A. Ritaccio, Proceedings of the Second International Workshop on Advances in Electrocorticography, vol.22, pp.641-650, 2011.

K. N. Browning, S. Verheijden, and G. E. Boeckxstaens, The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation, Gastroenterology, vol.152, issue.4, pp.730-744, 2017.

H. H. Müller, S. Moeller, C. Lücke, A. P. Lam, N. Braun et al., Vagus Nerve Stimulation (VNS) and Other Augmentation Strategies for Therapy-Resistant Depression (TRD): Review of the Evidence and Clinical Advice for Use, Front. Neurosci, vol.12, 2018.

D. Guiraud, Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation, J. Neural Eng, vol.13, issue.4, p.41002, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372361

M. Dali, Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation, J. Neural Eng, vol.15, issue.4, p.46018, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01770039

H. M. Romero-ugalde, Closed-Loop Vagus Nerve Stimulation Based on State Transition Models, IEEE Trans. Biomed. Eng, vol.65, issue.7, pp.1630-1638, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833092

D. T. Plachta, N. Espinosa, M. Gierthmuehlen, O. Cota, T. C. Herrera et al., Detection of baroreceptor activity in rat vagal nerve recording using a multi-channel cuffelectrode and real-time coherent averaging, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3416-3419, 2012.

S. Bonnet, Selective ENG recordings using a multi-contact cuff electrode, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp.923-926, 2013.
URL : https://hal.archives-ouvertes.fr/lirmm-00924380

C. Hassler, T. Boretius, and T. Stieglitz, Polymers for neural implants, J. Polym. Sci. Part B Polym. Phys, vol.49, issue.1, pp.18-33, 2011.

P. J. Rousche, D. S. Pellinen, D. P. Pivin, J. C. Williams, R. J. Vetter et al., Flexible polyimide-based intracortical electrode arrays with bioactive capability, IEEE Trans. Biomed. Eng, vol.48, issue.3, pp.361-371, 2001.

K. C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, Flexible polyimide microelectrode array for in vivo recordings and current source density analysis, Biosens. Bioelectron, vol.22, issue.8, pp.1783-1790, 2007.

B. Rubehn and T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants, Biomaterials, vol.31, issue.13, pp.3449-3458, 2010.

D. S. Lee, Comparison of in vivo biocompatibilities between parylene-C and polydimethylsiloxane for implantable microelectronic devices, Bull. Mater. Sci, vol.36, issue.6, pp.1127-1132, 2013.

A. A. Schendel, The effect of micro-ECoG substrate footprint on the meningeal tissue response, J. Neural Eng, vol.11, issue.4, p.46011, 2014.

S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, Parylene flexible neural probes integrated with microfluidic channels, Lab. Chip, vol.5, issue.5, pp.519-523, 2005.

V. Castagnola, Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording, Biosens. Bioelectron, vol.67, pp.450-457, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01764256

E. M. Schmidt, J. S. Mcintosh, and M. J. Bak, Long-term implants of Parylene-C coated microelectrodes, Med. Biol. Eng. Comput, vol.26, issue.1, pp.96-101, 1988.

F. Bottausci, New sectorized implantable microelectrode fabrication, packaging and ageing for neural sensing and stimulation, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp.466-469, 2015.

D. H. Szarowski, Brain responses to micro-machined silicon devices, Brain Res, vol.983, issue.1-2, pp.23-35, 2003.

D. R. Merrill, M. Bikson, and J. G. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols, J. Neurosci. Methods, vol.141, issue.2, pp.171-198, 2005.

D. Mccreery, V. Pikov, and P. R. Troyk, Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex, J. Neural Eng, vol.7, issue.3, p.36005, 2010.

C. Wang, E. Brunton, S. Haghgooie, K. Cassells, A. Lowery et al., Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex, J. Neural Eng, vol.10, issue.4, p.46010, 2013.

D. Andreu, D. Guiraud, and G. Souquet, A distributed architecture for activating the peripheral nervous system, J. Neural Eng, vol.6, issue.2, p.26001, 2009.
URL : https://hal.archives-ouvertes.fr/lirmm-00361686

P. Maciejasz, Delaying discharge after the stimulus significantly decreases muscle activation thresholds with small impact on the selectivity: an in vivo study using TIME, Med. Biol. Eng. Comput, vol.53, issue.4, pp.371-379, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01116454

N. N.-de, P. E. Donaldson, and . Donaldson, When are actively balanced biphasic ('Lilly') stimulating pulses necessary in a neurological prosthesis? II pH changes; noxious products; electrode corrosion; discussion, Med. Biol. Eng. Comput, vol.24, issue.1, pp.50-56, 1986.

S. F. Cogan, Neural Stimulation and Recording Electrodes, Annu. Rev. Biomed. Eng, vol.10, issue.1, pp.275-309, 2008.

L. S. Robblee, J. Mchardy, W. F. Agnew, and L. A. Bullara, Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex, J. Neurosci. Methods, vol.9, issue.4, pp.301-308, 1983.

T. L. Rose and L. S. Robblee, Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application), IEEE Trans. Biomed. Eng, vol.37, issue.11, pp.1118-1120, 1990.

P. Romanelli, A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface, J. Neurosurg, pp.1-14, 2018.

K. W. Horch and G. S. Dhillon, Neuroprosthetics: theory and practice, 2004.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz et al., A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, J. Peripher. Nerv. Syst, vol.10, issue.3, pp.229-258, 2005.

Y. M. Dweiri, T. E. Eggers, L. E. Gonzalez-reyes, J. Drain, G. A. Mccallum et al., Stable Detection of Movement Intent From Peripheral Nerves: Chronic Study in Dogs, Proc. IEEE, vol.105, issue.1, pp.50-65, 2017.

J. Badia, T. Boretius, D. Andreu, C. Azevedo-coste, T. Stieglitz et al., Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles, J. Neural Eng, vol.8, issue.3, p.36023, 2011.

T. Boretius, A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve, Biosens. Bioelectron, vol.26, issue.1, pp.62-69, 2010.

J. Badia, T. Boretius, A. Pascual-font, E. Udina, T. Stieglitz et al., Biocompatibility of Chronically Implanted Transverse Intrafascicular Multichannel Electrode (TIME) in the Rat Sciatic Nerve, IEEE Trans. Biomed. Eng, vol.58, issue.8, pp.2324-2332, 2011.

P. R. Patel, Chronic in vivo stability assessment of carbon fiber microelectrode arrays, J. Neural Eng, vol.13, issue.6, p.66002, 2016.

M. Mueller, N. De-la-oliva, J. Valle, I. Martinez, X. Navarro et al., Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring, J. Neural Eng, 2017.

J. Rozman, B. Zorko, M. Bunc, U. Mikac, and E. Tegou, Recording of ENGs from the nerves innervating the pancreas of a dog during the intravenous glucose tolerance test, Physiol. Meas, vol.23, issue.4, p.695, 2002.

B. S. Spearman, Tissue-Engineered Peripheral Nerve Interfaces, Adv. Funct. Mater

D. Rodger, Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording, Sens. Actuators B Chem, vol.132, issue.2, pp.449-460, 2008.

J. C. Barrese, Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates, J. Neural Eng, vol.10, issue.6, p.66014, 2013.

C. S. Mestais, G. Charvet, F. Sauter-starace, M. Foerster, D. Ratel et al., WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications, IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc, vol.23, issue.1, pp.10-21, 2015.

F. Kohler, T. Stieglitz, and M. Schuettler, Morphological and electrochemical properties of an explanted PtIr electrode array after 15 months in vivo, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.418-421, 2014.

J. Viventi, Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo, Nat. Neurosci, vol.14, issue.12, pp.1599-1605, 2011.

D. T. Bundy, Characterization of the effects of the human dura on macro-and microelectrocorticographic recordings, J. Neural Eng, vol.11, issue.1, p.16006, 2014.

T. J. Oxley, Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity, Nat. Biotechnol, vol.34, issue.3, pp.320-327, 2016.

E. S. Nurse, Consistency of Long-Term Subdural Electrocorticography in Humans, IEEE Trans. Biomed. Eng, vol.65, issue.2, pp.344-352, 2018.

C. Henle, First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology, Biomed. Microdevices, vol.13, issue.1, pp.59-68, 2011.

G. E. Loeb, A. E. Walker, S. Uematsu, and B. W. Konigsmark, Histological reaction to various conductive and dielectric films chronically implanted in the subdural space, J. Biomed. Mater. Res, vol.11, issue.2, pp.195-210, 1977.

A. D. Degenhart, Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate, J. Neural Eng, vol.13, issue.4, p.46019, 2016.

J. D. Weiland and D. J. Anderson, Chronic neural stimulation with thin-film, iridium oxide electrodes, IEEE Trans. Biomed. Eng, vol.47, issue.7, pp.911-918, 2000.

S. F. Lempka, S. Miocinovic, M. D. Johnson, J. L. Vitek, and C. C. Mcintyre, In vivo impedance spectroscopy of deep brain stimulation electrodes, J. Neural Eng, vol.6, issue.4, p.46001, 2009.

S. C. Mailley, M. Hyland, P. Mailley, J. M. Mclaughlin, and E. T. Mcadams, Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal, Mater. Sci. Eng. C, vol.21, issue.1, pp.167-175, 2002.

W. M. Grill and J. T. Mortimer, Stimulus waveforms for selective neural stimulation, IEEE Eng. Med. Biol. Mag, vol.14, issue.4, pp.375-385, 1995.

A. Prasad, Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants, J. Neural Eng, vol.9, issue.5, p.56015, 2012.

P. Fattahi, G. Yang, G. Kim, and M. R. Abidian, A Review of Organic and Inorganic Biomaterials for Neural Interfaces, Adv. Mater, vol.26, issue.12, pp.1846-1885, 2014.

J. D. Yeager, D. J. Phillips, D. M. Rector, and D. F. Bahr, Characterization of flexible ECoG electrode arrays for chronic recording in awake rats, J. Neurosci. Methods, vol.173, issue.2, pp.279-285, 2008.

S. Myllymaa, Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials, Biosens. Bioelectron, vol.24, issue.10, pp.3067-3072, 2009.

D. T. Bundy, M. Pahwa, N. Szrama, and E. C. Leuthardt, Decoding three-dimensional reaching movements using electrocorticographic signals in humans, J. Neural Eng, vol.13, issue.2, p.26021, 2016.

S. Myllymaa, K. Myllymaa, and R. Lappalainen, Flexible Implantable Thin Film Neural Electrodes, Recent Adv. Biomed. Eng, 2009.

A. Mercanzini, P. Colin, J. Bensadoun, A. Bertsch, and P. Renaud, In Vivo Electrical Impedance Spectroscopy of Tissue Reaction to Microelectrode Arrays, IEEE Trans. Biomed. Eng, vol.56, issue.7, pp.1909-1918, 2009.

C. Newbold, R. Richardson, R. Millard, P. Seligman, R. Cowan et al., Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes, J. Neural Eng, vol.8, issue.3, p.36029, 2011.

R. C. De-sauvage, D. L. Da-costa, J. Erre, and J. Aran, Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea, Hear. Res, vol.110, issue.1-2, pp.119-134, 1997.

C. Newbold, R. Richardson, C. Q. Huang, D. Milojevic, R. Cowan et al., An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants, J. Neural Eng, vol.1, issue.4, pp.218-227, 2004.

D. B. Mccreery, W. F. Agnew, T. G. Yuen, and L. Bullara, Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation, IEEE Trans. Biomed. Eng, vol.37, issue.10, pp.996-1001, 1990.

S. S. Stensaas and L. J. Stensaas, Histopathological evaluation of materials implanted in the cerebral cortex, Acta Neuropathol. (Berl.), vol.41, issue.2, pp.145-155, 1978.

T. G. Yuen, W. F. Agnew, and L. A. Bullara, Tissue response to potential neuroprosthetic materials implanted subdurally, Biomaterials, vol.8, issue.2, pp.138-141, 1987.

C. M. Sayama, M. Sorour, and R. H. Schmidt, Dural adhesion to porous cranioplastic implant: A potential safety concern, Surg. Neurol. Int, vol.5, p.19, 2014.

N. Oliva, M. Mueller, T. Stieglitz, X. Navarro, and J. Valle, On the use of Parylene C polymer as substrate for peripheral nerve electrodes, Sci. Rep, vol.8, issue.1, p.5965, 2018.