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Proof-theoretic aspects of hybrid type-logical

grammars

Richard Moot1 and Symon Jory Stevens-Guille2

1 LIRMM, Université de Montpellier, CNRS
2 Ohio State University

Abstract. This paper explores proof-theoretic aspects of hybrid type-
logical grammars, a logic combining Lambek grammars with lambda
grammars. We prove some basic properties of the calculus, such as nor-
malisation and the subformula property and also present a proof net
calculus for hybrid type-logical grammars. In addition to clarifying the
logical foundations of hybrid type-logical grammars, the current study
opens the way to variants and extensions of the original system, includ-
ing but not limited to a non-associative version and a multimodal version
incorporating structural rules and unary modes.

Keywords: Lambek calculus · lambda grammar · type-logical grammar
· proof theory · proof nets

1 Introduction

Hybrid type-logical grammars (HTLG), a logic introduced by kl12gap, combines
the standard Lambek grammar implications with the lambda grammar opera-
tions. As a consequence, the lambda calculus term constructors of abstraction
and application live side-by-side with the Lambek calculus operation of concate-
nation and its residuals. The logic is motivated by empirical limitations of its
subsystems. It provides a simple account of many phenomena on the syntax-
semantics interface, for which neither of its subsystems has equally simple solu-
tions kl12gap,kl13dgap,kl13coord.

For instance, Lambek calculi struggle to account for medial extraction, as
is required for the wide-scope reading of the universal in (1). Such cases are
straightforwardly accounted for by lambda grammars. For the same reasons —
namely the absence of directionality — lambda grammars cannot easily distin-
guish (2) from (3) worth14coord, whereas the distinction is trivial to implement
in Lambek calculi.

1. Someone delivers every letter to its destination.
2. *Ahmed loves and dislikes dessert the pizza
3. Ahmed loves and Johani dislikes the pizza

In their paper on determiner gapping in hybrid type-logical grammar, [foot-
note 7]kl13dgap ‘acknowledge that there remains an important theoretical issue:



the formal properties of our hybrid implicational logic are currently unknown’.
In this paper, we prove basic properties of the natural deduction calculus of
kl12gap (normalisation, decidability and the subformula property) and present
a proof net calculus. This puts HTLG on a firm theoretical foundation, but
also provides a framework for extensions of the logic. In addition, the proof net
calculus provides a proof search method which is both flexible and transparent.

2 Natural deduction

HTLG syntactic terms are tuples of which the first element is a linear lambda
term and the second is a type-logical formula drawn from the union of impli-
cational linear logic and Lambek formulas. Given a set of atomic formulas A
(we will assume A contains at least the atomic formula n for noun, np for noun
phrase, s for sentence, and pp for prepositional phrase), the formula language of
HTLG is the following.

– TLogic ::= TLambek | TLogic⊸ TLogic

– TLambek ::= A | TLambek/TLambek | TLambek\TLambek

Prosodic types are simple types with a unique atomic type s (for structure
or, in an associative context, string). Logical formulas are translated to prosodic
types as follows.

Pros(TLambek) = s

Pros(TLogic⊸ TLogic) = Pros(TLogic) → Pros(TLogic)

The lambda terms of HTLG, called prosodic terms, are constructed as follows.

– Atoms: +s→s→s, ǫs, a countably infinite number of variables x0, x1, . . . for
each type α; by convention we use p, q, . . . for variables of type s.

– Construction rules:
• if Mα→β and Nα, then (MN)β

• if xα and Mβ , then (λx.M)α→β

In what follows, we restrict the prosodic terms to linear lambda terms, requiring
each λ binder to bind exactly one occurrence of its variable x. This restriction
is standard in HTLG.

The natural deduction rules for HTLG are given by Figure 1. The lexicon
assigns to the word p a formula A and a linear lambda term M of type Pros(A).
Since this term is linear, it contains exactly one free occurrence of p. When
no confusion is possible (for example when a word appears several times in a
sentence), we use the word itself instead of the unique variable p (the formula w
has a purely technical role and cannot appear on the right hand side of the lexicon
or axiom rule). An example would be λP.(P everyone) : (np ⊸ s) ⊸ s. The
elimination rules have the standard condition that no free variables are shared
between Γ and ∆, which ensures Γ,∆ is a valid context. The introduction rules
have the standard side-condition that Γ contains at least one formula (ensuring



Lex
ps : w ⊢ M : A

Ax
xα : A ⊢ xα : A

Γ ⊢ Nα : A ∆ ⊢ Mα→β : A⊸ B
⊸ E

Γ,∆ ⊢ (MN)β : B

Γ, xα : A ⊢ Mβ : B
⊸ I

Γ ⊢ (λx.M)α→β : A⊸ B

Γ ⊢ Ms : A/B ∆ ⊢ Ns : B
/E

Γ,∆ ⊢ (M +N)s : A

Γ, ps : A ⊢ (M + p)s : B
/I

Γ ⊢ Ms : B/A

∆ ⊢ Ms : B Γ ⊢ Ns : B\A
\E

∆,Γ ⊢ (M +N)s : A

ps : A,Γ ⊢ (p+M)s : B
\I

Γ ⊢ Ms : A\B

Γ ⊢ M [(λx.N)P ] : C
[β]

Γ ⊢ M [N [x := P ]] : C

Fig. 1. Gentzen-Style ND Inference Rules for HTLG

that provable statements cannot have empty antecedents). The β rule performs
on-the-fly beta reduction on the lambda terms.

Before showing normalization, we first prove a standard substitution lemma.

Lemma 1. Let δ1 be a proof of Γ ⊢ N : A and δ2 a proof of ∆,x : A ⊢ M [x] : C
such that N and M share no free variables, then there is a proof of Γ,∆ ⊢ M [N ] :
C.

Proof We can combine the two proofs as follows, replacing the hypothesis x : A
of δ2 by the proof δ1. .... δ1

Γ ⊢ N : A.... δ2[x := N ]

Γ,∆ ⊢ M [N ] : C

Given that, by construction, M and N share no free variables, replacing x by N
cannot make a rule application in δ2 invalid. ✷

Given that the w atomic formula appearing on the left-hand side of the Lex
rule is by construction forbidden to appear on the right-hand side of a sequent,
this means that the substitution lemma can never apply to a lexical hypothesis
(since there are no proofs of the form Γ ⊢ N : w).

3 Normalisation

We show that HTLG is normalizing. A normal form for an HTLG proof is defined
as follows.

Definition 1. A derivation D for HTLG is normal iff each major premiss of
an elimination rule is either:



1. an assumption

2. a conclusion of an application of an E-rule.

In general, we call a logic normalizing just in case there is an effective pro-
cedure for extracting normal proofs from arbitrary proofs. Based on this defini-
tion, any path in a normal proof starts with an axiom/lexicon rule, then passes
through a (possibly empty) sequence of elimination rules as the major premiss,
followed by a (possibly empty) sequence of introduction rules, ending either in
the minor premiss of an elimination rule or in the conclusion of the proof.

To demonstrate HTLG is normalizing, we define a set of conversion rules —
functions from derivations D to derivations D′ — such that repeated application
of the rules terminates in a normal derivation.

Figure 2 shows the conversion rules3. Note that, given the condition on the
elimination rules, N and M cannot share free variables and that Lemma 1 there-
fore guarantees the reductions transform proofs into proofs. In what follows, we
assume that β reduction applies on an as-needed basis, ignoring its application
for simplicity of presentation.

.... Π1

Ns : A

xs : A.... Π2

(x+M)s : B

Ms : A\B
\I

(N +M)s : B
\E

 

.... Π1

Ns : A.... Π2[x := N ]

(N +M)s : B

.... Π1

Nα : A

xα : A.... Π2

Mβ : B

(λx.M)α→β : A⊸ B
⊸ I

((λx.M)N)β : B
⊸ E

 

.... Π1

Nα : A.... Π2[x := N ]

(M [x := N ])β : B

Fig. 2. Conversion Rules

Theorem 1. HTLG is strongly normalizing.

Proof To show strong normalization, we need to show that there are no infinite
reduction sequences. However, since each reduction reduces the size of the proof,
this is trivial. ✷

Theorem 2. Normalization for HTLG proofs is confluent.

3 The rule for the / directly parallels that for \, modulo directionality.



Proof It is easy to show weak confluence: whenever a proof can be reduced by
two different reductions R1 and R2, then reducing either redex will preserve the
other redex , and R1 followed by R2 will produce the same proof as R2 followed
by R1. By Theorem 1 we therefore have strong confluence. ✷

Corollary 1. HTLG proofs have a unique normal form.

Proof Immediate by Theorem 1 and Theorem 2. Note that uniqueness is up to
beta equivalence or, alternatively, each HTLG proof has a unique normal form
proof with a beta normal term4. ✷

Corollary 2. HTLG satisfies the subformula property.

Proof This is a direct consequence of normalization (Theorem 1). In a normal
form proof, every formula is either a subformula of one of the hypotheses or a
subformula of the conclusion. ✷

Given that we only consider linear lambda terms, HTLG proofs have a num-
ber of beta reductions bounded from above by the total number of abstractions
in the proof (those in the leaves plus those in the introduction rules). Therefore,
decidability follows from the subformula property. However, we will give a more
detailed complexity analysis in Section 6.

4 Proof nets

In proof theory, we generally have multiple proof systems for a single logic. Even
though deductions in these systems are intertranslatable, shifting to a different
proof system may make some properties of the logic easier to prove.

Proof nets are a graph theoretic representation of proofs introduced for linear
logic by Girard. Proof nets remove the possibility of ‘boring’ rule permutations
as they occur in the sequent calculus or natural deduction5, solving the so-called
problem of ‘spurious ambiguity’ in type-logical grammars.

We generally define proof nets as part of a larger class called proof structures.
Proof nets are those proof structures which correspond to sequent (or natural
deduction) proofs. We can distinguish proof nets from other proof structures by
means of a correctness condition. As a guiding intuition, we have the following
correspondence between sequent calculus/natural deduction proofs and proof
nets.

logical rule = link + correctness condition
proof (proof net) = proof structure + correctness condition
A more procedural interpretation of this is that a proof structures represent

the search space for proofs.

4 As is usual in the lambda calculus, we do not distinguish alpha-equivalent lambda
terms.

5 For natural deduction, rule permutations are a problem only for the •E and the ✸E
rules.



4.1 Proof structures

Definition 2. A link is tuple consisting of a type (tensor or par), an index
(from a fixed alphabet I, indicating the family of connectives it belongs to), a list
of premisses, a list of conclusions, and an optional main node (either one of the
conclusions or one of the premisses).

A link is essentially a labelled hyperedge connecting a number of vertices in
a hypergraph. The premisses of a link are drawn left-to-right above the central
node, whereas the conclusions are drawn left-to-right below the central node.
A par link displays the central node as a filled circle, whereas a tensor uses an
open circle. For hybrid type-logical grammars, the set of indices is {ǫ,+,@, λ}.
The constructor ǫ represents the empty string (it doesn’t correspond to a logical
connective, although we can add one if desired). The (non-associative) Lambek
calculus implications (\, /) use the term constructor ‘+’ for their links (in a
multimodal context we can have multiple instances of ‘+’, for example, ‘+1’,
‘+2’, but this doesn’t change much), whereas the lambda grammar implication
(⊸) uses links labeled with @ (representing application, for its tensor link) and
λ (representing abstraction, for its par link).

[/E]

C

C / B B

+

[/I ]

C / B

+

B

C

[\E]

C

A \ CA

+

[\I ]

A \ C

+

A

C

[⊸E]

C

B⊸ C B

@

[⊸I ]

B⊸ C

λ

B

C

Table 1. Links for HTLG proof structures

From Table 1, it is clear that par links have one premiss and two conclusions,
whereas tensor links have two premisses and one conclusion (we will see a ten-
sor link with one premiss and two conclusions later). Par links have an arrow
pointing to the main formula of the link, the main formulas of tensor links are
not distinguished visually (but can be determined from the formula labels).

Definition 3. A proof structure is a tuple 〈F,L〉, where F is a set of formula
occurrences (vertices labeled with formulas) and L is a set of links such that each
local neighbourhood is an instance of one of the links of Table 1, and such that:

– each formula is at most once the premiss of a link ,
– each formula is at most once the conclusion of a link.



The formulas which are not a conclusion of any link in a proof structure are
its hypotheses. We distinguish between lexical hypotheses and logical hypotheses;
lexical hypotheses are formulas from the lexicon, all other hypotheses are logical.
The formulas which are not a premiss of any link in a proof structure are its
conclusions. Formulas which are both a premiss and a conclusion of a link are
internal nodes of the proof structure.

We say a proof structure with hypotheses Γ and conclusions ∆ is a proof
structure of Γ ⊢ ∆, overloading the ⊢ symbol.

Definition 4. Given a proof structure P , a formula occurrence A of P is a cut
formula if it is the main formula of two links. A is an axiomatic formula in case
it is not the main formula of any link.

Example 1. As a very simple example, consider the lexicon containing only the
words ‘everyone’ of type (np⊸ s)⊸ s with prosodic term λP.(P everyone) and
‘sleeps’ of type np⊸ s with prosodic term λz.(z + sleeps). Unfolding the lexical
entries produces the proof structure shown in Figure 3. We use the convention
of replacing lexical hypotheses with the corresponding word, so ‘everyone’ rep-
resents the formula (np⊸ s)⊸ s and ‘sleeps’ the formula np⊸ s. There are no
cut formulas in the figure, and all atomic formulas are axiomatic.

s

np⊸ severyone

@

np

λ

s

s

npsleeps

@

Fig. 3. Proof structure of ‘everyone sleeps’.

Definition 5. Given a proof structure P and two distinct formula occurrences
x, y of P , both labeled with the same formula A, with x a logical hypothesis of P
and y a conclusion of P . Then P ′, the vertex contraction of x and y in P , is the
proof net obtained by deleting x and y, adding a new node z with label A such
that z is the premiss of the link x was a premiss of (if any) and the conclusion
of the link that y was the conclusion of (if any).

The vertex contraction operation is a standard graph theoretic operation. In
the current context, it operates like the cut or axiom rule in the sense that if
P1 is a proof net of Γ,A ⊢ ∆ and P2 a proof net of Γ ′ ⊢ A,∆′ with x and y
the two occurrences of A, then the vertex contraction of x and y is a proof net
of Γ, Γ ′ ⊢ ∆,∆′. Given that, in an intuitionistic context like the current one,
all proof nets have a single conclusion we even have that if P1 is a proof net of



Γ,A ⊢ C and P2 a proof net of Γ ′ ⊢ A, then the vertex contraction gives a proof
net of Γ, Γ ′ ⊢ C. Note that vertex contraction applies only to logical hypotheses
and not to lexical ones.

Just like a logical link is a generalisation of a logical rule which is locally
correct but need not be correct globally, a vertex contraction is a generalisation
of the cut rule which is locally correct but need not be correct globally.

Example 2. Connecting the atomic formulas of the proof structure shown in
Figure 3 produces the proof structure shown on the left of Figure 4. It has (the
formulas corresponding to) ‘everyone’ and ‘sleeps’ as hypotheses (both lexical)
and the formula s as its conclusion.

s

np⊸ severyone

@

λ

s

npsleeps

@

→
A

s

��

@

λ

�

�

�

@

λ

�

+

� �

sleeps

λ

�

��

@

everyone

Fig. 4. Proof structure of ‘everyone sleeps’ after identification of the atomic formulas
(left) and corresponding abstract proof structure (right).

Definition 6. A tensor graph is a connected proof structure with a unique con-
clusion (root) node containing only tensor links. The trivial tensor graph is a
single node.

Given a proof structure P , the components of P are the maximal substruc-
tures of P which are tensor graphs. A tensor tree is an acyclic tensor graph.

For standard multimodal proof nets, we define correctness using tensor trees
instead of the more general notion used here. Our results may be (graph theore-
tical representations of) lambda terms, and the λ link represents the λ binder for
linear lambda terms. As is usual for lambda terms, we need to be careful about
‘accidental capture’ of variables. That is, we want avoid incorrect reductions
such as (λxλy(f x))(g y) (not a linear lambda term) to λy(f (g y)).
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�
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�

λ

�
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Table 2. Links for HTLG abstract proof structures

4.2 Abstract proof structures

As is usual for proof nets, correctness is defined on graph theoretic representa-
tions obtained from proof structures by forgetting some of the formula labels.
We call these representations abstract proof structures. A more procedural way
of seeing abstract proof structures is as ways of computing the structure of the
antecedent. For hybrid type-logical grammars, this means abstract proof struc-
tures must contain some way of representing lambda terms in addition to the
Lambek calculus structures.

Definition 7. An abstract proof structure A is a tuple 〈V, L, l, h, c〉 where V is
a set of vertices, L is a set of the links shown in Table 2 connecting the vertices
of V , l is a function from the lexical hypothesis vertices of A to the corresponding
variables, h is a function from logical hypothesis vertices to formulas, and c is a
function from the conclusion vertices of A to formulas (a hypothesis vertex is a
vertex which is not the conclusion of any link in L, and a conclusion vertex is a
vertex which is not the premiss of any link in L).

The links for abstract proof structures are shown in Table 2. The tensor links
are shown in the topmost row, the par links in the bottom row, with the par
links for the Lambek connectives on the left and in the middle, and the par link
for the linear implication on the bottom right.

The λ tensor link is the only non-standard link. Even though it has the same
shape as the link for the Grishin connectives of mm12pnlg, it is used in a rather
different way. The λ tensor link does not correspond to a logical connective
but rather to lambda abstraction over terms (or rather their graph theoretical
representation). To keep the logic simple and the number of connectives as small
as possible, we have chosen to make the ǫ link, corresponding to the empty
string, a non-logical link as well. As a consequence, ǫ can appear only in lexical
terms. However, if needed, it would be easy to adapt the logic by adding a logical
connective 1 corresponding to ǫ.

Definition 8. Given a proof structure P , we obtain the corresponding abstract
proof structure A(P ) = A as follows.



1. we keep the set of vertices V and the set of links L of P (but we forget the
formula labels of the internal nodes),

2. logical hypotheses are kept as simple vertices, but we replace each lexical hy-
pothesis M : A of the proof structure by a graph g corresponding to its lambda
term M , the conclusion of g is the vertex which was the lexical hypothesis of
P , making the word subterm w of M a lexical hypothesis of the new structure,

3. we define l to assign the corresponding word for each lexical hypothesis of
the resulting graph, h to assign a formula for all logical hypotheses, and c to
assign a formula to all conclusions.

Example 3. Converting the proof structure on the left of Figure 4 to an abstract
proof structure produces the abstract proof structure shown on the right. We
have replaced ‘everyone’ by the structure corresponding to its lexical lambda
term and similarly for ‘sleeps’.

Definition 9. A lambda graph is an abstract proof structure such that:

1. it has a single conclusion,
2. it contains only tensor links,
3. each right conclusion of a lambda link is an ancestor of its premiss,
4. removing the connection between all lambda links and their rightmost con-

clusion produces an acyclic and connected structure.

Condition 3 avoids vacuous abstraction and accidental variable capture in
the corresponding lambda term. Condition 4 is the standard acyclicity and con-
nectedness condition for abstract proof structures, but allowing for the fact that
lambda abstraction (but no other tensor links) can produce cycles.

Lambda graphs correspond to linear lambda terms in the obvious way, with
the rightmost conclusion of the lambda link representing the variable abstracted
over. This is a standard way of representing lambda terms in a way which avoids
the necessity of variable renaming (alpha conversion).

Proposition 1. a lambda term with free variables x1, . . . , xn corresponds to a
lambda graph with hypotheses x1, . . . , xn, with the @ tensor link corresponding to
application, the λ tensor link to abstraction, and the + link and the ǫ link to the
term constants of type s → s → s and s respectively. To keep the terms simple,
we will write (X + Y ) instead of ((+X)Y ).

4.3 Structural rules and contractions

To decide whether or not a given proof structure is a proof net (that is, cor-
responds to a natural deduction proof), we will introduce a system of graph
rewriting. The structural rules for the non-associative version of hybrid type-
logical grammars are shown on the left-hand column of Table 3. We can obtain
the standard associative version simply by adding the associativity rules for ‘+’;
more generally, we can add any structural conversion for multimodal grammars,
rewriting a tensor tree into another tensor tree with the same leaves (though not



necessarily in the same order) provided they do not overlap with the beta redex.
The ǫ structural rules simply stipulate that ‘ǫ’ functions as the identity element
for ‘+’ (both as a left identity and as a right identity).

The key rewrite is the beta conversion rule. It is the graph theoretical equiv-
alent of performing a beta reduction on the corresponding term. For the beta
rewrite, we replace the two links (and the internal node) and perform two vertex
contractions: h1 with c1 and h2 with c2. We update the functions h, l and c
accordingly (if one of the hi was in the domain of h and l then so is the re-
sulting vertex, and similarly for the ci and the c function of the abstract proof
structure).
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Table 3. Structural rules (left) and logical contractions (right) for HTLG proof nets.

To make the operation of the beta reduction clearer, a ‘sugared’ version of the
contraction is shown in Table 4. Term labels have been added to the vertices of
the graph to make the correspondence with beta-reduction explicit. This second
picture is slightly misleading in that it suggests that A1, A2 and A3 are disjoint
substructures. This need not be the case: for example, A3 can contain a lambda
link whose right conclusion is a premiss of either A1 or A2. Similarly, in a logic



with the Lambek calculus product, the link for [•E] may connect premisses of
both A1 and A2. A side condition on the ⊸I conversion combined with the
restriction of lexical entries to linear lambda terms will guarantee that x (c1) in
the beta reduction is always a descendant of N(h2).

A2

A1

A3

M

N [x := M ]

→
[β]

M

@

λx.N

(λx.N)M

λ

N

A2

A1

A3

x

Table 4. Beta conversion as a structural rule with term labels added.

Definition 10. We say a lambda graph is normal or beta-normal when it doesn’t
contain any redexes for the beta conversion.

In addition to the structural rules, there are contractions for each of the log-
ical connectives. Table 3 shows, on the right-hand column, the contractions for
HTLG. For the Lambek implications, these are just the standard contractions.
They combine a concatenation mode ‘+’ with one of its residuals6. The contrac-
tions for the Lambek calculus implications are the standard contractions from
mp.

The contraction for⊸I has the side condition that the rightmost conclusion
of the λ par link is a descendant of its premiss, passing only through tensor links.
This is essentially the same condition as the one used by reductions, only without
performing the actual contractions. This is because we want our abstract proof
structures to represent the prosodic structure of a proof, which may contain
lambda terms, just like the standard goal of abstract proof structures is always
to compute the structure which would make the derivation valid.

Our rewrite calculus can be situated in the larger context of adding rewrite
rules to the lambda calculus klop93crs,ck96alglambda. Even though the con-
tractions for [/I] and [\I] are not left-linear, since they correspond to terms

6 To ensure confluence of ‘/’ and ‘\’ in the presence of ǫ we can add the side condition
to the [/I ] and [\I ] contractions that the component to which the par link is attached
has at least one hypothesis other than the auxiliary conclusion of the par link. This
forbids empty antecedent derivations and restores confluence.



(M + x)/x and x\(x + M) respectively, this is not a problem because the oc-
currences of x are bound occurrences klop93crs. In general, confluence can not
be maintained in the presence of structural rules (or of the unary connectives)
since the structural rules themselves need not be confluent. Confluence of beta
reduction is guaranteed by not allowing any structural rewrite to overlap with
the beta redex klop93crs.

5 Correctness of the proof net calculus

Definition 11. A proof structure is a proof net whenever its abstract proof
structure converts to a lambda graph.

The reader can easily verify that the abstract proof structure shown on
the right hand side of Figure 4 back on page 8 converts to the lambda graph
everyone + sleeps — after one application of the [⊸I] conversion and three ap-
plications of the β conversion — and is therefore a proof net.

We show that a proof net with premissesA1, . . . Ak and conclusion C converts
to a lambda graph M whenever N1 : A1, . . . , Nk : Ak ⊢ M : C (where Ni is the
lexical lambda term or variable corresponding to Ai) is derivable, and vice versa.

Lemma 2. If δ is a natural deduction proof of N1 : A1, . . . , Nk : Ak ⊢ M : C,
then we can construct a proof net with premisses A1, . . . , An and conclusion C
contracting to M .

Proof Induction on the length l of δ. If l = 0, then we have either an axiom x : A
or a lexicon rule M : A (with M a linear lambda term with a single free variable
w). In either case, the abstract proof structure will convert in zero steps to the
required graph M .

If l > 0, we look at the last rule of the proof and proceed by case analysis.
If the last rule of the proof is the /I rule, we are in the follow case.

.... δ

Γ, x : B ⊢ N + x : A

Γ ⊢ N : A/B
/I

Removing the last rule gives us the short proof δ, and induction hypothesis
gives us a proof net of Γ, x : B ⊢ N+x : A. In other words, induction hypothesis
gives us a proof net of Γ,B ⊢ A such that the underlying abstract proof structure
converts, using a reduction sequence ρ, to N + x, with x corresponding to B, as
shown schematically in Figure 5.

We need to produce a proof net of Γ ⊢ N : A/B. But this is done simply
by adding the /I link to the proof net of the induction hypothesis and adding a
final /I reduction as shown in Figure 6.

The cases for \I and⊸ are similar, adding the corresponding link and con-
version to the proof net obtained by induction hypothesis.
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Fig. 5. Conversion sequence of Figure ?? with the final [/I ] contraction removed.
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Fig. 6. Conversion sequence of a proof net ending with a [/I ] contraction
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The cases for the elimination rules /E, \E and⊸E simply combine the two
proof nets obtained by induction hypothesis with the corresponding link.

If the final rule is the β rule or a structural rule, we simply add, respectively,
the β reduction and the corresponding structural conversion. ✷

Lemma 3. Given a proof net Π with premisses A1, . . . An and conclusion C
converting to a lambda graph M , there is a natural deduction proof N1 : A1, . . . , Nk :
An ⊢ M : C.

We proceed by induction on the number of conversions c.
If c = 0 there are no conversions. As a consequence, there are no par links in

the proof net. We proceed by induction on the number of tensor links t in the
proof net.

If t = 0, the proof net consists of a single formula A and the abstract proof
structure is either a single vertex x (in the case of a hypothesis), corresponding
to a proof x : A or a term M corresponding to a lexical entry, corresponding to
a proof M : A.

If t > 0, one of the hypotheses of the proof structure must be the main formula
of its link. Removing this link will produce two proof nets and we can apply the
induction hypothesis to obtain natural deduction proofs for each, combining
them with the appropriate elimination rule.

If c > 0, we look at the last conversion and proceed by case analysis.



If the last conversion is a β conversion or a structural rule, then induction
hypothesis gives us a proof δ of Γ ⊢ M ′ : C, which we can extend using the β
rule (or structural rule) on M ′ to produce M and a proof of Γ ⊢ M : C.

If the last conversion is a ⊸I contraction, we are in the case shown in Fig-
ure 7. The final lambda graph corresponds to the linear lambda term M [λx.N ].
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Fig. 7. Conversion sequence of a proof net ending with a [⊸I ] contraction
.

Removing the final [⊸I] conversion produces two proof nets Π1 and Π2

with strictly shorter conversion sequences (again because we removed the final
conversion and divided the other conversions) shown in Figure 8. Therefore,
induction hypothesis gives us a proof δ1 of Γ, x : B ⊢ N : A and a proof δ2
of ∆, z : B ⊸ A ⊢ M [z] : C and we need to combine these into a proof of
Γ,∆ ⊢ M [λx.N ] : C. This is done as follows.

Π1

Π2

A

BΓ

∆ B⊸A

C
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BΓ

B⊸A∆

A1

A2

C

ρ1
։

ρ2
։

Fig. 8. Conversion sequence of Figure 7 with the final [⊸I ] conversion removed



∆

Γ x : B.... δ1
N : A

λx.N : B⊸A
⊸I

.... δ2, z := λx.N

M [λx.N ] : C

The substitution of λx.N for z presupposes that the formula B⊸ A is not
a lexical hypothesis, but given that it is the conclusion of a link in the full
structure, it cannot be a hypothesis of the full structure and therefore we can
apply the substitution. This is the reason we distinguish between a par link for
λ (which corresponds to the introduction rule of the logical connective⊸) and
a tensor link (which corresponds to abstraction at the term level and need not
correspond to a logical rule since it can come from a complex lexical entry as
well).

The cases for /I and \I are similar, and simply follow mp. ✷

6 Complexity

Given the proof net calculus described in the previous sections, complexity anal-
ysis of hybrid type-logical grammars and several of its variants becomes simple.

Theorem 3. HTLG parsing is NP complete

Proof Since HTLG contains lexicalized ACG as a fragment, NP-hardness follows
from Proposition 5 of yk05acg, so all that remains to be shown is that HTLG is
in NP.

In order to shown that HTLG parsing is NP-complete we only need to show
that, given a non-deterministic proof search procedure we can verify whether a
proof candidate is an actual proof in polynomial time. Given a sentence, we non-
deterministically select a lexical formula for each word, then non-deterministically
enumerate all proof structures for these lexical formulas. ✷

The proof of Theorem 3 is very general and can easily be adapted to variants
and extensions of HTLG. For example, we can add the connectives for ‘•’, ‘✸’
and ‘✷’ and mode information (as in the multimodal versions of the Lambek
calculus M95) while maintaining NP-completeness.

When adding structural rules, complexity analysis becomes more delicate.
Adding associativity, as in the original formulation of hybrid type-logical gram-
mars, doesn’t change the complexity, since we can simply use the strategy of
[Section 7]mp to ensure polynomial contraction of proof structures. So we can
actually strengthen Theorem 3 to the following.

Theorem 4. HTLG/i,•i,\i,✸i,✷i
parsing, with associativity for some modes i, is

NP complete.



In general, NP completeness will be preserved whenever we provide the set of
structural rules with a polynomial time contraction algorithm. When we do not
have a polynomial contraction algorithm, we can still show information about the
complexity class: when we add structural rules but use the standard restriction
that the tree rewrites allowed by the structural rules are linear (no copying or
deletion of leaves) and do not increase the size of the tree, then the resulting
logic is PSPACE complete, following the argument of [Section 9.2]diss.

Theorem 5. HTLG/i,•i,\i,✸i,✷i
parsing with any finite set of non-expanding

structural rules is PSPACE complete.

This gives an NP lower bound and a PSPACE upper bound for any HTLG
augmented with the multimodal connectives and a fixed set of structural rules,
and NP completeness can be shown by providing a polynomial contraction al-
gorithm.

7 Conclusion

We have investigated the formal properties of hybrid type-logical grammars and
proved several standard results for them. This solves the question of the theo-
retical foundations of the system, left open by kl13dgap.


