
HAL Id: lirmm-02266483
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02266483v1

Submitted on 8 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAVIME: A Database Management System for
Simulation Data Analysis and Visualization

Hermano Lustosa, Fabio Porto, Patrick Valduriez

To cite this version:
Hermano Lustosa, Fabio Porto, Patrick Valduriez. SAVIME: A Database Management System for
Simulation Data Analysis and Visualization. SBBD 2019 - 34ª edição do Simpósio Brasileiro de Banco
de Dados, SBC, Oct 2019, Fortaleza, Brazil. pp.1-12, �10.5753/sbbd.2019.8810�. �lirmm-02266483�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02266483v1
https://hal.archives-ouvertes.fr


SAVIME: A Database Management System for Simulation
Data Analysis and Visualization

Hermano Lustosa1, Fabio Porto1, Patrick Valduriez2

1National Laboratory for Scientific Computing (LNCC)
Petrópolis – RJ – Brazil

2Inria and LIRMM
Montpellier – France

{hermano,fporto}@lncc.br, patrick.valduriez@inria.fr

Abstract. Limitations in current DBMSs prevent their wide adoption in scientific
applications. In order to make scientific applications benefit from DBMS support,
enabling declarative data analysis and visualization over scientific data, we
present an in-memory array DBMS system called SAVIME. In this work we de-
scribe the system SAVIME, along with its data model. Our preliminary evaluation
show how SAVIME, by using a simple storage definition language (SDL) can
outperform the state-of-the-art array database system, SciDB, during the process
of data ingestion. We also show that is possible to use SAVIME as a storage
alternative for a numerical solver without affecting its scalability.

1. Introduction
The increasing computational power of HPC machines allows for performing complex
numerical simulations. These simulations produce huge datasets, which are analyzed
and visualized to enable researchers to gain insights about the phenomena being stud-
ied. Traditionally, simulation code stores its raw data in the file system, and another
application reads it from disk, performs analysis and creates the visualization files. How-
ever, due to the I/O gap in HPC environments, doing so can be very inefficient for large
scale simulations [Ahrens 2015]. Two popular approaches, in-situ and in-transit analysis
[Oldfield et al. 2014], have been proposed to address this problem by favoring intense
memory usage instead of relying on disk storage.

DBMSs are not commonly adopted in any of these approaches. In-situ and in-
transist analysis relies on libraries, and the post-processing approach consists of storing
data in scientific data formats such as HDF[Group 2017] and NetCDF[Unidata 2017].
DBMSs are considered inadequate for scientific data management due to many factors.
The first one is the impedance mismatch problem [Blanas et al. 2014, Gosink et al. 2006],
i.e., the incompatibilities between the representation formats of the source data and the
DBMS. This impedance mismatch yields costly conversions between formats, which adds
prohibitive overhead during data ingestion.

Also, data usage patterns for scientific applications are very different from those
common in commercial applications. The workload is mainly analytical and not necessarily
all data needs to be persisted. It is common that data is analyzed and summarized, having
its volume being drastically reduced by either storing only the summarized version or by
simply discarding parts which are not interesting. Some other key points also do not favor



DBMS usage. Data is heterogeneous, comprising different formats and sources, making
it hard to use a single database solution for all data. The analysis is also complex and, in
many cases, cannot be easily done with a declarative language like SQL.

However, for the vast variety of queries that can be expressed in a declarative
language, a DBMS solution could offer a convenient and efficient way to perform analysis,
given that the underlying data model is flexible enough to accomodate such data, and that
the process of data ingestion is seamless, not incuring in costly data conversions.

Therefore, given the current lack of a database solution that could facilitate
the simulation data analysis and visualization, we propose an array based data model
[Lustosa et al. 2017] named TARS, to cope with simulation data and to allow a more effi-
cient representation, along with a prototype system that implements this model, currently
named SAVIME. SAVIME supports a DDL and a SDL that enable fast data ingestion, and
a DML that allows for declarative analysis and visualization of simulation data.

In this paper, we present SAVIME and the TARS data model, along with an
evaluation in which we compare SAVIME with SciDB, the state-of-the-art array DBMS.
This document is organized as follows. In Section 2 we discuss the TARS data model
implemented in SAVIME. In Section 3 we present SAVIME, its execution model and
its DDL, SDL and DML. In Section 4 we show the results of our evaluation comparing
SAVIME and SciDB and embedding SAVIME with a real life application. In section 5, we
discuss the related work and finally in Section 6 we conclude.

2. Typed Array Data Model
Scientific data is usually represented as multidimensional arrays, which are common as
the result of scientific experiments, measurements and simulations. In short, an array is
a regular structure formed by a set of dimensions. A set of indexes, one per dimension,
identifies a cell that contains values for array attributes.

If carefully designed, arrays offer advantages when compared to tables. Cells in an
array are ordered, unlike tuples in a relation. Thus, an array DBMS can quickly lookup
cells by taking advantage of this ordering. Using arrays instead of tables can also save
storage space, since array indexes do not need to be stored and can be inferred by the
position of the cell. Furthermore, arrays can be split into subarrays, called tiles or chunks.
These subarrays are used as processing and storage units, and help answering queries
efficiently. Thus, if your data is array-ike, using an array database is the way to go.

However, current array data model implementations, e.g., SciDB and RasDaMan,
have limitations, preventing a more wide acceptance in scientific applications. In SciDB
[Paradigm4 2017] for instance, due to some representation constraints, it might be neces-
sary to preload multidimensional data into an unidimensional array and then rearrange it
during data loading. RasDaMan requires either the creation of a script or the generation of
compatible file formats for data ingestion. The result is an inefficient loading process in
both cases.

Scientists do not necessarily want to persist all data for a long period of time,
instead they want to analyze huge dataset as switfly as possible. Therefore, adopting a
DBMS which imposes high overhead for data ingestion does not make sense, even an array
DBMS that offers a data representation adequate for scientific data, because the possible



convenience of using a declarative query language does not compensate the trouble to
ingest data into the system. In this section we present a briefly overview of the TARS
model as presented in [Lustosa et al. 2017].

2.1. Model Overview
Given the lack of flexibility in current array DBMSs, we propose the TARS data model
to cope with the aforementioned issues. A TAR Schema (TARS) contains a set of Typed
ARrays (TARs). A TAR has a set of dimensions and attributes. A TAR cell is a tuple of
attributes accessed via a set of indexes. These indexes define the cell location within the
TAR. A TAR has a type, formed by a set of roles. A role in a type defines a special purpose
data element with specific semantics.

In TARS (Figure 1), we define mapping functions as a way to provide support for
sparse arrays, non-integer dimensions and heterogeneous memory layouts. With TARS, it
is possible to combine array data from different sources, different storage layouts, and even
with different deegres of sparsity by associating different mapping functions to different
subarrays, or as we call them, subTARs.

Figure 1. Typed Array Schema Elements

A subTAR covers a n-dimensional slice of a TAR. Every subTAR is defined by the
TAR region it represents and two mapping functions: position mapping function and data
mapping function. The position mapping function reflects the actual data layout, since it
defines where every TAR cell within a given subTAR ended in linear storage. Therefore, the
position mapping function should implement the multidimensional linearization technique
used for the data. The data mapping functions translate a linear address into data values.
In a simple scenario, this function does basically a lookup into a linear array that stores
the data. In a more complex scenario, it could compute a derived value from the actual
subTAR data.

2.2. Physical Specification
In this section, we describe how the TARS data model is implemented in SAVIME. TARS
structures are created in SAVIME with the use of the supported SDL and DDL. Users can



define TARs, datasets, and types. Once a TAR is defined and a series of datasets are loaded
into the system, it is possible to specify a subTAR by attaching datasets to it. A dataset
is a collection of data values of the same type, like a column in a column-store DBMS
(SAVIME uses vertical partitioning). A dataset can contain data for a TAR attribute within
a TAR region specified by a subTAR.

TAR dimensions indexes form a domain of values that are represented in SAVIME
in two main forms. It can be an implicitly defined range of equally spaced values, in which
case, all the user must specify is the lower and upper bounds, and the spacing between
two adjacent values. It is called implicit because these indexes do not need to be explicitly
stored. For instance, the domain Di = (0.0, , 2.0 , 4.0 , 6.0 , 8.0 , 10.0) is defined by the
lower bound 0.0, the upper bound 10.0 and all values are equally spaced in 2.0 units.

Dimensions whose indexes do not conform with these constraints have an explicit
definition. In this case, the user provides a dataset specifying the dimension indexes. For
instance, consider the following domain De = (1.2, , 2.3 , 4.7 , 7.9 , 13.2). It has a series
of values that are not well-behaved and equally spaced, and thus, can not be represented
implicitly.

The data representation within the subTAR requires the combination between the
dimension domain and the dimension specifications. All subTARs in a TAR have a list of
dimension specifications, one for each dimension in the TAR. These dimension specifica-
tions define the TAR region the subTAR encompasses, but they also are a fundamental part
in the implementation of the mapping functions. These functions are defined conceptu-
ally in the model, but are implemented considering six possible configurations between
dimension specifications (ORDERED, PARTIAL and TOTAL) types and dimension types
(IMPLICIT and EXPLICIT).

An ORDERED dimension specification indicates that the indexes for the cells in
that dimension are dense and sorted in some fashion. A PARTIAL dimension implementa-
tion, indicates that there are some holes in the datasets, meaning that some cells at given
indexes are not present. Finally the TOTAL representation indicates that data is fully sparse
and that all indexes must be given for every cell, in other words, it means that we have a
degenerated array that is basically tabular data.

3. The system SAVIME
SAVIME has a component-based architecture common to other DBMSs, containing mod-
ules such as an optimizer, a parser and an query processing engine, along with auxiliary
modules to manage connections, metadata and storage. A SAVIME client communicates
with the SAVIME server by using a simple protocol that allows both ends to exchange
messages, queries and datasets. All modules are currently implemented as a series of
C++ classes, each one of them with an abstract class interface and an underlying concrete
implementation.

3.1. Languages DDL, SDL and DML
SAVIME’s DDL supports operators to define TARS and Datasets, for instance, the com-
mands:

CREATE_TAR("FooTAR", "*", "Implicit, I, long, 1, 1000, 1
| Implicit, J, long, 1, 1000 , 1",



"attrib, double");
CREATE_DATASET("FooBarDS1:double", "ds1_data_source");
CREATE_DATASET("FooBarDS2:double", "ds2_data_source");
LOAD_SUBTAR("FooTAR", "Ordered, I, 1, 100 | Ordered, J, 1, 100",

"attrib, FooBarDS1");
LOAD_SUBTAR("FooTAR", "Ordered, J, 101, 200 | Ordered, I, 1, 100",

"attrib, FooBarDS2");

Initially we can issue a CREATE TAR command to create a TAR name FooTAR. It
has 2 dimension (I and J) whose indexes are long integers. These are implicit dimensions,
whose domains are integers equally spaced by 1 unit from 1 to 1000. This TAR also has a
single attribute named attrib whose type is a double precision real number.

After that we create 2 datasets named FooBarDS1 and FooBarDS2, they are double
typed collections of values in a data source (usually a file or memory based file). Finally we
issue 2 LOAD SUBTAR commands to create 2 new subtars for the TAR FooTAR, the first
one ecompasses the region that contains the cell s whose indexes are in [1, 100]×[1, 100] for
dimension I and J respectively, in both case we have an ordered representation indicating
that data is dense and ordered first by the I index and second by J index. The second
subtar, however, encompasses the cells whose indexes are in [1, 100] × [101, 200] but
instead ordered first by J index and second by the I index. It is an example of how the SDL
works, since users can express and consolidate data sources with different ordering layouts
into a single TAR. The final part of the command indicates that datasets FooBarDS1 and
FooBarDS2 are attached to the ”attrib” attribute, meaning that the data for ”attrib” in the
cells whithin each subTAR region can be found in these datasets.

SAVIME also supports a functional DML with operators similar to the ones im-
plemented in SciDB, for operations such as filtering data based on predicates, calculating
derived values, joins and aggregations. Here is an example of a query in SAVIME.

AGGREGATE(
WHERE(

DERIVE(FooTAR, attrib2, attrib*attrib),
attrib2 >= 2.0 and attrib2 <= 10.0
),

sum, attrib2, sum_attrib2, I
);

This DML query consists of three nested operators. Initially, a new attribute called
attrib2 is created by the operator DERIVE and its value is defined as the square of the
attribute attrib. After that, the WHERE operator is called, it filters data according to the
predicate, in this case, it returns a TAR whose cells have the value for attrib2 set between 2
and 10. Finally, we use the AGGREGATE operator to group data by dimension I indexes
and sum the value for attrib2 creating the sum attrib2, the resulting TAR will present only
one dimension (I) and a single attribute sum attrib2 whose values are the result of the sum
of the attrib2 accross dimension J.

3.2. Query Processing

As presented in the previous section, a SAVIME query contains a series of nested operators.
Most of them expect one or more input TARs, and originate a newly created output TAR.



Unless a special operator is called to materialize the query resulting TAR, it is generated as
a stream of subTARs, sent to the client and then discarded. SAVIME operates TARs as a
subTARs stream pipelined across operators. SubTARs are processed serially or in parallel
with OpenMP constructs.

During query processing, when a subTAR for a TAR holding intermediated results
is generated and passed on to the next operator, it is maintained in a temporary subTARs
cache. These subTARs contain their own group of datasets that could require a lot of
storage space or memory. Therefore, once a subTAR is no longer required by any operator,
it must be removed from memory. An operator implementation is agnostic regarding its
previous and posterior operations in the pipeline, and does not know when to free or not a
subTAR. All the operators implementation needs to establish is when it will not require a
given subTAR any longer. When this happens, the operator notifies the execution engine
that it is done with a given subTAR and it is then discarded.

However, since the same subTAR can potentially be input into more than one
operator during a query, freeing it upfront is not a good idea, because it might be required
again. In this case, SAVIME would have to recreate it. To solve this problem, every
subTAR has an associated counter initially set to the number of operators that have its TAR
as their input. When an operator notifies the engine that it no longer needs that specific
subTAR, the respective counter is decreased. Once the counter reaches zero, all operators
possibly interested in the subTAR are done, and now it is safe to free the subTAR. This
approach always frees the used memory as soon as possible and never requires a subTAR
to be created twice. However, some operators might require many subTARs to be kept in
memory before freeing them. In an environment with limited memory, it would not be
feasible to cope with very large TARs in this case. A solution then, would be the adoption
of a more economical approach, trading off space with time by freeing and regenerating
the subTARs whenever memory is running low.

4. Experimental Evaluation
We ran a series of experiments in order to validate SAVIME as a feasible alternative
to simulation data management. We compare SAVIME with SciDB and evaluate how
SAVIME affects the performance of actual simulation code.

4.1. SAVIME vs. SciDB
In this section, we compare SAVIME, SciDB (version 16.9) and a third approach based
on the usage of NetCDF files (version 4.0), used as a baseline. All scripts, applica-
tions and queries used in our evaluation are available at github.com/hllustosa/
savime-testing.

We use two datasets, a dense and a sparse one, based on data from the HPC4e
BSC seismic benchmark [Center 2016] in our experiments. The dense dataset contains
500 trials (one dataset for each) for a 3D regular mesh with dimensions 201x501x501
containing a velocity field. In total, we have over 30 billion array cells and more than a
120 GB of data. All data is held in a single 4D structure (TAR in SAVIME, array in SciDB
and in a single NetCDF file) containing the X, Y, and Z dimensions, and an extra trial
dimension to represent all 500 trials. Both structures have the same tiling configuration,
i.e., the same number of chunks/subTARs (500 of them, one for each trial) with the same
extents.



The sparse dataset is also a 4D structure with 500 simulation trials, but only a
subset of the cells are present (around 24% of the dense dataset). It comprises almost
8 billion array cells and over 30 GB of data. We used a sparse 4D array/TAR in SciDB
and SAVIME, and a 2D dense array in NetCDF. NetCDF lacks the ability to natively
represent sparse data, thus we indexed the x, y and z values and represented them as a
single dimension and stored coordinate values as variables.

The computational resource used is the fatnode from the cluster Petrus at DEXLab.
This fatnode has 6 Intel(R) Xeon(R) CPU E5-2690 processors amounting to 48 cores and
over 700 GB of RAM. Data is kept in a shared-memory file system to simulate an in-transit
data analysis, in which data is not kept on disk (for both SAVIME and SciDB). Initially,
we evaluate the loading time of 500 tiles/chunks in all three approaches, considering that
data is being transferred and continually appended to a single array/TAR/file as it is being
generated by a solver.

As we can see in Figure 2 on the left graph, the ingestion time taken by SciDB
is almost 20 times longer than the time taken by SAVIME, due to costly rearrangements
needed on data to make it conform with the underlying storage configuration. Besides, there
is an extra overhead during the lightweight data compression done by SciDB, which makes
the dataset roughly 50% smaller when stored but increased loading time prohibitively. In
contrast, SAVIME does not alter or index the data during the process of data ingestion,
therefore the loading process is computationally much cheaper.

Figure 2. Ingestion and query execution time

We evaluate the performance considering ordinary and exact window queries.
Ordinary Window queries consist of retrieving a subset of the array defined by a range
in all its dimensions. The performance for this type of queries depends on how data is
chunked and laid out. High selectivity queries, which need to retrieve only a very small
portion of the data tends to be faster than full scans. Therefore, we compared low and
high selectivity queries, filtering from a single to all 500 tiles. We also considered the
performance of exact window queries, which is the easiest type of Window Query. They
consist of retrieving data for a single tile or chunk, meaning the system has close to zero
work filtering out the result.

We implement these queries as specific operators in SAVIME and SciDB, and with
the help with a custom OpenMP application using the NetCDF library. The experimental
results are shown in Figure 2 on the right graph. The average time of 30 runs are presented.



We considered window queries with low selectivity (over 70 % of all cells in a tile) and
high selectivity (around 20 % of all cells in a tile), and intersecting with only 1, 100 or
even the total 500 tiles.

It is noticeable that SAVIME either outperforms SciDB or is as efficient as it in
all scenarios. The most important observation is that, even without any previous data
preprocessing, SAVIME is able to simply take advantage of the existing data structure
to answer the queries efficiently, which validates the model as a feasible alternative to
existing implementations. The results show that, for any storage alternative in both dense
and sparse formats, the subsetting of a single tile is very efficient. The differences shown
for the exact window query and for low and high selectivity window queries that touch a
single tile are very small. SciDB takes a few seconds in most cases, while SAVIME takes
in average 1 second. NetCDF is the most efficient in this scenario, retrieving desired data
in less than a second.

However, for queries touching 100 or 500 chunks, we can see the differences
between querying dense and the sparse arrays. The dense dataset is queried more efficiently,
since it is possible to determine the exact position of every cell and read only the data of
interest. It is not possible for sparse data, since one is not able to infer cell positions within
the tiles. In this case, every single cell within all tiles that intersect with the range query
must be checked.

In dense arrays, we can observe a reduced time for retrieving data in high selectivity
queries in comparison with low selectivity queries. The execution time of window queries
should depend only on the amount of data of interest, since cells can be accessed directly
and thus, no extra cells need to be checked. The execution times considering 100 or 500
tiles in SAVIME and NetCDF are in accordance with this premise. However, SciDB shows
poorer performance, being up to 8 times slower. It is very likely that SciDB needs to
process cells outside of the window of interest depending on the compression technique
and the storage layout adopted. SciDB seems to be more sensible to tiling granularity,
requiring fine-grained tiles that match the window query to have a performance similar to
the NetCDF approach.

There is not much to be done for querying sparse arrays except for going through
every cell in the tiles intersecting the window specified by the query. The query time for
sparse data in all alternatives show very similar performance. The main difference is that
for achieving this result with NetCDF, an OpenMP application needed to be written, while
the same result could be obtained with a one-line query in SAVIME and SciDB.

Our conclusion is that the regular chunking scheme imposed by SciDB not only
slows down the ingestion process significanly as it has not real impact in improving
performance for simples operations, since SAVIME using a more flexible data model can
solve similtar queries presenting a compatible performance.

4.2. Integration with Numerical Solver
In this section, we evaluate the amount of overhead imposed to the simulation code when
integrating with SAVIME. We use the simulation tools based on the MHM numerical
method [Gomes et al. 2017] as a representative numerical simulation application. We
compare three approaches. In the first approach, SAVIME is used IN-TRANSIT, in a
single node (fatnode) while the simulation code runs in a different set of nodes, and thus



data needs to be transferred. In the second approach, SAVIME is used IN-SITU, with
individual SAVIME instances running on each node, the same used by the simulation
code. In this scenario, the data does not need to be transferred, since it is maintained
in a local SAVIME instance that shares the same computational resources used by the
simulation code. In the third approach SAVIME is not used, but instead, the data is stored
in ENSIGHT files (the standard file format used by MHM), and analysis are performed
by an ad-hoc Message Passing Interface application in Python. This last scenario serves
as a baseline implementation, thus we call it the baseline approach. The computational
resource used is the Petrus cluster at DEXLab, with 8 nodes, each with 96 GB of RAM
and 2 Intel(R) Xeon(R) CPU E5-2690 processors.

Preliminarily, we start the evaluation by measuring the overhead of loading data in
a remote node running SAVIME. In Figure 3 we can see the time of running the simulation
and discarding the data, which is the time to solely carry out the computations without any
I/O whatsoever and the time to transfer and load data into SAVIME. We vary the size of
the MHM meshes, which impact on the level of detail of the simulation. The larger the
mesh size is, the more realistic and complex the simulation is, and also, more resources
(time and memory) are consumed.

Figure 3. Mesh size x Simulation Execution Time (left) and Simulation and Analy-
sis Scalability (right)

Results show that for very small meshes, which are computationally cheap, the time
to load data is more significant, and thus there is some overhead (around 40%) in storing
data in SAVIME. However, as meshes get larger, the time taken to compute them increases
in a manner that the transfer and loading time is negligible in comparison to the time
taken to compute the solution. The transfer and loading time is masked by the dominant
process of solving the systems of equation. Therefore, this shows that, for large enough
problems, it is possible to load data into SAVIME without compromising the simulation
code performance. However, under an impedance mismatch scenario, as observed with
SciDB, the loading time would be significant, impacting on the simulation cost.

To evaluate the integration between SAVIME and a simulation tool based on the
MHM solver, we use a 2D transport problem over a mesh with 1.9 million points. We run
the simulation up to the 100th time step, and store either in SAVIME (approaches 1 and 2)
or in an ENSIGHT file (approach 3), data from 50% of all the computed time steps. In
both cases, data is always kept in a memory based file system, and never stored on disk.



Once data has been generated, it is analyzed with a PARAVIEW pipeline that carries out
the computation of the gradient of the displacement field of the solution. This part is either
done by a special operator in SAVIME, or by an AD-HOC MPI Python application using
the Catalyst library (baseline), depending on the approach being run. Additionally, we
measure the cost of running the simulation without any further analysis, to highlight the
simulation only cost.

Figure 3 shows the results when running the three approaches, varying the amount
of MPI processes spawned or the number of cores used by the MHM simulation code. In
this experiment, the simulation code runs and produces its results and then, the simulation
output data is read and processed in the analysis step. The plot shows, for each evaluated
number of MPI processes, the simulation time and the analysis time as stacked bars. The
graph shows that the cost of the analysis process is significantly smaller than the cost for
computing the simulation. Moreover, as the Simulation Only run shows, the overhead
introduced by storing the data in SAVIME or as an ENSIGHT file is negligible, which
confirms the claim that SAVIME can be introduced into the simulation process without
incurring in extra overhead. From the point of view of the effect of SAVIME on simulation
scalability, the storage of data in SAVIME does not impair the capability of the simulation
code to scale up to 16 cores.

The IN-TRANSIT approach differs from the other two approaches since it uses a
separate computational resource to execute the analysis step. As we see in Figure 3, even
when we increase the number of cores the simulation code uses, the analysis time does
not change, because the analysis step is done in the fatnode, and always uses the same
number of cores (16) independently from the actual number of cores used by the simulation
code. The IN-TRANSIT approach illustrates a scenario in which all data is sent to a single
computational node and kept in a single SAVIME instance. This approach offers some
extra overhead and contention, since all data is sent to a single SAVIME instance, but this
enables posterior analysis that transverse the entire dataset without requiring further data
transfers.

The SAVIME IN-SITU approach uses the same computational resources used
by the simulation code. When we increase the number of cores used by the simulation
code, we also increase the numbers of cores used by SAVIME for analysis. The same is
true for the baseline approach, meaning that the AD-HOC application also uses the same
number of cores the simulation code uses. Even though the SAVIME IN-SITU approach
is slightly slower than the baseline approach, we see that both are able to scale similarly.
The difference observed in performance between using SAVIME and coding a specialized
application becomes less significant as we increase the number of cores being used during
the analysis phase. Nevertheless, the small performance loss in this case might be justified
by the convenience of using a query language to express analysis instead of the extensive
and error prone process of coding other applications to execute analysis.

5. Related Work

The definition of the first array data models and query languages dates back
to the works of Baumann [Baumann 1994] and Marathe [Marathe and Salem 1997]
[Marathe and Salem 1999]. Since that time, a myriad of systems emerged in order to allow
for the storage and analysis of data over multidimensional arrays. Many array DBMSs



have been proposed, the most prominent ones are RasDaMan [Baumann et al. 1997] and,
more rencently, SciDB [Cudre-Mauroux et al. 2009].

Due to the fact that ingesting data into these systems is not an easy task, other
arrays systems, such as ArrayBridge [Xing et al. 2017] and ChronoDB [Zalipynis 2018]
have been developed. ArrayBridge works over SciDB, and gives it the ability to work
directly with HDF5 files. ChronoDB works over many file formats in the context of raster
geospatial datasets. SAVIME has the similar goal to ease data ingestion, however it does
so by enabling seamless data ingestion considering many different array data source by
supporting a SDL and a flexible data model, which makes it different from ArrayBridge.
SAVIME also offers its own DML, while ChronoDB makes use of existing applications to
process data. SAVIME is also different from TileDB [Papadopoulos et al. 2016], which is
not exactly a DBMS with a declarative query language, but a library that deals with array
data. In addition, SAVIME is a specialized in-memory solution, while the rest of these
systems are usually more disk oriented solutions.

6. Conclusion

The adoption of scientific file formats and I/O libraries rather than DBMSs for scientific
data analysis is due to a series of problem concerning data representation and data ingestion
in current solutions. To mitigate these problems, and to also offer the benefits of declarative
array processing in memory, we propose a system called SAVIME. We showed how
SAVIME, by implementing the TARS data model, does not impose the huge overhead
present in current database solutions for data ingestion, while also being able to take
advantage of preexisting data layouts to answer queries efficiently.

We compared SAVIME with SciDB and a baseline approach using the NetCDF
platform. The experimental results show that SciDB suffers from the aforementioned
problems, not being an ideal alternative and that SAVIME enables faster data ingestion,
while maintaining similar performance during window queries execution. We showed
that SAVIME can also match the performance of NetCDF for loading and querying dense
arrays while providing the benefits of a query language processing layer.

We also assess SAVIME’s performance when integrating with simulation code. In
this evaluation, we showed that storing data in SAVIME does not impair the scalability of
the solver. In addition, results also show that it is possible to retrieve SAVIME data and
generate viz files efficiently by using the special purpose visualization operator.

SAVIME is available at github.com/hllustosa/Savime. Future work might focus on
the improvement and optimization of current operators, the development of new special
purpose TAR operators.

References

Ahrens, J. (2015). Increasing scientific data insights about exascale class simulations under
power and storage constraints. IEEE Computer Graphics and Applications, 35(2):8–11.

Baumann, P. (1994). Management of multidimensional discrete data. The VLDB Journal,
3(4):401–444.



Baumann, P., Furtado, P., Ritsch, R., and Widmann, N. (1997). The rasdaman approach to
multidimensional database management. In Proceedings of the 1997 ACM Symposium
on Applied Computing, SAC ’97, pages 166–173, New York, NY, USA. ACM.

Blanas, S., Wu, K., Byna, S., Dong, B., and Shoshani, A. (2014). Parallel data analysis
directly on scientific file formats. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’14, pages 385–396, New York,
NY, USA. ACM.

Center, B. S. (2016). New hpc4e seismic test suite to increase the pace of development of
new modelling and imaging technologies. [Online; accessed 01-feb-2018].

Cudre-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Simakov, R., Soroush, E., Velikhov,
P., Wang, D. L., Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier, D., Madden,
S., Patel, J., Stonebraker, M., and Zdonik, S. (2009). A demonstration of scidb: A
science-oriented dbms. Proc. VLDB Endow., 2(2):1534–1537.

Gomes, A. T. A., Pereira, W. S., Valentin, F., and Paredes, D. (2017). On the im-
plementation of a scalable simulator for multiscale hybrid-mixed methods. CoRR,
abs/1703.10435.

Gosink, L., Shalf, J., Stockinger, K., Wu, K., and Bethel, W. (2006). Hdf5-fastquery:
Accelerating complex queries on hdf datasets using fast bitmap indices. SSDBM ’06,
pages 149–158, Washington, DC, USA. IEEE Computer Society.

Group, T. H. (2017). Hdf5 - the hdf group. [Online; accessed 01-feb-2018].

Lustosa, H., Lemus, N., Porto, F., and Valduriez, P. (2017). TARS: An Array Model with
Rich Semantics for Multidimensional Data. In ER FORUM 2017: Conceptual Modeling
: Research In Progress, Valencia, Spain.

Marathe, A. P. and Salem, K. (1997). A language for manipulating arrays. In Proceedings
of the 23rd International Conference on Very Large Data Bases, VLDB ’97, pages
46–55, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Marathe, A. P. and Salem, K. (1999). Query processing techniques for arrays. In ACM
SIGMOD Record, volume 28, pages 323–334. ACM.

Oldfield, R. A., Moreland, K., Fabian, N., and Rogers, D. (2014). Evaluation of methods
to integrate analysis into a large-scale shock shock physics code. In Proceedings of the
28th ACM International Conference on Supercomputing, ICS ’14, pages 83–92, New
York, NY, USA. ACM.

Papadopoulos, S., Datta, K., Madden, S., and Mattson, T. (2016). The tiledb array data
storage manager. Proc. VLDB Endow., 10(4):349–360.

Paradigm4 (2017). Scidb. [Online; accessed 01-feb-2018].

Unidata (2017). netcdf. [Online; accessed 01-feb-2018].

Xing, H., Floratos, S., Blanas, S., Byna, S., Prabhat, Wu, K., and Brown, P. (2017). Array-
Bridge: Interweaving declarative array processing with high-performance computing.
arXiv e-prints, page arXiv:1702.08327.

Zalipynis, R. A. R. (2018). Chronosdb: Distributed, file based, geospatial array dbms.
Proc. VLDB Endow., 11(10):1247–1261.


