M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, Scientific workflows: past, present and future, FGCS, vol.75, pp.216-227, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544818

M. Herschel, R. Diestelkämper, and H. Ben-lahmar, A survey on provenance: What for? What form? What from?, VLDB J, vol.26, issue.6, pp.881-906, 2017.

R. Souza, V. Silva, J. J. Camata, A. L. Coutinho, P. Valduriez et al., Keeping track of user steering actions in dynamic workflows, FGCS, vol.99, pp.624-643, 2019.
URL : https://hal.archives-ouvertes.fr/lirmm-02127456

V. Silva, D. Oliveira, P. Valduriez, and M. Mattoso, DfAnalyzer: runtime dataflow analysis of scientific applications using provenance, vol.11, pp.2082-2085, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01867887

P. Groth and L. Moreau, W3C PROV: an overview of the PROV family of documents, 2013.

A. Gaignard, K. Belhajjame, and H. Skaf-molli, SHARP: harmonizing and bridging cross-workflow provenance, The Semantic Web: ESWC 2017 Satellite Events, pp.219-234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01768385

P. Missier, Linking multiple workflow provenance traces for interoperable collaborative science, WORKS, 2010.

I. Suriarachchi and B. Plale, Crossing analytics systems: a case for integrated provenance in data lakes, IEEE eScience, pp.349-354, 2016.

J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, noWorkflow: a tool for collecting, analyzing, and managing provenance from Python scripts, vol.10, pp.1841-1844, 2017.

A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, Optimizing analytic data flows for multiple execution engines, SIGMOD, 2012.

K. Doka, Optimizing, planning and executing analytics workflows over multiple engines, EDBT/ICDT Workshops, 2016.

I. Suriarachchi, S. Withana, and B. Plale, Big provenance stream processing for data intensive computations, IEEE eScience, 2018.

, ProvLake website, 2019.

V. Silva, R. Souza, J. Camata, A. L. Coutinho, P. Valduriez et al., Capturing provenance for runtime data analysis in computational science and engineering applications, pp.183-187, 2018.

A. C. Bauer, In situ methods, infrastructures, and applications on high performance computing platforms, Computer Graphics Forum, vol.35, issue.3, pp.577-597, 2016.

L. Bavoil, VisTrails: enabling interactive multiple-view visualizations, IEEE Visualization, pp.135-142, 2005.

, Komadu website

I. Raicu, I. T. Foster, and Y. Zhao, Many-Task Computing for Grids and Supercomputers, MTAGS, 2008.

T. Randen, Three-dimensional texture attributes for seismic data analysis, SEG Technical Program Expanded Abstracts, 2000.

D. S. Chevitarese, D. Szwarcman, E. V. Brazil, and B. Zadrozny, Efficient classification of seismic textures, IJCNN, 2018.

Y. Gil, Intelligent systems for geosciences: an essential research agenda, CACM, vol.62, issue.1, pp.76-84, 2018.

K. Barry, D. Cavers, and C. Kneale, Recommended standards for digital tape formats, Geophysics, vol.40, issue.2, pp.344-352, 1975.

, Kubernetes Volumes, 2019.

D. Rogers, Bundle and Pool Architecture for Multi-Language, Robust, Scalable Workflow Executions, J. Grid Comp, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00832221