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Heterogeneous multicore systems, such as the ARM big.LITTLE, feature a single instruction set with di�erent

types of processors to conciliate high performance with low energy consumption. An important question

concerning such systems is how to determine the best hardware con�guration for a particular program

execution. �e hardware con�guration consists of the type and the frequency of the processors that the

program can use at runtime. Current solutions are either completely dynamic, e.g., based on in-vivo pro�ling,

or completely static, based on supervised machine learning approaches. Whereas the former solution might

bring unwanted runtime overhead, the la�er fails to account for the diversity in program inputs. In this paper,

we show how to circumvent this last shortcoming. To this end, we provide a suite of code transformation

techniques that perform numeric regression on function arguments, which can have either scalar or aggregate

types, so as to match parameters with ideal hardware con�gurations at runtime. We have designed and

implemented our approach on top of the Soot compilation infrastructure, and have applied it onto programs

available in the PBBS and Renaissance suites. We show that we can consistently predict the best con�guration

for a large class of programs running on an Odroid XU4 board, outperforming other techniques such as ARM’s

GTS or CHOAMP, a recently released static program scheduler.

CCS Concepts: •So�ware and its engineering → Compilers; •Computing methodologies → Parallel
programming languages; Machine learning;
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1 INTRODUCTION
Modern multicore platforms provide developers with a suite of technologies to produce code

that is more energy-e�cient (Orgerie et al. 2014). Among these technologies, two stand out

today: dynamic voltage & frequency scaling (Semeraro et al. 2002) and single-ISA heterogeneous

architectures in which di�erent processors are combined into the same chip. �e ARM big.LITTLE

design exempli�es the la�er technology (Hähnel and Härtig 2014). Processors using both these

technologies are today commonly found in smartphones and embedded systems. As an example,

the Samsung Exynos 5422 chip has eight processors, four fast, but power hungry (the so called “big”

cores), and four slow, but more power parsimonious (thus called “LITTLE” cores). Each processor

has up to 19 di�erent frequency levels, going from 200MHz to 1.5GHz in the LITTLE processors,

and from 200MHz to 2.0GHz in the big cores (Greenhalgh 2011). �e combination of fast and

slow processors, each one featuring multiple frequency levels, gives programmers a vast suite of

2017. 2475-1421/2017/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:2 Ribeiro, et al.

con�gurations to choose from when running their applications. However, performing this choice

is a challenging task (Jundt et al. 2015; Nishtala et al. 2017; Petrucci et al. 2015).

�e cra� of compilers that try to map program parts to di�erent hardware con�gurations

(combinations of cores and frequencies) is a research topic that has been receiving considerable

a�ention in the last decade, in part due to the increasing popularity of systems formed by CPUs

and GPUs (Garland and Kirk 2010; Nickolls and Dally 2010). In the CPU-GPU case, the problem of

mapping program parts to hardware involves dealing with at least two instruction sets, such as x86

for the host CPU, and TASS for the hosted GPU, for instance. If the same function is allowed to run

onto both processors, it must be cloned at the binary level (Poesia et al. 2017). In this paper, we

focus on the same problem: scheduling of computations; however, on a di�erent se�ing: same-ISA

architectures. In this context, the same program might run in di�erent kinds of processors.

�e current state-of-the-art solution to this problem is CHOAMP, a compilation technique

invented by Sreelatha et al. (2018). CHOAMP uses supervised machine learning to map program

functions to the con�guration that best �ts them. Sreelatha et al. try to capture characteristics of the

target architecture’s runtime behavior. �ey use this knowledge to predict the ideal con�guration

to a program, given its syntactic characteristics. �e beauty of Sreelatha et al.’s approach is the fact

that it is fully static: interventions on the program remain con�ned into the compiler, and no extra

runtime support is required from the hardware. In their words, “static schedulers scale be�er with
the number of cores as well as program complexity”. Such view has been made popular by Shelepov

et al. (2009) through the success enjoyed by HASS, a scheduler for same-ISA heterogeneous systems

that leverages architectural signatures (e.g., cache miss rates) generated o�ine.

We observe that CHOAMP and HASS share a fundamental shortcoming: they do not consider

program inputs when performing scheduling decisions. As we explain in Section 2, it is regularly

possible to �nd out programs for which the best hardware con�guration for a given function varies

depending on the function’s inputs. Some programs used in the original description of CHOAMP,

such as integer sort, bear this property. We make the case that inputs are key to determine good

matchings between programs and con�gurations supported by the evidence that such matchings

do not necessarily converge to a single, ideal con�guration, as the size of inputs grows.

Our Solution. In this paper, we introduce a compilation approach to map program parts to

hardware con�gurations that optimize resource usage. In contrast to prior work, our technique

explicitly takes inputs into consideration when deciding which hardware con�gurations to use.

As we discuss in Section 3, our idea is based on o�ine training and statistical regression. Given a

function foo, a collection of its inputs {t1, t2, . . . , tm } available for training, plus a set of hardware

con�gurations {h1,h2, . . . ,hn }, we run foo(ti ), 1 ≤ i ≤ m, onto a sample of the con�guration space

{hj | 1 ≤ j ≤ n}. Training gives us the ideal con�guration for each input, in terms of a measurable

goal, such as runtime or energy consumption. When producing code for foo, we augment its binary

representation with this knowledge to predict the best con�guration for unseen inputs. One of the

contributions of this work is an empirical demonstration that this universe of solutions tends to be

convex. As we show in Section 4.7, by varying only one function argument, while �xing the others,

the ideal con�guration is unlikely to oscillate, for instance, going from hi to hj and then back to

hi . �e consequence of this observation is that derivative-based search methods are expected to

converge to an optimal result, and linear regression tends to accurately predict this optimum.

Our Results. We have implemented our technique onto Soot (Vallée-Rai et al. 1999), a bytecode

optimizer, and have tested it onto an Odroid XU4 big.LITTLE architecture. Soot lets us use

the knowledge built during training to generate code that, at runtime, changes the hardware

con�guration per program function. We call this code generator the Jinn-C compiler, a tool that

reads and outputs Java bytecodes. Although we work at the granularity of functions, nothing

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:3

hinders our approach from being applied onto smaller (or larger) program parts. As we explain in

Section 4, we have evaluated Jinn-C on the subset of the Program Based Benchmark Suite (Shun

et al. 2012) used by Acar et al. (2018), and on the benchmarks from Renaissance –a collection

introduced in 2019 (Prokopec et al. 2019)– that we have been able to port to the embedded board

that we use. An interesting aspect of our approach is that the type of regression that we advocate

in this paper is agnostic to the objective function. In particular, we show how Jinn-C is able to

reduce either the execution time or the energy consumption of programs. �e ideal hardware

con�guration is the one that optimizes for such a particular objective function. We measure energy

for the entire board using physical probes (Bessa et al. 2017), and, even if we consider all the power

overhead of the peripherals, our results are easy to reproduce. Below we summarize the bene�ts of

our solution in the context of the existing literature:

Adaptive: contrary to previous purely static solutions to the problem of �nding ideal hard-

ware con�gurations to program parts, our technique is able to take input data –information

known at runtime only– into consideration when choosing con�gurations.

Simple: we show that, for typical benchmarks used in high-performance computing, either

the value of scalar inputs, or the size of aggregate inputs already yield enough information

to e�ectively feed linear regression models.

E�ective: in most of our benchmarks, only a few di�erent input sets are already su�cient

to let us train a predictor to a high level of accuracy. Variety is, of course, important: the

more di�erent the inputs we have, the more accurate the predictions we perform.

E�cient: our approach does not require active runtime monitoring. Inputs must be evaluated

upon function invocation, and only then. Evaluation is linear on the number of inputs, not

on their sizes. �is computational complexity is O (1) per hot function.

Automatic: our approach requires a minimum of interference from developers. Developers

annotate which functions must be adapted. We chose this approach for simplicity. For zero

programming overhead, we could discover hot functions via pro�ling, for instance.

Easily-deployable: our solution does not require runtime monitoring; thus, it can be de-

ployed in any hardware and operating system, independent on them providing performance

counters. We require only the capability to change the hardware con�guration at runtime.

2 OVERVIEW
Heterogeneous multi-core architectures exist in a number of �avors. Architectures combining

processors that run di�erent instruction sets are called multiple-ISA. Typically, some cores address

vector/data-level parallelism, whereas others bene�t more from instruction-level parallelism. Exam-

ples include the CELL processor (Donaldson et al. 2008), and the CPU-GPU systems (Sorensen et al.

2018). In contrast, architectures featuring di�erent processors that run the same instruction set

are called Single-ISA (Kumar et al. 2005). Single-ISA systems move from the compiler towards the

runtime environment (the operating system or the hardware itself) the responsibility of mapping

the program code to hardware con�gurations. Nevertheless, as previous work has demonstrated,

there are bene�ts to bringing this awareness back into the code generation phase (Sreelatha et al.

2018). Such is also the position of this paper. Because hardware con�guration is an expression

used with di�erent meanings by di�erent researchers, we shall restrict ourselves to the following

de�nition:

De�nition 2.1 (Hardware Con�guration). Let Π = {π1,π2, . . . ,πn } be a set of n processors, and

let Freq be a function that maps each processor to a list of possible frequency levels. A hardware

con�guration is a set of pairs h = {(π , f ) | π ∈ Π, f ∈ Freq(π )}. If (πi , fj ) ∈ h, for some

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:4 Ribeiro, et al.

fj ∈ Freq(πi ), then processor πi is said to be active in h with frequency fj , otherwise it is said to be

inactive.

Example 2.2 (Hardware Con�guration). �e HardKernel Odroid XU4 has four big cores {b0,b1,b2,b3}

and four LITTLE cores {L0,L1,L2,L3}. Each big core has 19 frequency levels (200MHz, 300MHz, . . . ,
1.9GHz, 2.0GHz). Each LITTLE core has 14 frequency levels (200MHz, 300MHz, . . . , 1.4GHz, 1.5GHz).

�is SoC supports any number of active processors; however, big cores must always use the same

frequency level. �e same holds true for LITTLE cores. In this se�ing, an example of hardware

con�guration would be (b0, 2.0GHz), (b2, 2.0GHz), (L1, 1.3GHz), (L2, 1.3GHz), (L3, 1.3GHz).

Example 2.2 describes a big.LITTLE architecture: a design introduced by ARM to denote archi-

tectures that combine high and low frequency clusters of cores. �is design is today very popular

in the implementation of smartphones, being used in models produced by Allwinner, HiSilicon,

LG, MediaTek, �alcomm, Samsung and Renesas, for instance. Yet, in spite of its rising popularity,

big.LITTLE is far from being the only single-ISA heterogeneous architecture available today at a

relatively low cost. ARM itself, in partnership with NVIDIA, has designed technologies such as

Tegra (Di�y et al. 2014), which came before the big.LITTLE model, and DynamicIQ
1
, which makes

it more granular, allowing clusters of cores with di�erent performance and power characteristics.

Adaptive Compilation. �e notion of hardware con�guration naturally leads to an interesting

problem in the �eld of adaptive compilation. In the words of Cooper et al., “an adaptive compiler
uses a compile-execute-analyze feedback loop to �nd the combination of optimizations and parameters
that minimizes some performance goal, such as code size or execution time”. In this paper we are

interested in solving the adaptive compilation problem that we de�ne below:

De�nition 2.3. Input-Aware Scheduling in Single-ISA Heterogeneous Architectures

(Isha) Input: a program P , its input i , a set of hardware con�gurations H = {h1, . . .hn }, and a

cost function O i
P : H 7→ R, which determines the cost of running P with input i on con�guration

h ∈ H . Examples of cost functions include runtime, energy, energy-delay product, throughput, etc.

Output: a con�guration h ∈ H that minimizes O i
P .

We believe that this paper provides the �rst solution to Isha. However, this problem is part of

a more general family of compiler-related problems, henceforth called Scheduling of Programs in
Heterogeneous Architectures (Spha). Given a program P , Spha asks for a new version P ′ of it, which

uses the hardware con�guration that best suits di�erent runtime conditions. �e program input

is a type of runtime condition, but other conditions exist. Examples include number of resident

processes, ratio of cache misses, quantity of context switches, etc. Solutions to Spha run aplenty in

the literature. Section 5 explains how our work stands among them.

2.1 Core Configuration in Single-ISA Heterogeneous Architectures
Mainstream compilers, such as Gcc or Clang, which generate code for the systems previously

mentioned, do not try to capitalize on di�erences between cores when producing binary programs:

the same executable runs in both cores. Nevertheless, we know of research artifacts that take these

di�erences into consideration –CHOAMP being the most recent technique in this direction (Sree-

latha et al. 2018). �e compiler technique proposed by CHOAMP tries to match program features,

such as syntax denoting branches, barriers, reductions and memory access operations with the

ideal con�guration for each function. CHOAMP has been tried on the OpenMP version of the NAS

benchmark suite (Bailey et al. 1991) with great bene�ts: on average, it could produce code that was

65% more energy-e�cient than its counterparts.

1
h�ps://developer.arm.com/technologies/dynamiq
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// The number of threads is a hidden input
void task(Stream<Value> s, long keySize) {
  while (!s.empty()) {
    // Get a key of the proper size:
    BigInteger key = getNextKey(keySize);
    // Use key to update globalMap
    synchronized(globalMap) {
      Value value = s.next();
      globalMap.put(key, value);
    }
  }
}

T	=	4	

T	=	8	

T	=	16	
T	=	32	

0	

2000	
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Fig. 1. A program, and its input space.

A�er CHOAMP trains a regression model, the same core con�guration decision applies for a

function, regardless of its actual inputs. �is shortcoming of purely static approaches has been well-

known, even before the advent of CHOAMP and similar techniques. �oting Nie and Duan: “since
the properties they have collected are based on the given input set, those o�ine pro�ling approaches are
hard to adapt to various input sets and therefore will drastically a�ect the program performance” (Nie

and Duan 2012). We corroborate this observation and show that it is possible to �nd di�erent

programs for which the ideal hardware con�guration varies according to their inputs. Example 2.4

illustrates this �nding with an actual experiment.

Example 2.4. Function task in Figure 1 inserts into a global map all the values stored in a

stream. Values are associated with a key, whose size varies according to the formal parameter

keySize. Task has a synchronized block; hence, it can be safely executed by multiple threads. �e

number of threads is a a hidden input. �ese three values: size of input stream, size of keys, and

number of threads, form a three dimensional space, which Figure 1 illustrates. �e ideal hardware

con�guration for task varies within this space. Figure 2 illustrates this variation for 3× 25 di�erent

input sets. �e notation XbYL denotes X big cores, and Y LITTLE cores. In this experiment, we

have set Freq(b) = 1.8GHz, for any big core b, and Freq(L) = 1.5GHz, for any LITTLE core L.

Example 2.4 is interesting because the ideal con�guration for task varies even for very large

values of s.size() and keySize. �e construction of a key, at line 5 of Figure 1 is a CPU-heavy,

synchronization-free task. �e larger the key, the more incentive we have to use the big cores.

However, the updating of globalMap at line 9 is a synchronization-heavy task: the more threads

we have, the less they bene�t from the big cores. Indeed, as already observed by Kim et al.

(2014), context switches are more expensive in the big than in the LITTLE cores. So are memory

accesses: on the Odroid XU4, L2 latency for big cores is 21 cycles while for LITTLE cores it is 10

cycles (Greenhalgh 2011). Furthermore, the larger the size of the input streams, the more o�en we

access the synchronized region between lines 7 and 10 of Figure 1. It is worth noting that we can

observe results similar to those seen in Example 2.4 in algorithms like Integer Sort, a benchmark

used by Sreelatha et al.. We evaluate a Java implementation of this algorithm in Section 4.

2.2 Accounting for Energy E�iciency
Today, optimizing a program for energy is as important as optimizing for performance (Cao et al.

2012; Kambadur and Kim 2014; Pinto et al. 2014). Such importance comes with extra di�culties:

once we add in energy e�ciency alongside runtime as another optimization dimension, the impact

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Fig. 2. The ideal configuration for di�erent parameters of the task function seen in Figure 1, for 4, 8 and

16 threads, measured on an Odroid XU4 with the userspace governor, and default configuration 4b4L. The

name(s) inside each box indicate the best configuration(s) for that input. ’X’ indicates setups with three or

more configurations tied as best. To produce these charts, we followed a methodology yet to be described in

Section 4.7. Notice that even considering 4 threads, there is benefit to enable more than four processors, as

the Java virtual machine creates threads for garbage collection and JIT compilation, for instance.

of program inputs onto the choice of the ideal con�guration becomes much higher. Because

low-frequency cores tend to be more power e�cient than high-frequency processors, we end up

having more incentive to use them. However, these low-frequency cores also tend to take longer

to �nish tasks; consequently, using more energy to perform a job. �is observation is critical in

ba�ery-powered devices, such as smartphones. �e next example analyzes such tradeo�s.

Example 2.5. We have used the power measurement apparatus shown in Figure 3(a) to plot

runtime and energy consumption for the function task earlier seen in Fig. 1, considering two

di�erent input sets. Figure 3(b) shows the power pro�le of Task for a synchronization-free set of

inputs (top) and for a synchronization heavy set (bo�om). Following da Silva et al., we call the chart

relating runtime and energy a constellation. �e constellation in Figure 3(c) shows the behavior of

task for the synchronization-free input. In this case, the size of keys is very large, and the number

of insertions in the globalMap is very low, thus con�icts seldom happen. On the other hand, if we

make the size of keys very small, and the size of the stream very large, then we obtain a rather

di�erent constellation, which Figure 3(d) outlines. �is constellation shows how Task performs in

a synchronization-heavy environment.

We found the results shown in Example 2.5 rather unexpected, given how drastically changes in

inputs modify the disposition of hardware con�gurations in the constellations. �e best energy and

time con�guration in the CPU-heavy se�ing, 4b4L, happens to be one of the worst con�gurations

in the synchronization-heavy se�ing. Such dramatic changes make it very di�cult for a completely

static approach to �nd good hardware con�gurations for program parts. �e size and type of

program inputs are only known at runtime. As a typical way to handle the lack of information at

compile time, researchers have been resorting to online monitoring. In this case, an in-vivo pro�ler,

à la FreeLunch (David et al. 2014), constantly veri�es hardware state, and takes core con�guration

decisions based on dynamic information. �is approach has been adopted in systems such as

OctopusMan (Petrucci et al. 2015) and Hipster (Nishtala et al. 2017). Yet, the same problems

pointed by Nie and Duan already in 2012 persist: “online monitoring approaches had to trace threads’
execution on all core types, which is impractical as the number of core types grows.” �is observation,
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void syncFreeTask(Stream<Value> s, long keySize, 
                     Map<BigInteger, Value> privateMap) {
  while (!s.empty()) {
    // Get a key of the proper size:
    BigInteger key = getNextKey(keySize);
    // Use key to update the map (private per thread)
    Value value = s.next();
    privateMap.put(key, value);
  }
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Fig. 3. (a) The energy measurement apparatus. (b) Instantaneous power charts for configuration 4b4L when

running with di�erent inputs. (c) Constellation for synchronization-free input set. (d) Constellation for

synchronization-heavy input set. Frequencies are set to 2.0GHz for big, and 1.5GHz for LITTLE cores.

together with the examples discussed in this section, has motivated the contributions of this paper,

which we shall detail in Section 3.

3 SOLUTION
We apply statistical regression on the arguments of a function to determine the ideal hardware

con�gurations for di�erent inputs of that function. �e e�ective implementation of this idea asks

for the parsing and modi�cation of programs. �e pipeline in Figure 4 provides an overview of our

code transformation techniques. To ease our presentation, we shall be using source code in all our

examples, as seen in that �gure. However, our solution works at the Java bytecode level and all

our interventions on the program happen within the compiler –more precisely in the program’s

intermediate representation. Our techniques could have been applied directly onto Java sources or

even onto a di�erent programming language. Nevertheless, working at the bytecode level brings

one major advantage: we can optimize programs wri�en in di�erent languages that run on the

Java Virtual Machine. Indeed, in Section 4 we shall validate our techniques using Java and Scala

benchmarks.

3.1 Multiple Linear Regression
�e key ingredient of our work is the application of multivariate regression onto the arguments of

functions. We explore linear regression to build a prediction model that can match actual function

parameters with resource-e�cient hardware con�gurations. Because a function might have several

parameters, we use multiple linear regression when building predictors. We extend our regression

model to a multivariate system, as the output is a vector (of ideal con�gurations). In this model, we

de�ne a number of dependent variables, grouped into a matrix C , plus a number of independent
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void task(Stream<Value> s, long keySize) {
  Bundle b = new Bundle(0xA33F0251);
  b.addConfig(Env.getCurrentConfig());
  b.addVar((double)s.size());
  b.addVar((double)keySize);
  b.addVar((double)Thread.activeCount());
  b.startTimer();
  while (!s.empty()) {
    BigInteger key = getNextKey(keySize);
    synchronized(globalMap) {
      Value value = s.next();
      globalMap.put(key, value);
    }
  }
  b.endTimer();
}

Soot
add profiling
instrumentation

.jar/.class
instrumented
for training

Bash+Java
Driver (java)
I/O hooks

List of
inputs

Training result:
(inputs, configs)

Python
Regression
Analysis

Soot
add prediction
instrumentation

.jar/.class
instrumented
for production

Regression
Coefficients

(matrix !)

@AdaptiveMethod
@HiddenInput (expr=“Thread.activeCount()”)
void task(Stream<Value> s, long keySize) {
  while (!s.empty()) {
    BigInteger key = getNextKey(keySize);
    synchronized(globalMap) {
      Value value = s.next();
      globalMap.put(key, value);
    }
  }
}

void task(Stream<Value> s, long keySize) {
  … 
  config = // predicted configuration for
         // (s.size(), keySize, Thread.activeCount());
  Regression.changeConfig(config);
  while (!s.empty()) {
    BigInteger key = getNextKey(keySize);
    synchronized(globalMap) {
      Value value = s.next();
      globalMap.put(key, value);
    }
  }
  // Restore original configuration (See Fig.14)
}

Annotated
.jar/.class

Annotated
.java/.kt

Javac/Kotlinc
Pre-process
annotations

Fig. 4. The execution pipeline of Jinn-C.

!00   !01   !02   !03   !04
!10   !11   !12   !13   !14
!20   !21   !22   !23   !24
!30   !31   !32   !33   !34

0    1    0    0    0
1    0    0    0    0
0    0    0    0    1
0    0    0    0    1

0b
1L

1b
0L

1b
1L

2b
0L

2b
1L

BestConfig(f("01, "02, "03)) = 1b0L

BestConfig(f("11, "12, "13)) = 0b1L

BestConfig(f("21, "22, "23)) = 2b1L

BestConfig(f("31, "32, "33)) = 2b1L

1   "01   "02   "03
1   "11   "12   "13
1   "21   "22   "23
1   "31   "32   "33

training inputs

function arguments

×#=

C A ϴ

Fig. 5. Formula to train a 3-ary function f (α0,α1,α2). The goal of multivariate linear regression is to find the

coe�icients Θ that approximate the product C = σ (AΘ). Training set contains four samples.

variables, grouped into a matrix A. �e goal of the regression model is to determine a matrix Θ that

approximates the product C = σ (AΘ). In this case, σ is the so�max function, applied on the lines

of the matrix product AΘ. If Z is an 1×n vector, e.g., a line of AΘ, then σ (Z ) is also an 1×n vector,

whose jth element is de�ned as: σ (Z )j = eZ j /
∑n

1
eZk . �e so�max function receives a vector of

real numbers, and produces a vector of same size normalized over a probability distribution. Every

σ (Z )j is a number between 0.0 and 1.0, and the sum of all the elements within σ (Z ) is 1.0.

Example 3.1. Figure 5 presents a formula for regression involving a function f that has three

formal parameters. We assume a universe of �ve valid con�gurations (0b1L, 1b0L, 1b1L, 2b0L and

2b1L). �e frequency level is immaterial for this example: big and LITTLE cores run at a certain

�xed frequency, which is not necessarily the same for the two clusters. In this example we have a

training set containing four samples, each one representing a di�erent invocation of function f ,

ideally with di�erent actual arguments.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:9

�ematrixA of independent variables. As Example 3.1 illustrates, the matrixA encodes known

values of function arguments. �ese values are called the training set of our regression. If we are

analyzing a function with n arguments, and our training set containsm function calls, then A is a

matrix withm lines, and n+1 columns. �e extra column is the all-ones vector 1
m

, which represents

intercepts – constants that allow us to handle a scenario in which the training set contains only

null values. �is all-ones column is the �rst column of matrix A in Figure 5.

Example 3.2. Figure 6 shows how ten di�erent samples of function Task, from Fig. 1, are organized

into a matrix A of independent variables.

1 4 10 100,000

1 4 100 1,000

1 4 10,000 100

1 8 100 100

1 8 1,000 10,000

1 8 10,000 10

1 16 1 10,000

1 16 10 1,000

1 16 100 10

1 16 10,000 100,000

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

# 
Th

re
ad

s

s.size()

ke
yS

ize

# Threads
s.siz

e()
keyS

ize
intercepts

m
atrix A

 w
ith training inputs

Fig. 6. Training set for the Task method (Fig. 1). The table on the right is matrix A of independent variables.

�ematrix C of dependent variables. C represents the ideal hardware con�guration for each

input in the training set. If we admit k valid con�gurations, and our training set has m samples,

thenC is anm × k matrix. Each line ofC is a unitary vector ei , which has all the components set to

zero, except its ith index, which is set to one. If Cji = 1, then i is the best con�guration for input j.
�e next example illustrates these notions with actual data.

Example 3.3. Figure 7 reuses the ten samples earlier discussed in Example 3.2 to show how

we build the matrix of dependent variables. Notice that this matrix has one line per sample, and

one column per con�guration of interest. Because a typical heterogeneous architecture might

support thousands of di�erent con�gurations, usually we separate a few when doing regression.

For instance, in Section 4, to render our approach practical, we shall consider only 10 out of the

4,654 possible con�gurations of the Odroid XU4 board. �is need for bounding the search space

might, of course, prevent us from discovering good optimization opportunities; however, it ensures

that our methodology is practical. Section 4 discusses the criteria used to build the search space of

allowed con�gurations.

Finding the parameter matrix Θ. As previously mentioned, the problem of constructing a

predictor based on multivariate linear regression consists in �nding a matrix Θ that maximizes

the quantity of correct predictions on the training set. �e underlying assumption is that if Θ
approximates the behavior of the training set, then it is likely to yield also good results on the

test set. �ere exist e�cient techniques to �nd Θ –gradient descent being the most well-known of

them (Cauchy 1847). Because our model involves only searches over a linear space, gradient descent

converges quickly to a global optimum. By a linear search space, we mean that, for each element
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T"="4"

T"="8"
T"="16"
T"="32"
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m
atrix C

 w
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1b0L 4b0L 4b2L 4b4L
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Fig. 7. Matrix of independent variables built for ten di�erent invocations of function Task in Figure 1.

(i, j ) inC , we have that: Ci j = Θ0j + αi1Θ1j + . . . + αimΘmj . �erefore, non-linear expressions such

as αipαiq bear no impact onCi j . Henceforth we shall assume that Θ can be e�ciently approximated

for any training set. In Section 4.4 we shall demonstrate that such is the case.

Example 3.4. Figure 8 shows a possible matrix Θ that gradient descent �nds for the Task function,

when given the training set seen in Figures 6 and 7. Once we apply the so�max function onto

the product AΘ we obtain a predicted matrix C ′, which approximates the target matrix C , e.g.,

C ′ = σ (AΘ). Each line of C ′ adds up to
2

1.00. �e largest value in each line i of C ′ determines the

ideal con�guration for the input set Ai . �e matrix Θ seen in Figure 8 led us into aC ′ that correctly

matches the target C in all but two inputs. Some misses are expected. If we resort to more complex

regression models, for instance, with non-linear components, then we might �nd a Θ that correctly

predicts every row of C . However, this matrix, which �ts too well the training set, might not yield

good predictions on unseen inputs.

1b
4L

4b
0L

4b
2L

4b
4L

!=

The goal matrix C Matrix A

Matrix ϴ

1 4 10 100000

1 4 100 1000

1 4 10000 100

1 8 100 100

1 8 1000 10000

1 8 10000 10

1 16 1 10000

1 16 10 1000

1 16 100 10

1 16 10000 100000

-0.0125 0.0114 0.0006 -0.6481

-0.1964 0.0472 0.0166 -0.0759

-0.1763 -0.0008 0.0000 0.0002

0.0010 -0.0003 -0.0050 0.0000

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1b
4L

4b
0L

4b
2L

4b
4L

The predicted matrix C’

×

✔

✘

✔

✔

✔

✔

✔

✔

✘

✔

1.00 0.00 0.00 0.00

0.00 0.67 0.01 0.33

0.00 0.00 0.22 0.78

0.00 0.57 0.30 0.13

0.00 0.06 0.00 0.94

0.00 0.00 0.39 0.61

1.00 0.00 0.00 0.00

0.01 0.89 0.01 0.09

0.00 0.59 0.37 0.05

0.00 0.00 0.00 1.00

Fig. 8. The result of multivariate linear regression produced by the training set seen in Examples 3.2 and 3.3.

Using Θ to carry out predictions. �e single output of regression is the matrix Θ. Once we �nd

a suitable Θ, we can use it to predict the ideal con�guration for inputs that we have not observed

during training. To this e�ect, as we shall be�er explain in Section 3.3, the constants in Θ are

2
We are using only two decimal digits; hence, rounding errors prevent us from obtaining 1.00 in every line.
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hardcoded into the binary text that we generate for the function f under analysis. If f is invoked

with a set of inputs Ai , then the expression σ (AiΘ) is computed on-the-�y. �e result of this

evaluation determines the con�guration that will be active during the invocation of f .

Example 3.5. Figure 9 shows how the matrix Θ found in Figure 8 supports prediction. We use

it to guess the best con�guration for four di�erent input sets. �ese unseen invocations of Task

are marked as the dark spheres in Figure 9. In this example, Θ lets us correctly predict the ideal

con�guration for three out of the four samples. In one case, the last input in Figure 9, we wrongly

predict the best con�guration as 4b2L, whereas empirical evidence suggests that it should be 4b4L.

!(                                   × ϴ ) =

!(                                   × ϴ ) =

!(                                   × ϴ ) =

!(                                   × ϴ ) =

T"="4"

T"="8"
T"="16"
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1.E+05"

10^1" 10^2" 10^3" 10^3"
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1 4 1 10000 1.00 0.00 0.00 0.00

1 8 10 100000
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1.00 0.00 0.00 0.00

0.01 0.68 0.26 0.05

0.00 0.00 0.57 0.43

✔

✘

✔
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4b
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4b
4L

Unseen inputs Predictions

1 16 10000 10

Fig. 9. The matrix Θ found in Figure 8 used to predict the ideal configuration for four unseen input sets.

Inputs used in the training set are the light-grey points, whereas inputs in the test set are dark-grey.

3.2 Engineering the Training Phase
In the following subsections we describe our design decisions for the training phase.

3.2.1 Code Annotation. We use a system of annotations to tell Jinn-C what are the methods

and their inputs that should be used in the multivariate regression. �is can be used as either Java

or Scala comments. We de�ne three types of annotations:

@AdaptiveMethod: marks a method as the target of multivariate regression. �e annotated

method will go through every stage outlined in Figure 4. Unless the @Input annotation is

also used, every formal parameter of the method will be used as an independent variable of

the linear regression. Global variables are not considered inputs in this case.

@Input: speci�es which references or primitive values are independent variables (the α ′s in

Figure 5) in the regression. �is annotation must be employed when Jinn-C’s users know

that some function arguments bear no e�ect onto the choice of ideal con�gurations for the

target method. Function parameters and global variables (whose scope includes the point

where the target method is declared) can be marked as inputs. If names marked as inputs

are not visible within the target method, a compilation error ensues.

@HiddenInput: speci�es extra information to be used as independent variables. �ese

hidden inputs are mostly system variables, such as the number of threads; however, hidden

inputs can also be global variables that are not directly used within a function, albeit they

are accessed within methods called by said function. A method, chain of methods or any

expression can be used to obtain a reference to a hidden input. �e names used in these

expressions must be visible during compilation time, otherwise an error is thrown.

Example 3.6. Figure 10 shows two examples of annotated methods. �ese examples were taken

from actual applications. However, for the sake of readability, we have removed some boilerplate
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code that, otherwise, would render the programs di�cult to understand. �e Visit method, which is

part of an implementation of the Breadth-First Search algorithm, contains three Input annotations.

Two of them, referring to Visited and Graph, were applied onto global variables. �e other, on NT,

refers to a method argument. �e method Count, part of a sorting application, contains two Input

annotations, all used on function arguments. �ese annotations are redundant in this example,

because whenever an adaptive method does not present an Input annotation, all its arguments are

marked as independent variables. Because this method is invoked by threads in a Java thread pool,

the number of active threads in the pool is marked as a hidden input.

@AdaptiveMethod
@Input (global="visited")
@Input (global="graph")
@Input (param="NT")
void visit(final int NT) throws ... {
  Vector<Visitor> bots = new Vector<Visitor>(NT);
  for (int i = 0; i < NT; i++) {
    bots.add(new Visitor(graph, i));
  }
  for (Visitor v : bots) { v.start(); }
  for (Visitor v : bots) { v.join(); }
}

@AdaptiveMethod
@Input (param="START")
@Input (param="END")
@HiddenInput (expr="forkJoinPool.getActiveThreadCount()")
void count(final int START, final int END) {
  for (int j = START; j <= END; j++) {
    SingleCounter aux = counters[elements[j]];
    synchronized (aux) {
      aux.value += 1;
    }
  }
}

Fig. 10. Examples of annotated code snippets. (Le�) Breadth-first search. (Right) Sorting application.

�e expression (expr=“forkJoinPool.getActive�readCount()”) will be parsed by Soot, which

will split it into 2 parts: forkJoinPool and getActiveThreadCount(). �e former, forkJoinPool, must

be an object accessible from the Count method, so forkJoinPool needs to be global in the current

class or be a class visible in the path. Notice that our annotations can only be processed if we

compile the original java (or Scala) �le with debug information. For instance, if we use JavaC to

produce bytecodes, then we must pass the -g �ag to it.

3.2.2 Extracting Sizes from Annotated Terms. Annotations tell Jinn-C to build expressions de-

noting the size of the annotated names. �e technique used to obtain these sizes depends on the

type of the target input. Currently, we can reconstruct sizes for the following pa�erns:

• Primitive types: the size of a primitive type is its own value. We do not allow annotations

on booleans and characters, as their values do not have a direct conversion to a real (e.g., a

double) number.

• Wrappers: types such as Integer or Double, which work as wrappers of primitive types,

give us a size through their value() methods, e.g., intValue() for Integer, doubleValue() for

Double, etc.

• Arrays and Strings: we derive the size of such types via the length property.

• Collections: we derive the size of collections by invoking their size() method.

• Other classes: we search within the declaration of the type, or in any of its super-types, for a

method called size(); otherwise, we search for a property called length. If such names are not

to be found, an error ensues. Notice that, in this case, users can still use the HiddenInput
annotation to specify an expression that yields the size of the target type.

Example 3.7. Figure 11 shows the instrumented version of the annotated programs discussed in

Example 3.6. We remind the reader that such pro�ling interventions are inserted in the intermediate

representation of these programs –source code is used only for readability. Instrumentation is

performed by a singleton class Instrumenter, which stores “bundles” of data. Each bundle contains
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an identi�er, a hardware con�guration, the independent variables of the adaptive method, and the

runtime for those variables. �e identi�er associates a method with a bundle. Multiple invocations

of the same method will produce one bundle per call.

void visit(final int NT) throws ... {
  Bundle b = new Bundle(0xFF4AC08D);
  b.addConfig(getCurrentConfig());
  b.addInt(visited.length); // array
  b.addInt(graph.size()); // class has size()
  b.addInt(NT); // primitive type
  Instrumenter.save(b);
  b.startTime();
  Vector<Visitor> bots = new Vector<Visitor>(NT);
  for (int i = 0; i < NT; i++) {
    bots.add(new Visitor(graph, i));
  }
  for (Visitor v : bots) { v.start(); }
  for (Visitor v : bots) { v.join(); }
  b.stopTime();
}

void count(final int START, final int END) {
  Bundle b = new Bundle(0xFF4AC08E);
  b.addConfig(getCurrentConfig());
  b.addInt(START); // primitive type
  b.addInt(END); // primitive type
  b.addInt(forkJoinPool.getActiveThreadCount());
  Instrumenter.save(b);
  b.startTime();
  for (int j = START; j <= END; j++) {
    SingleCounter aux = counters[elements[j]];
    synchronized (aux) {
      aux.value += 1;
    }
  }
  b.stopTime();
}

Fig. 11. Instrumented version of programs seen in Figure 10. (Le�) Breadth-first search. (Right) Sorting

application.

3.2.3 Profiling, Logging and Training. Currently, we use a pro�ling infrastructure wri�en as a

combination of Java code and bash scripts. �e part implemented in Java consists of a driver –a

service that runs the program that we want to optimize in a controlled environment. �e driver

has two responsibilities. First, it is in charge of warming up the target program. We call warm-up
an execution of the target program performed before pro�ling starts. �e warm-up phase tends to

put the virtual machine into a steady state; thus, ensuring the consistency of the results that we

produce during the training phase. Jinn-C’s users must determine the number of warm-up rounds.

Barre� et al. (Barre� et al. 2017) have shown that it is very di�cult to ensure that a given virtual

machine will always reach a steady state of peak performance. Nevertheless, in the experiments

that we report in Section 4 using Java Hotspot, a steady state is reached. �e second responsibility

of the driver is to change hardware con�gurations before every pro�ling experiment takes place. To

this end, the driver goes over a range of pre-de�ned con�gurations, repeating the same experiment

a number of times for each of them.

void warmUp() { 
  setWarmUp(true);
  for (int i = 0; i < WARM_UP_RUNS; i++) { 
    // Use reflexion to call user code.
    // …
    runBench();
  } 
  setWarmUp(false);
  // Next execution will be actual profiling…
}

static void setCoreConfig(Config config) throws ... { 
  Runtime r = Runtime.getRuntime();
  // Build the command string for the system call:
  String configStr = configStr(config.numBig, config.nLITTLEs);
  final int pid = getProcessID();
  String cmd = "taskset -pa " + configStr + " " + pid;
  // Set the hardware configuration:
  Process p = r.exec(cmd);
  // Check for errors ...
} 

Fig. 12. Example of functionalities provided by the driver. (Le�) simplified version of the warm-up code.

(Right) library code that changes the number of cores visible to the target program.

Figure 12 shows part of the driver’s implementation. �e code is organized as a framework:

users must implement one method called runBench, which is then invoked a preset number of
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times by the WarmUp function in Figure 12. Any implementation of runBench must invoke the

target program once over a particular set of inputs. Users must specify the code that reads and

loads inputs. Implementing runBench is one, out of the two tasks, that we expect from Jinn-C’s

users. �e other task is to provide inputs for training. We use a suite of bash scripts to traverse

and organize the program inputs, changing hardware con�gurations between experiments. Our

framework provides functions to setup the hardware con�guration. As an example, Figure 12

shows function setCoreConfig, which determines the number of big and LITTLE cores available

on the Odroid XU4 board that we use in this paper.

Jinn-C receives an annotated program P , a set of di�erent inputs I = {ι1, ι2, . . . , ιm } of P , a

set of acceptable hardware con�gurations H = {h1,h2, . . . ,hn }, and the implementation of the

runBench method. It will then invoke runBench a pre-determined number of times for each

pair (h, ι),h ∈ H , ι ∈ I . �e best con�guration for each input ι is chosen among the most frequent

winner, according to some objective function, such as time or energy consumption. In case of

ties, we choose the con�guration with the smallest quantity of resources. Resources are ordered

according to the number of big cores, the number of LITTLE cores, the frequency of the big cores

and the frequency of the LITTLE cores, in this sequence.
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Fig. 13. Training output produced by the driver on a few inputs seen in Figure 6. Y-axis is runtime in seconds.

Example 3.8. Figure 13 shows a typical output produced during Jinn-C’s training phase, con-

sidering runtime as the objective function. In this experiment, each pair formed by a hardware

con�guration and an input is sampled ten times. Vectors at the bo�om of Figure 13 are the inputs

passed to function Task (Fig. 1). �ese vectors are the independent variables in the regression

model. Vectors at the top of Figure 13 are the best con�gurations. �ese vectors will give us the

dependent variables used in the regression.

3.3 Generation of Adaptive Code
�e product of training is a collection of �oating-point constraints, organized into a matrix Θ. �ese

constraints are hardcoded into the production code that we want to optimize. Such step happens in

the phase labeled “add prediction instrumentation” in Figure 4. �e instrumentation that we add

into a function f of interest evaluates the expression σ (AiΘ), where Ai is an 1 × n vector. �e size

of Ai is one plus the number of inputs of the target function. �e expression σ (AiΘ) yields an 1×k
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vector of probabilities, whose sum adds up to 1.0. �e largest element within σ (AiΘ) determines

the next con�guration that will be used during the current invocation of f .

Example 3.9. Figure 14 shows the production version of our running example, the function

Task, originally seen in Figure 1. �e dashed box outlines the code that we add to Task to change

the current hardware con�guration. We show, on the right of the �gure, the key methods used

to change and restore the current hardware con�guration. �e matrix Θ seen in the production

version of function Task was found a�er training, as Example 3.4 explains.

// Returns the product A×θ
double[] mul(double[] A, double[][] θ);

// Applies the σ function onto d
double[] softmax(double[] d);

// Returns the index that holds the largest
// value within vector pred
int indexLargestElement(double[] pred);

// Get the i-th hardware configuration
Config getConfiguration(int i);

// Get the configuration currently in use
Config getCurrentConfiguration();

// Change the configuration currently in use
// to the new configuration g
void changeConfiguration(Config g);

void task(Stream<Value> s, long keySize) {
  double Theta[][] = {{-0.0125, 0.0114, 0.0006, -0.6481},
                                   {-0.1964, 0.0472, 0.0166, -0.0759},
                                   {-0.1763, -0.0008, 0.0000, 0.0002},
                                   {0.0010, -0.0003, -0.0050, 0.0000}};
  double A[] = {1.0, s.size(), keySize, Thread.activeCount()};
  double P[] = Regression.softmax(Regression.mul(A, Theta));
  int i = indexLargestElement(P);
  Config originalConfig = Regression.getCurrentConfiguration();
  Config config = Regression.getConfiguration(i);
  Regression.changeConfiguration(config);
  while (!s.empty()) {
    // Get a key of the proper size:
    BigInteger key = getNextKey(keySize);
    // Use key to update globalMap
    synchronized(globalMap) {
      Value value = s.next();
      globalMap.put(key, value);
    }
  }
  changeConfiguration(originalConfig);
}

Fig. 14. The production version of function Task (Fig.1).

4 EVALUATION
�e goal of this section is to demonstrate the e�ectiveness of the technique presented in this work

when optimizing bytecodes that run on top of the Java Virtual Machine. To this end, we shall

provide answers to the following research questions:

RQ1 – Speed: what is the speedup that can be obtained by Jinn-C when compared to sched-

uling techniques of similar goals?

RQ2 – Energy: what is the improvement that Jinn-C delivers on top of other tools, in terms

of energy consumption?

RQ3 – Training: what is the training time of Jinn-C, and how does it compare to the training

time of similar tools?

RQ4 – Convexity: how is the space of best con�gurations that Jinn-C explores when trying

to optimize programs?

We compare Jinn-C with two state-of-the-art approaches: Sreelatha et al.’s CHOAMP, and ARM’s

GTS (Je� 2013). GTS, short for Global Task Scheduling, is the default scheduler for big.LITTLE

systems running the Linux Kernel. Before delving into numbers, in Section 4.1 we introduce the

runtime environment we have used to carry out the evaluation of Jinn-C.
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4.1 Experimental Setup
�e Hardware. Experiments were performed in an Odroid Xu4 development board. �is device

is powered by a Samsung Exynos 5422 SoC with four ARM Cortex A15 cores, running at up to

2.0GHz, and four Cortex A7 cores running at up to 1.5GHz. �e board features 2GB of LPDDR3

RAM. To measure the energy consumed exclusively by speci�c functions, we send signals to the

synchronization circuit seen in Figure 3-a through one of the board’s GPIO pin. We use the energy

measurement framework proposed by Bessa et al.. Power is measured by a National Instruments

DAQ USB 6009 device, at a rate of 12,000 samples per second.

�e So�ware Stack We use Oracle’s openJDK/JRE 11 LTS
3

and Soot 3.2.0
4

to analyze, instrument

and run bytecodes. No modi�cations have been made in the Java Virtual Machine or its Just-in-Time

compilers –all the interventions performed by either Jinn-C or CHOAMP happen at the bytecode

level, and are carried out via Soot. To mitigate the e�ect of JIT compilation in the execution time of

benchmarks, each application has a warm-up stage before its actual execution. �e exact number of

warm-up runs is speci�c for each benchmark and was manually tuned for each one of them (details

in Table 1). Tuning is made possible by the JVM �ag -XX:+PrintCompilation, which allows us to

see when JIT compilation kicks in during the execution of an application. �us, we can change the

number of warm-up rounds, to minimize the amount of compilation taking place during the �nal

–metered– run of a given benchmark. We have used Python 3.4 and Scikit Learn (Pedregosa et al.

2011) to implement regression. Python was also used, in addition to GNU Bash 4.4.19, to generate

the suite of micro-benchmarks used by CHOAMP during its training stage (details in section 4.3).

�e Operating System in the Odroid XU4 used in our experiments is the GNU/Linux Ubuntu 18.04

LTS with kernel 4.17.

�e Benchmark Suite. �is paper uses the 18 benchmarks shown in Table 1. Eight of them were

taken from Acar et al. (2018), who had selected nine programs from Problem Based Benchmark
Suite (PBBS) (Shun et al. 2012) to evaluate concurrency models. �e version of PBBS used by Acar

et al. was implemented in C/C++, so we had to reimplement all the benchmarks in Java. We had

to remove DelaunayTriangulation from our collection, because we could not ensure that its

parallel implementation always produces the same output: the triangulation varies depending on

how threads are scheduled. We have replaced it with BFS, which is also part of PBBS, but was not

in Acar et al.’s suite.

We also chose six benchmarks from the Renaissance benchmark collection, which was recently

released by Prokopec et al. (2019). Renaissance contains 21 benchmarks. All the programs in that

collection come with only one set of input values. We chose only six benchmarks because we

had to understand and augment each program with more inputs and veri�cation code. �e extra

inputs enable pro�ling, and the veri�cation code is necessary to check execution correctness. �e

six benchmarks that we chose are implemented in Scala; however, they rely on a variety of Java

libraries, such as Twi�er’s Finagle (Twi�er 2019), Java Jenetics (Wilhelmst�er 2019), the Spark

Machine Learning Library (Meng et al. 2016), and the standard Java library. Our criterion when

picking up programs was simplicity: we selected benchmarks that were easy to extend with more

inputs. We have opted for Scala programs to demonstrate that Jinn-C can deal well with languages

other than Java.

In addition to PBBS and Renaissance, Jinn-C is distributed with four extra benchmarks. �ese

programs are typical parallel algorithms. �ree of them were taken from public repositories; the

fourth, HashSync, was adapted from Butcher’s book. We shall refer to these four programs as part

of Jinn-C’s test suite. All the 18 benchmarks used in this paper share a similar running environment:

3
h�ps://jdk.java.net/11/

4
h�ps://github.com/Sable/soot/releases/tag/3.2.0
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Source Benchmark TTime Lang. LoC W Class

Shun et al. bfs 42m33s J 353 4 graph manipulation

Shun et al. radixSort 20m51s J 501 4 sorting algorithm

Shun et al. sampleSort 26m17s J 414 3 sorting algorithm

Shun et al. su�xArray 30m12s J 316 3 string manipulation

Shun et al. removeDuplicates 30m31s J 174 4 sequence manipulation

Shun et al. convexHull 56m30s J 499 5 geometry and graphics

Shun et al. nearestNeighbors 30m29s J 715 3 geometry and graphics

Shun et al. spanningForest 21m40s J 410 4 graph manipulation

Prokopec et al. als 80m12s S/J 97 1 matrix factorization

Prokopec et al. philosophers 21m15s S/J 146 1 synchronization algorithm

Prokopec et al. futureGenetic 26m8s S/J 115 1 genetic algorithm

Prokopec et al. �nagleHTTP 225m10s S/J 119 1 server-client exchanges

Prokopec et al. chiSquare 27m15s S/J 101 1 statistical algorithm

Prokopec et al. decTree 64m22s S/J 129 1 random forest algorithm

Jinn-C collinearPoints 32m1 J 565 3 geometry and graphics

Jinn-C hashSync 94m7s J 73 3 sequence manipulation

Jinn-C insertAndAdd 47m30s J 130 4 database manipulation

Jinn-C randomNumComp 26m7s J 89 6 system exploration

Table 1. Benchmarks used for evaluating Jinn-C. The TTime column shows the time required to train each

benchmark, which will be further explained in Section 4.4. Lang. contains the source language of benchmarks,

where J stands for Java and S stands for Scala. The W column shows the number of warm-up executions

performed by each application. among Jinn-C’s benchmarks, CollinearPoints finds three points on the same

line; HashSync inserts in a concurrent table; RandomNumComp has several long sequences of branches that

are hard to predicted; and InsertAndAdd implements parallel operations on a DataBase.

an execution driver that is responsible for warming them up, preparing the inputs and collecting

time and energy values. �e time and energy used by the driver itself is never considered in our

experiments. Table 1 presents an overview of the used benchmarks, as well as basic characteristic

of their code.

�eAvailable Inputs. We have augmented every one of our benchmarks with 14 inputs. We have

separated 10 of these inputs for training. When evaluating the trained model, for each application

we used four new, unseen, and randomly chosen inputs. Sections 4.5 and 4.6 further discuss the

impact of di�erent inputs in the execution time and energy consumption of the applications.

4.2 On the Choice of Hardware Configurations
When training Jinn-C and CHOAMP, we consider a universe of six core con�gurations: 4b4L (4 big

and 4 LITTLE cores), 4b0L, 0b4L, 2b2L, 2b0L and 0b2L. �e LITTLE cores run always at maximum

frequency: 1.5GHz; for the big cores, we let them run at either 1.6GHz or 1.8GHz. �erefore,

the two adaptive approaches that we use might choose from a pool of ten di�erent hardware

con�gurations: 4b4L at either 1.6 or 1.8GHz (plus LITTLE cores at 1.5GHz), 0b4L at 1.5GHz, 4b0L

at either 1.6 or 1.8GHz, etc. GTS runs on 4b4L by default, meaning it is allowed to choose among

any possible hardware con�guration involving big and LITTLE cores. We coupled GTS with the

on-demand frequency governor, meaning that the runtime system is free to choose any frequency

level available in the hardware. For the sake of reproducibility and to be�er understand the impacts
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of our technique, we have disabled Dynamic Voltage and Frequency Scaling (DVFS) when using

either Jinn-C or CHOAMP, but not GTS.

Before presenting results, one last observation is in order: we chose 1.6GHz and 1.8GHz, instead

of the highest frequency levels (1.9 and 2.0GHz), for the big cores to be�er deal with thermal
thro�ling. �ermal thro�ling forces the Operating System to downscale CPUs’ frequencies (Cohen

et al. 2003). As stated by Mishra et al., this is a security feature that keeps the system temperature

under a safe threshold. Excessive exposures to high temperatures could damage the equipment.

We have noticed empirically that thermal thro�ling renders experiments at 1.9 or 2.0GHz hard to

reproduce. Figure 15 (a) illustrates this issue on the Odroid Xu4 board. �e image displays the online

values for temperature and clock frequency when executing a parallel application that performs

math calculations during 15 seconds. �e benchmark uses all 8 available cores and every time the

temperature surpasses 176 F (80 C) the clock speed is decreased, leading to thermal values under

the acceptable threshold. Such behavior happens even when DVFS is disabled. �is experiment

can be easily reproduced with the code in Figure 15 (b).
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Fig. 15. Variation in CPU frequency and temperature values for the big cluster while running a sample

application that uses all 8 available cores. Samples collected at each 50 ms from thermal sensors present in

the Odroid Xu4 board. The code in the right side shows where such values are set in the Operating System.

4.3 On the Implementation of CHOAMP
CHOAMP is a system that, di�erent from our approach, relies on the syntax of the program text

–and on its implied semantics– to predict ideal hardware con�gurations. CHOAMP represents this

text of code as a set of characteristics that are useful for training and prediction. Such characteristics,

also called prime features, are split into two di�erent groups: language dependent and independent.

Language independent features, such as number of branches or memory accesses, are easier to

identify and port, as they tend to appear in most languages. On the other hand, features that

depend on a speci�c programming language need to be adapted when porting the technique to new

environments. CHOAMP was initially designed to work with OpenMP applications implemented

in C; therefore, some of the prime features used by Sreelatha et al. depend on OpenMP constructs.

Our re-implementation of CHOAMP targets Java applications running on Hotspot; thus, some of

its features had to be adapted to our needs. Table 2 presents the list of program characteristics

originally used by CHOAMP for OpenMP and the new version of them, adapted to the JVM scenario.

Most language dependent features �nd correspondents in the Java standard library, as is the case

of the omp atomic pragma, which we derived from classes in the package java.util.concurrent.
atomic. For instance, the occurrence of method incrementAndGet(), from the AtomicInteger
class, would add an “Atomic Operation” to the feature vector of the function where incrementAnd
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Prime Feature Language dependent OpenMP Java VM

Branch operations No - -

Memory operations No - -

Atomic operations Yes omp atomic atomic

Barriers Yes omp barrier CyclicBarrier, Phaser

Critical Sections Yes omp critical Synchronized blocks/methods

False Sharing No - -

Flush operations Yes omp �ush not used

Table 2. Prime features and their correspondent Java VM implementation.

Get() is invoked. However, some features like �ush operations, proposed by Sreelatha et al., were

not reused in our implementation, due to a lack of correspondents in Java.

Training and Tuning Following Sreelatha et al., we have trained the probabilistic model of

CHOAMP by running it on a set of generic micro-benchmarks. As the original training set was

wri�en in C and OpenMP, we had to create a new training set that suits Java. �e micro-benchmarks

we used were directly based on the scripts made public by Sreelatha et al.. �ese scripts generate

hundreds of micro-benchmarks. �e user adjusts the intensity of each prime feature through

command line inputs. We used the original generator scripts
5
, adjusting the code to Java. We also

used the same range and intensity of features as used in the original work of CHOAMP. Sreelatha

et al. have proposed three di�erent regression models for CHOAMP. We have experimented with

all of them, and ended up choosing the linear �t, because, in our setup, it yields be�er results than

the �adratic and Gaussian predictors. �is result in on par with the �ndings of Sreelatha et al..

4.4 RQ1: Training time
Both techniques, Jinn-C and CHOAMP, require training. Training adjusts the parameters of the

regression models to enable predictions of good hardware con�gurations. While this cost is paid

once by CHOAMP, when performing the training over a set of generic micro-benchmarks, Jinn-C

pays this cost for each application that it optimizes. CHOAMP uses micro-benchmarks for training;

Jinn-C uses the application itself. �e training time of CHOAMP is computed over a set of 285

micro-benchmarks over all the hardware con�gurations previously described in Section 4.2. In our

hardware, we took about 780 minutes to train our implementation of CHOAMP. Out of this training

time, 365 minutes were spent running the micro-benchmarks with the 1.8GHz CPU frequency

for the big cluster. When using the frequency of 1.6GHz, the time required for training was 415

minutes.

To train Jinn-C, we follow the methodology described in Section 3.2.3: we run the target

application on the allowed hardware con�gurations using the inputs available for training. Jinn-C’s

training time, naturally, depends on the target application’s run time, and on the number of available

inputs. Table 1 shows the training time of each individual benchmark. Using ten inputs and ten

allowed hardware states (clock speed × hardware con�gurations) per benchmark, we took around

903 minutes to train the 18 programs used in this section. �e longest time, three hours and 45

minutes were spent in Renaissance’s FinagleHTTP. PBBS’s RadixSort gave us the fastest training

time: 20 minutes and 51 seconds.

Once the benchmark is trained, no further pre-processing is required, and, as we will see in

Section 4.5, runtime overhead tends to be minimal. �is overhead is due to the matrix multiplication

5
h�ps://bitbucket. org/jkrishnavs/openmp-eigenbench
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that happens once a hot function is invoked, as we have discussed in Section 3.3. �e product of

training, the code earlier seen in Figure 14, is embedded directly into a program’s bytecode. �us,

di�erent programs adapted by Jinn-C can coexist independently in the same runtime environment,

for no changes are required in the operating system as a result of training.

4.5 RQ2: Optimizing for Speed
We have tested Jinn-C and CHOAMP with two objective functions: speed and energy consumption.

When the cost function is speed, the tools try to decrease the execution time of target applications.

Figure 16 reports results observed when optimizing for speed. In Section 4.6 we discuss energy

consumption. We have tested each benchmark with four input sets. Each chart within those �gures

shows four sets of three boxplots. Boxplots refer, in this order, to Jinn-C, CHOAMP and GTS. We

adopt a signi�cance level α = 0.05; i.e., a con�dence interval of 95%. So, if the results reported

by, for instance, Jinn-C and CHOAMP cannot be distinguished with a con�dence of more than

95%, then we consider them as originating from the same population. In practical terms, we use

Student’s Test to measure the p-value of two populations, and consider signi�cant results with a

p-value lower than 0.05. White boxes with le�ers identify the technique which achieved the best

result for a combination of benchmark and input. J stands for Jinn-C, C for CHOAMP and G

for GTS. �e grey box x means that the two winning systems have produced results very similar

(with a p-value greater than 0.05). Above each one of the four input sets used in each benchmark,

we show the con�guration that Jinn-C chose for that input. We also show, in a grey box, to the

right of the name of each benchmark, the con�guration that CHOAMP chooses for that benchmark.

�e data in Figure 16 shows that, in 26 cases, out of 72 combinations of [benchmarks × inputs],

Jinn-C achieved be�er results when compared to the other techniques. In other 42 cases, Jinn-C was

at least as fast as GTS or CHOAMP. CHOAMP, in turn, accounted for 3 best results, and GTS for

only one, in hashSync’s In4. �ese results are summarized in Figure 17.

All the winning con�gurations, regardless of the technique, featured the frequency of 1.8GHz

whenever at least one big core was present. �e most recurring con�gurations were 4b4L (16x

for CHOAMP and 37x for Jinn-C), 0b4L (2x/11x), 4b0L (17x for Jinn-C only), 2b0L (4x for Jinn-C

only), and 0b2L (2x for Jinn-C only). Jinn-C performed rather poorly in collinearPoints. Such

bad results were due to the fact that we have not chosen good inputs for training. Indeed, the 10

training inputs chosen when optimizing collinearPoints �nd in 4b4L their best con�guration;

however, coincidentally, three of the test inputs ask for 4b0L. It su�ces to switch one of the test

and training inputs to put Jinn-C on par with the other schedulers. On the other hand, for some

benchmark, such as chiSqare or futureGenetic, Jinn-C’s choices outperformed other scheduling

techiniques, with rather di�erent con�gurations for di�erent inputs, as it is expected for the tool.

In the chiSqare case, for example, with the �rst input (workers = 2, SIZE = 1023464), Jinn-C

prediction of the con�guration 4b0L led to a mean run time of 8.18 seconds, while CHOAMP’s

decision led to 8.47 and GTS to 9.00, with all values for the p-value less than 0.008. For its second

input (workers = 4, SIZE = 2250467), we observed that Jinn-C’s predicted con�guration (2b0L)

led to a mean runtime of 17.00 seconds, while CHOAMP’s had a runtime of 18.70 and GTS 17.76.

For the second input, all the p-values were below 0.0005, resulting in a con�dence interval over

99%. �ese scenarios illustrate well the e�ectiveness of Jinn-C in identifying the most suitable

con�guration for applications that behave di�erently according to the inputs fed to them.

4.6 RQ3: Energy Consumption
Figure 18 compares CHOAMP, GTS and Jinn-C regarding energy consumption. When set up to
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Fig. 16. Execution time of benchmarks from Table 1. Y -axis shows time in seconds. X -axis shows di�erent

experiments; each experiment uses di�erent inputs. Boxplots are ordered by Jinn-C, CHOAMP and GTS.

reduce energy consumption, Jinn-C and CHOAMP build models to estimate the most adequate

hardware con�guration to save energy. �e clock speed of 1.6GHz was the most common among

all the schedulers, except for one input set of RadixSort, when CHOAMP chose to use 1.8GHz.
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Fig. 17. Summary of the results displayed in Figure 16

When optimizing for speed and energy, GTS with the on-demand DVFS governor was free to

choose any possible con�guration with frequency levels ranging from 200MHz to 1.8GHz in the big

cluster and from 200MHz to 1.5GHz in the li�le one. As this is the default and expected behavior

for the GTS scheduling policy, we kept it as is. Observe that this scheduling technique may lead to

performance degradation because GTS increases frequency gradually, until it arrives at the top

levels in computation intensive programs. Additionally, even with several warm-up rounds, GTS

might take an excessively long time to achieve maximum frequency levels for some applications.

Figure 18 reveals that Jinn-C achieved best results in 20 experiments (out of 72); GTS was the

best approach in 2, and CHOAMP in 6. Figure 19 summarizes these results. Most of the experiments

did not have a clear winner –this di�culty to pinpoint a best technique is, in part, due to the fact

that we measure energy for the entire board, not only for the cores. �erefore, peripherals such as

the fan and the memory bus increase the variance of our results.

We have observed that Jinn-C outperforms GTS mostly due to its ability to choose high-

performance hardware con�gurations, such as 4b4L at 1.6GHz immediately, whereas GTS needs a

warm-up period to arrive at them. Our implementation of CHOAMP has chosen the 0b4L con�g-

uration at 1.6GHz for almost all the samples in this evaluation. We speculate that this behavior

happens because some features, such as branching and memory operations, tend to dominate

the others in most of the functions that constitute a benchmark. We believe that it is possible to

improve this behavior by scaling the relative importance of the features; however, this optimization

is out of the scope of this work.

On the In�uence of Execution History. �e execution history impacts the energy consumed by

di�erent programs. Take as an example the entry corresponding to HashSync in Figure 18. When

analyzing the second input set (In2), we observed that, although predicting the same con�guration

as CHOAMP, Jinn-C led to marginally higher energy consumption. �is behavior is even more

surprising once we consider that Jinn-C’s and CHOAMP’s codes run in about the same time, as

Figure 16 reveals. �e culprit of this apparently counter-intuitive result is the board state at the

time measurement started. �e warm-up phase, in this case, is responsible for giving Jinn-C’s and

CHOAMP’s codes di�erent starting states. In the discussion that follows, we shall separate the

execution of a benchmark into two parts: warm-up, when the target routine is called a number of

times to stabilize the Java Virtual Machine; and measurement, when the behavior of the benchmark

is actually gauged.
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Fig. 18. Energy consumed by the benchmarks in Table 1. Y -axis shows energy in Joules. X -axis shows di�erent

experiments. Boxplots are sorted as in Figure 16.

Figure 20 shows the power pro�le of HashSync, including warm-up and measurement phases.

�e invocations of HashSync in the warm-up stage have di�erent set of inputs compared to

its invocation in the measurement stage. As a result, our technique predicted the con�guration
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Fig. 19. Summary of the results displayed in Figure 18

4b4L for the last warm-up invocation, which is di�erent than 0b4L, the con�guration predicted at

measurement. �e use of big cores during warm-up increased the amount of energy consumed

by the board in the measurement step, due to the hysteresis of power dissipation. �is inertia is a

well-known phenomenon (De Leon and Semlyen 1995; Pique�e et al. 2002); it may be seen as the

tendency of a system to conserve an electrical deformation caused by a stimulus. In the context of

this example, such stimulus is the use of the big cluster in the warm-up phase.

�e mean power dissipated by Jinn-C’s version of HashSync in Figure 20(a) was 4.68W.

CHOAMP’s mean power is 4.09W, as taken from Figure 20(b). �us, Jinn-C’s program consumes

more energy (9.47J vs 8.22J). However, if we �x the hardware con�guration in the warm-up phase of

Jinn-C’s code, then we observe that the average power dissipation goes down to 3.95W. Figure 20(c)

reports the power pro�le of this setup. �e only di�erence between the two executions of Jinn-C,

in Figures 20 (a) and (c), is the con�guration used in the warm-up stage. �ere is no statistically

signi�cant di�erence between the amount of energy consumed by CHOAMP and Jinn-C once we

ensure that both use the same hardware con�guration during warm-up.

�is behavior caused by di�erences between con�gurations chosen at warm-up and measurement

phases only a�ects Jinn-C. CHOAMP always chooses the same hardware con�guration per function,

and GTS increases frequency gradually. �e only further impact that this di�erence had in Jinn-C’s

behavior was observed in DecTree and CollinearPoints. In both cases, only for the last input set

(In4), and only when measuring runtime (Fig. 16). �e need to change con�guration when moving

from warm-up to measurement has costed Jinn-C’s code some time. Although a small fraction of

the overall execution, it let CHOAMP’s program run slightly faster than Jinn-C’s. When reporting

the results in this paper (Figs. 16 and 18), we have opted to let the hardware con�guration �uctuate

during warm-up, as this is the expected behavior of Jinn-C, once it is deployed in production.

4.7 RQ4: Convexity
A convex space is a region within an Euclidean Space whose intersection with any line results in a

continuous line segment. If the convex space can be described by a function, then said function is also

called convex. Convex functions are very important in optimization problems, because exploration

methods based on derivatives, such as gradient descent, are guaranteed to converge to the optimal

solution when applied on them (Boyd and Vandenberghe 2004). �erefore, we can restrict ourselves

to them, as they are known to be much faster than other space exploration techniques, such as

those that use quadratic or higher-order polynomials (e.g., multi-layer perceptrons). �at is the

reason why we chose a linear model to match hardware con�gurations with program inputs.
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Fig. 20. Power consumption of HashSync with (a) Jinn-C, (b) CHOAMP, and (c) Jinn-C with fixed configuration

during warm-up. P-values below 0.05 indicate that the executions of Jinn-C’s and CHOAMP’s code are

statistically di�erent. For this benchmark, CHOAMP (b) predicted 0b4L as the best configuration for the

parallel kernel. This configuration is used in all warm-up stages and in the measurement phase. Figures 16

and 18 report values for the measured run only.

In our se�ing, the search space is a function that maps program inputs to optimal hardware

con�gurations. �is function is discrete, because its image is a �nite set of hardware con�gurations.

Convexity, in this case, means that if we �x all the program inputs, and vary the one le�, every

region covered by the same optimal con�guration is continuous. In other words, while varying

this single input monotonically, we will not leave a region r where a certain con�guration h is the

best, �nd a new region r ′ governed by a di�erent con�guration h′, only to �nd h again later, once

we cross the boundary between r ′ and a third region r”. In this section, we analyze the space of

optimal hardware con�gurations, to provide some evidence that these regions tends to be convex

in practice. Notice that convexity is a tendency, not a principle. In other words, it is possible to

implement programs whose space of optimal con�gurations is not convex. Example 4.1 shows an

instance of such a program.

Example 4.1. If we build a function that associates the input i of the procedure unlikely (seen

below) with optimal hardware con�gurations, then we obtain a non-convex (concave) space:

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:26 Ribeiro, et al.

1684 126

750000

1250000

250000

1000000

500000El
em

en
ts

workers

4b0L 4b4L

RadixSort

101010 1010

10

10

10

10

10

s.
si

ze
 ( 

)

keySize

HashSync

1

2

3

4

2 3 4 5 6

4b4L, 4b0L, 0b4L, 2b0L, 0b2L

4b4L, 4b0L, 0b4L, 2b0L

4b4L

2b0L

4b4L, 4b0L

1062 84

50

90

10

70

30

N
um

be
r o

f C
ro

m
os

so
m

es

workers

FutureGenetic

4b0L

0b4L

4b0L, 0b4L

1062 84

12500

50000

3125

25000

6250

M
ea

ls

number of philosophers

Philosophers 

4b4L, 4b0L, 0b4L, 2b0L, 0b2L

0b4L

(b)(a)

(d)(c)

0b4L, 0b2L, 2b0L

5

Fig. 21. Best configurations for 4 benchmarks used in our evaluation. The charts exemplify the convex space

over benchmarks inputs. HashSync and FutureGenetic receive 3 inputs each, but for this experiment we fixed

the number of workers in HashSync to 16 and the number of generations in FutureGenetic to 5000.

void unlikely(int i) {if (10 <= i && i <= 100) sync_intensive(); else comp_intensive();}

�e unlikely routine receives one input, namely, the integer i. If i is less than 10 or greater than

100, it invokes a computationally intensive procedure; otherwise, it invokes a synchronization

intensive one. �e optimal con�gurations for these two pieces of code di�er. Let con�guration hc
be the optimal hardware con�guration for procedure comp intensive. �e space occupied by hc ,

i.e., [−∞, 10[∪], 100,+∞] is non-continuous; hence, concave.

�e program discussed in Example 4.1 is unlikely to exist in real-world code. To support this

statement, Figure 21 provides a glimpse of the best hardware con�gurations for di�erent inputs

of four benchmarks in our collection. �e �gure contains four parts. Each part is a table, which

associates a pair of inputs with the hardware con�gurations that yielded the fastest execution times

for those inputs. In this experiment, we chose the two benchmarks from our collection that contain

two inputs. We have augmented this set with HashSync and FutureGenetic, to �t the �gure

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:27

into a 2 × 2 matrix –for aesthetic reasons only. However, to avoid having to draw a 3D-�gure, we

have �xed one input for each benchmark
6
: number of Generations for FutureGenetic, and

number of workers, for HashSync. �e choice of benchmarks is arbitrary. We did not add more

benchmarks to this experiment because the generation of the data necessary to build each table

demands considerable computational time, e.g.:

• RadixSort: 1 hour and 37 minutes

• Philosophers: 2 hours and 24 minutes

• FutureGenetic: 55 hours and 53 minutes

• HashSync: 58 hours and 12 minutes

Furthermore, to keep evaluation within a reasonable time frame, we have used only the frequency

level of 1.8GHz for the big cores. Had we also included the level of 1.6GHz, as in the previous

sections, then our total running time would more than double.

Experimental Setup: �e four tables in Figure 21 show convex spaces: any sequence of rows or

columns traverses a continuous region. Example 4.2 illustrates what we mean by a continuous

region.

Example 4.2. Consider HashSync in Figure 21(c). If we �x the value for keySize in 10
6
, and

vary s.size() in the set {10, 10
2, 10

3, 10
4, 10

5}, we observe that each one of the continuous intervals

[10, 10], [10
2, 10

2
] and [10

3, 10
5
] is governed by the same set of optimal hardware con�gurations.

However, to arrive at this result, we had to account for small variations in runtime. To generate

the data in every table seen in Figure 21, we considered 5 × 5 combinations of inputs, and the �ve

hardware con�gurations used in the previous sections. We run each pair of inputs with every

con�guration of interest 20 times. To reduce variance, we removed the four fastest and the four

slowest samples; hence, considering 12 executions per input per con�guration. Nevertheless,

this expedient only would not be enough to mitigate the problem of high variance, mostly when

considering input se�ings with small runtimes. �us, to deal with variance, we had to resort to

more sophisticated statistical tools, as we explain in the rest of this section.

Dealing with variance: Had we simply picked for every input pair the con�guration with the best

average runtime, then variations would lead to almost random results for small inputs. To avoid this

problem, we consider not the best, but the set of best hardware con�gurations per input. For each

input, we ��ed our linear regression model (via Python’s statsmodels module (Seabold and Perktold

2010)) using the ordinary least squares method to estimate the model parameters. �en, we analyze

the di�erences among group means with standard analysis of variance (ANOVA) (Fisher 1918).

ANOVA generalizes the T-test beyond two means. In the context of this work, we consider groups

of hardware con�guration; and the null hypothesis states that samples from di�erent hardware

con�gurations came from the same probability distribution. �us, the null hypothesis means that

there is no statistical di�erence between the execution time of di�erent hardware con�gurations.

We checked if the data were statistically signi�cant considering a con�dence of 95%, i.e., a P-value

less than 0.05. ANOVA is an omnibus test –it analyzes the data as a whole; hence, we performed a

post-hoc test to �nd out where the di�erences among the groups were.

�e post-hoc test consists of a series of T-tests between each existing pair of con�gurations.

As a result, the signi�cance level had to be adjusted to avoid spurious positives. To that end, we

used the Bonferroni correction (Bonferroni 1936; Dunn 1958). Each individual hypothesis is tested

with a threshold of α/n, where α is the signi�cance level for the entire set of comparisons, e.g.,

0.05, and n is the number of statistical tests performed. �us, analogously to the ANOVA test, if

6
Notice that varying all the three inputs would also increase substantially the time to run this experiment. We speculate

that this time would jump from 58 hours up to 12 days for HashSync only.
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the resulting P-value is lower than the signi�cance level given by the Bonferroni correction, then

the null hypothesis can be rejected. Rejection of the null hypothesis is equivalent to assume that

the two groups of con�gurations present a statistically signi�cant di�erence. Otherwise, the two

groups are considered identical and become part of the same cluster of con�gurations. �e runtime

of a cluster of con�gurations is the average of all the samples in that cluster.

5 RELATEDWORK
�is paper uses a type of machine learning technique –multivariate linear regression– to solve an

instance of program scheduling in heterogeneous architectures. Machine learning and scheduling

in heterogeneous systems have played an important role in compiler design in recent years. For an

overview of the impact of machine learning onto compiler construction, we recommend surveys

from Wang and O’Boyle and Ashouri et al. �e rest of this section focuses on scheduling.

5.1 A General Overview on Program Scheduling in Heterogeneous Systems
�e general problem of scheduling computations in heterogeneous architectures has a�racted

much a�ention in recent years, as Mi�al and Ve�er have thoroughly discussed. Table 3 provides a

taxonomy of previous solutions to this problem. We group them according to the level at which

they are implemented, and to the way they answer each of the following questions:

• Architecture: do they apply to Single or Multi-ISA systems?

• Source: is the program’s code modi�ed?

• Input: is the approach input-aware?

• Auto: is user intervention required to choose a con�guration?

• Runtime: is runtime information exploited?

• Learn: is there any adaptation to runtime conditions?

Perhaps the most important di�erence among the several strategies proposed to �nd ideal hardware

con�gurations concerns the moment at which said strategy is used. In the rest of this section, we

consider the following three possible choices: at compilation time, at runtime, or both.

Static Solutions. �ese approaches work at compilation time. �ey might be applied by the

compiler, either automatically, i.e., without user intervention (Cong and Yuan 2012; Jain et al. 2016;

Luk et al. 2009; Poesia et al. 2017; Rossbach et al. 2013; Sreelatha et al. 2018; Tang et al. 2013), or not.

In the la�er case, users can use annotations (Mendonça et al. 2017), domain speci�c programming

languages (Luk et al. 2009; Rossbach et al. 2013) or library calls (Augonnet et al. 2011) to indicate

where each program part should run. �e main bene�t of static techniques is low runtime overhead:

because scheduling decisions are made before the program runs, no dynamic checks are necessary

to schedule computations. However, these techniques are unable to take runtime information into

consideration; hence, the same program phase is always scheduled in the same way. In Table 3,

techniques implemented at either the compiler or library levels are purely static.

Dynamic Solutions. Purely dynamic approaches take into account runtime information. �ey can

be implemented at the architecture level (Joao et al. 2012; Lukefahr et al. 2016; Rangan et al. 2009;

Van Craeynest et al. 2012a; Yazdanbakhsh et al. 2015), or at the virtual machine VM/OS level (Barik

et al. 2016; Gaspar et al. 2015; Nishtala et al. 2017; Petrucci et al. 2015; Somu Muthukaruppan

et al. 2014; Zhang and Ho�mann 2016). Examples of runtime information include input sizes and

resource demands. However, there may be some overhead on accurately collecting and processing

runtime data. Besides, because scheduling decisions are taken on-the-�y, usually the scheduler

does not spend much time weighing choices. �us, the scheduler might take suboptimal decisions

due to its inability to solve hard combinatorial problems.
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Work Level Arch. Source Input Auto Runtime Learn

(Poesia et al. 2017) C Multi Yes No Yes No Yes

(Barik et al. 2016) C Multi Yes No Yes Yes No

(Rossbach et al. 2013) C/L Multi Yes No No Yes No

(Luk et al. 2009) C/L Multi Yes No No Yes No

(Joao et al. 2012) A/L Multi Yes No No No No

(Lukefahr et al. 2016) A Multi No No Yes No No

(Van Craeynest et al. 2012a) A Multi No No Yes No No

(Nishtala et al. 2017) O Single No No Yes Yes Yes

(Petrucci et al. 2015) O Single No No Yes Yes No

(Delimitrou and Kozyrakis 2014) O Multi No No Yes Yes Yes

(Augonnet et al. 2011) L Multi Yes No No No No

(Piccoli et al. 2014) O/C Single Yes No Yes Yes No

(Tang et al. 2013) O/C Multi Yes No Yes Yes No

(Cong and Yuan 2012) O/C Multi Yes No Yes Yes No

(Sreelatha et al. 2018) C Single Yes No Yes No Yes

Jinn-C C Single Yes Yes Yes No Yes

Table 3. Di�erent solutions to the problem of finding ideal hardware configurations. We consider the

following levels: Architecture (A), Operating System (O), Compiler (C) or Library/Programming model (L).

Hybrid Solutions. Approaches that mix static and dynamic techniques are called hybrid. Examples

of hybrid solutions to scheduling include works from Piccoli et al. (2014), Cong and Yuan (2012),

and Tang et al. (2013). Piccoli et al have used a compiler to instrument a program with guards

that determine, based on input sizes, where each loop should run. Cong and Yuan, in turn, use the

compiler to partition a program in regions of similar behavior, and rely on runtime information

to schedule computation so as to minimize the energy consumed by each region. Finally, Tang et
al. use a compiler to populate a program code with markers, so that low-priority applications can

manage their own contentiousness to ensure the QoS of high-priority co-runners. None of these

previous work use any form of learning technique to tune the behavior of the scheduler, as Table 3

indicates in the column Learn. Guards, once created, behave always in the same way.

5.2 Scheduling in Single-ISA Heterogeneous Systems
Much a�ention has been dedicated to the problem of �nding good placements of computation on

Single-ISA systems, as Mi�al has summarized in a 2016 survey. However, we emphasize that a

large part of this literature concerns the design of scheduling heuristics implemented at the level

of the hardware or the operating system (Cai et al. 2016; Garcia-Garcia et al. 2018; Mi�al 2016;

Park et al. 2018; Van Craeynest et al. 2012b). �is section describes works that, like Jinn-C, are

adaptive, and have been speci�cally designed for big.LITTLE architectures. Table 4 categorizes

these techniques along the following lines:

• Granularity: what is the data used for training? Most of the techniques use the system’s

workload –available through performance counters. Choamp relies on features mined from

the target’s program code. We use the program’s inputs to perform predictions.

• Training: when does learning occur? O�-line systems calibrate the prediction model

before the target program runs; on-line systems do it while the program executes.
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Approach Granularity Training Data Target Level

Octopus-Man (Petrucci et al. 2015) runtime on-line self server OS

Sparta (Donyanavard et al. 2016) runtime o�-line µ-bench client OS

DyPO (Gupta et al. 2017) runtime o�-line µ-bench client OS

Tzilis et al. (2019) runtime o�-line µ-bench client OS

Hispter (Nishtala et al. 2017) runtime o�/on-line µ-bench+self server OS

Choamp (Sreelatha et al. 2018) syntax o�-line µ-bench client Comp.

SIAM (Krishna and Nasre 2018) syntax+data o�-line self client Comp.

Jinn-C data o�-line self client Comp.

Table 4. Di�erent solutions to Isha published in recent years.

• Data: what is the source of training data? OS-based o�-line systems usually rely on micro-

benchmarks (µ-benchs) to perform calibration. Choamp uses features of the program,

which it extracts from its syntax. Techniques used in servers can rely on the target program

itself as the source of training data, for said program is bound to run for a long time.

• Target: in which scenario is the technique meant to be used? Most of the papers that

deal with Isha, ours included, present solutions for embedded devices and smartphones.

Octopus-Man and Hipster were designed for data-centers.

• Level: as seen in Table 3. �e di�erent adaptive techniques that we list in Table 4 either

run on the operating system (OS), or are implemented in the compiler.

�e two related works that implement scheduling of computations in big.LITTLE architectures

at the compiler level are Sreelatha et al.’s CHOAMP, and Krishna and Nasre’s SIAM. We have

compared Jinn-C with CHOAMP extensively in this paper. SIAM, in turn, is a system that targets

speci�cally graph algorithms parallelized via OpenMP. It consists of a prediction model that, given

a particular shape of graph, determines the best data-structure format and hardware con�guration

for that shape. We could, in principle, adapt it to implement some of our benchmarks, such as

SpaningForest and BFS –graph-based algorithms. However, this implementation would involve

providing each algorithm with di�erent graph representations –a task to be paid at a non-negligible

programming cost.

6 CONCLUSION
�is paper has presented a code generation technique that adapts programs to good hardware

con�gurations, in the context of a single-ISA heterogeneous system. �e key insight of this work

was the observation that the values of a function’s inputs o�en provide enough information to

predict the best hardware con�guration that suits said function. To capitalize onto this observation,

we showed how to build predictors based on linear regression on function inputs. Our technique

is able to outperform, be it in energy consumption, be it in speed, the default Linux scheduler

(the Global Task Scheduler), and CHOAMP, a state-of-the-art tool that predicts the best hardware

con�guration to a program based on its syntax (and implied semantics). �e intuition nurtured

during the cra� of our tool, Jinn-C, lets us believe that our technique –linear regression on function

inputs– can be applied onto di�erent programming languages and runtime environments. �e

realization of such intuition on concrete technologies is an interesting research direction that we

still would like to explore in the future.
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