly seismic files in SEG-Y format and 
intersecting horizons stored in CSV format). Despite its formal 
specification [22], SEG-Y files very often do not follow it, so lots of 
preprocessing and cleaning are needed. If erroneous raw data are used 
or if the data were not cleaned correctly, the generated training and 
validation datasets for the deep learning classifier, hence its results, 
cannot be trusted. To address this, Workflow 1 parses the files in the 
file system of the HPC cluster, extracts strategic data from the files, 
and automates data cleaning. Extracted data are stored in PostgreSQL. 

 

 
Fig. 6. ProvLake overhead using 36 workloads. Execution times are annotated above the bars. 

 



Based on the outputs of Workflow 1, users inform which seismic and 
horizon files should proceed to the Workflows 2 and 3, respectively. 
These workflows generate intermediate data files and bounding boxes 
and populate a MongoDB database. Furthermore, knowledge and 
annotations about the seismic and horizons, known to geoscientists, 
are inserted in a knowledge graph database managed by the 
AllegroGraph DBMS. Finally, Workflow 4 consumes data from 
Workflows 2 and 3 to generate training and validation datasets, which 
are stored as files in a Kubernetes volume [23]. In the following steps 
of the data lifecycle, these files are used as input to train the models.  

Multiworkflow Queries. Based on this case study, we identify 
distinct queries ProvLake was made to answer. In this analysis, the 
user is a computational scientist and a machine learning 
practitioner, with deep knowledge in the domain. When reporting 
results, she requires detailed information, such as which SEG-Y 
files, intermediate files, and documents in MongoDB were used to 
generate a set of training and validation files. Thus, the typical 
queries are multiworkflow data analysis: 
Q1: What were the data references, stored in datasets 

distributed over multiple stores, consumed and generated in the 
data generation process, throughout the workflows, of a given 
pair of training and validation files? 
Q2: What are the relationships between the data references 

obtained in Q1? 
To provide detailed domain-specific information, such as which 

in-line and cross-line slices of the seismic cube, she explores the 
semantics of attributes of the data values (Section II.A) to inspect 
the inner contents of each data reference returned in Q1:  
Q3: List all data values (extracted from the files and datasets, 

parameters and output values of data transformations) to 
generate a given pair of training and validation files. 

In addition to comprehensive queries, she runs debugging 
queries. She observes that training and validation datasets that 
Workflow 4 is generating are producing models with unusual poor 
accuracy. She suspects that Workflow 1, which extracts strategic 
values (e.g., geographic coordinates) from SEG-Y files, did not 
extract data correctly, and asks: 
Q4: How the geographic coordinates were extracted from 

the SEG-Y file that is being used to produce training and 

                                                        
4A detailed version of this figure is available online [13]. 

validation files? What is the spatial resolution between slices in 
the seismic data? 

Answering Q1—Q4. Figure 7 shows an excerpt of PLView’s 
contents when the four workflows execute4. Rectangles with 
dashed strokes represent data store instances and the ones without 
dashed strokes are instances of data references. Also, all data 
references that are in a same data store follow the grayscale 
background color of the data store instance, illustrating the 
hadStore relationship (dashed arrow). The excerpt shows the data 
relationships when data containing a seismic cube acquired in 
Netherlands basin are processed in the four workflows. When 
ProvLake captures data values (like x, y coordinates of a seismic 
cube) extracted from datasets, it creates the corresponding 
relationships to the data references. Similarly, parameter values 
of a data transformation execution and data values that are output 
of the data transformation execution are related to the data 
transformation executions. These relationships of the data values 
that are not data references are not shown in the figure for the 
sake of its comprehension. We see the relationships between 
provenance data of different workflows and the relationships 
between data references in heterogeneous data stores in Figure 7. 
During an execution of a data transformation in Workflow 1, 
ProvLake registers that the data transformation used a seismic 
file (netherlands.sgy), extracted raw data from it, and generated 
a tuple in a relational table, which is stored in PostgreSQL. In 
addition, ProvLake creates relationships between PostgreSQL1 
and the data references, and stores the referred (solid arrow) 
relationship between the seismic file and the instance in the 
relational table. Similarly, as the other workflows execute, 
unique identifiers to every data value provide the relationships. 
Then, users send API calls to PolyProvQueryEngine.  

Q1 and Q2. To illustrate, let us suppose that the user inputs of 
query Q1 are the training and validation files generated by 
Workflow 4 in Figure 7. In this case, the user sends an API call to 
return all data references related to the generation of training and 
validation TensorFlow records files, from raw seismic files to the 
TensorFlow records files. To return the results, 
PolyProvQueryEngine executes a query that takes training and 
validation file references (represented as files stored in the 
Kubernetes volume) as source nodes and traverses the data graph 

 

 
Fig. 7. Excerpt of PLView contents generated during the multiworkflow execution. 
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backwards until the farthest data reference attribute values, which 
are seismic (netherlands.sgy) and horizon files (seabottom.xyz and 
top.xyz) and return the related references, via referred. Because the 
query is to answer all data references in the provenance data path, 
PolyProvQueryEngine uses SPARQL features (e.g., property 
paths) to traverse the graph. The result set returns all data 
references displayed in Figure 7. For Q2, the result set is similar, 
but it shows the data references in Figure 7 and the edges of the 
graph between references. 

Q3 and Q4. For Q3, the result shows the data references 
consumed and generated in all data transformations for all 
workflows and data values with other attribute semantics. The 
result of Q3 has the data needed by the user to compose a report 
on how the training and validation datasets for the deep learning 
classifier were generated from raw data, passing through all 
workflows. For Q4, the user specifies to show the values for 
data attributes used by the data transformation “SEG-Y data 
extraction” (i.e., parameters of the transformation) and the x, y 
coordinates generated by it (i.e., the extracted data from the 
SEG-Y data), and specifies to display the spatial resolution, 
which is a data attribute stored in MongoDB.  

Then, the result is the geographic coordinates (coordx, coordy), 
extracted from the seismic file netherlands.sgy and stored in 
PostgreSQL in Workflow 1, along with parameters that were used 
to execute that data transformation that extracted the data. The 
parameters of this data transformation provide information about 
how the data extraction was run. Spatial resolution of seismic slices 
is stored in the document reference (generated in Workflow 2) which 
is related (referred) to the seismic file.  

Overhead analysis. Most real workloads are composed of 
mixed tasks (short/long duration, few/many tasks and data 
values). This is the case of our real case study, where the 
characteristic of each task, hence the whole workload, can be 
mapped to the nearest workload tested in the previous 
experiments. For example, tasks in Workflow 1 last for up to 
few minutes and generate over 100 data values, depending on 
the size of the seismic file the task is processing.  Some tasks in 
Workflows 2 and 3 are short (taking few seconds), whereas 
most of them last from few minutes to hours, depending on the 
seismic and horizon files being processed by a task. Each task 
in these workflows generates less than 30 data values. Tasks in 
Workflow 4 last several minutes, depending on the size of the 
region of the seismic cube being processed. Each task generates 
about 50 data values to be captured. Thus, the majority of tasks 
of the workloads are mapped to long duration tasks with dozens 
to hundreds of data values. Few tasks are mapped to short 
duration tasks and very few last for less than one second. 
Considering space overhead, Workflow 1 produces about 5.3 
million provenance tuples in the PLView’s DBMS, Workflows 
2 and 3 together produce about 400,000 tuples, and Workflow 
4 produces about 100,000 tuples. In total, the DBMS storage 
used about 4.5 GB, whereas the workflows processed over 5 
TB of geological data files. Therefore, for the real workflows, 
ProvLake adds about 0.1% of time overhead to each workflow 
individually and generates about 5.8 M tuples and 4.5 GB in 
the PLView’s DBMS. 

In addition to the experiments presented, we also 
investigated other aspects of ProvLake, such as different work 
queue sizes observed that when sizes are set to one, PLView 
has high frequent data insertions, which increases overhead, but 
provides near real time data available for runtime queries. Due 
to space limitations, we provide examples and further 
implementation details in ProvLake’s website [13].  

C. Lessons Learned 
For runtime data capture, in all presented workloads, 

ProvLake has shown a predictable behavior and managed to 
maintain low data capture overhead. Particularly, when 
workloads are dominated by tasks that last for 10 seconds or 
more, ProvLake’s overhead is negligible, even for a large 
number of parallel tasks and captured data values. Since CSE 
workloads are typically dominated by long-lasting tasks that 
last more than a minute each [18], ProvLake is a good solution 
for this class of applications. When comparing with Komadu, 
we see that when the amount of parallel tasks and amount of 
data values per task are small, both systems perform similarly. 
Nevertheless, when the workload scale grows, as is the case 
with CSE workflows, the design principles adopted by 
ProvLake keep the overhead low. A major difference in both 
systems’ design is that providing a lightweight library is a 
design principle in ProvLake. Aligning this with asynchronous 
calls and work queues with parallel processing were critical 
design decisions that contributed to achieving the results. As a 
result, the design principles adopted by ProvLake allowed for 
having an overhead two orders of magnitude lower than 
Komadu in CSE workflows. 

For the runtime analytical queries, the methodology to 
design the data in the PLView promoted cooperation among the 
multidisciplinary teams so they could specify relationships, and 
which data should be captured at runtime, driving success to 
answer the multiworkflow queries. ProvLake’s ontology, with 
its adherence to W3C PROV [5], also contributed to the queries.  

V. RELATED WORK 
We organize the related work according to addressed issues: (i) 

runtime data analysis with low workflow overhead and (ii) capturing 
data relationships from multiworkflow data. We group related work 
as: runtime single-workflow data capture; multiworkflow 
orchestration systems; integration of heterogeneous provenance 
databases; and runtime multiworkflow provenance data capture. 

Runtime single-workflow data capture. Solutions in this 
group capture data of workflows at runtime and store as 
provenance data [4], [9]. For instance, DfAnalyzer [4] captures 
implicit relationships between data files, associating them to data 
extracted from files. This raw data extraction is convenient for 
analyzing related domain data directly from its provenance 
database. DfAnalyzer has low data capture overhead in large-
scale CSE workflows and influenced ProvLake’s design 
principles. However, solutions in this group are limited to data 
analysis of single isolated workflows. They do not address the 
issue that workflows run autonomously but implicitly sharing 
data. Captured data are specific to a single workflow, without 
explicit interconnections between workflows. Also, these 



solutions disregard that multiworkflow data analysis often 
requires data integration of data in multiple stores.  

Runtime multiworkflow provenance data capture. 
Komadu [8,12] is the only solution we found in this group. 
Different from the previous groups, Komadu aims at generating 
integrated provenance data as a multiworkflow runs. Users add 
data capturers to existing workflows to collect and relate data 
that flow in the workflows. Then, Komadu allows for forward 
and backward provenance queries, and joining provenance 
traces in the multiworkflow. It can integrate provenance of data 
generated in data lakes and by workflow orchestration systems, 
like Spark or WMSs. However, its data representation, hence 
data capturing capabilities, disregard that data are often 
processed in multiple stores, jeopardizing the multiworkflow 
analysis. Additionally, regarding the overhead, the authors 
report significant overhead added to the running workflows. In 
the experimental evaluation of this paper, we show that 
ProvLake outperforms Komadu in a wide variety of workloads. 

Multiworkflow orchestration systems. QoX [10] and PAW 
[11] aim at optimizing the execution of multiworkflows that 
process data in a variety of parallel execution engines (e.g., 
Hadoop MapReduce and Spark) and use multiple stores (e.g., 
HDFS, NoSQL, and relational DBMSs). SHIWA [24] provides 
efficient execution management in a multiworkflow environment, 
focusing on scalable mechanisms for orchestrating workflows in 
single Workflow Management Systems (WMSs). However, 
WMSs and parallel execution engines are often not adopted by 
CSE users, who frequently adopt libraries with their own parallel 
execution control, which conflicts with a workflow scheduling 
engine [14]. In addition, none of these solutions provide an 
integrated view over the multiworkflow. 

Integration of heterogeneous provenance databases. 
Solutions in this group [6,7] aim at interoperability in 
heterogeneous provenance databases. This is useful in 
multiworkflow environments where each workflow engine 
generates provenance data using its own specific format. 
However, the drawbacks of these solutions are that they also 
provide provenance data integration offline. 

To summarize, we did not find any solution that copes with 
the two issues addressed by our solution and combining 
existing approaches into one is hard. It requires new concepts 
for multiworkflow provenance data, a practical methodology 
for multiworkflow data design, and design principles for 
runtime multiworkflow data capture with low overhead. 

VI. CONCLUSION 
In this paper, we introduced ProvLake, a system that addresses 

the challenge of efficient multiworkflow provenance data capture 
with low overhead. By capturing strategic data values and their 
data relationships, ProvLake maintains the PLView to provide a 
logical integration of multiworkflow data at runtime. 

We proposed a specialization of a provenance data 
representation, which stem from relationships between data 
references stored in distributed and heterogeneous data stores 
and provenance graphs of different workflows. We followed 
W3C PROV to design an ontological data representation for the 
PLView. To enable the instantiation of the PLView to 

multiworkflows, we organized a set of phases in a methodology 
to specify which data values should be captured driven by the 
relevant queries. Finally, we proposed design principles that 
contributed to providing the runtime analysis, as evidenced in 
our real case study, while keeping the overhead as low as 0.1%. 
Compared with Komadu [8,24], the closest solution that meets 
our goals, our approach enabled runtime multiworkflow data 
analysis with much smaller overhead. 
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