Cezar Junio

D A Ribeiro

Silva

Fernando Magno

Quint Ão Pereira

Scheduling in Heterogeneous Architectures via Multivariate Linear Regression on Function Inputs

Keywords: CCS Concepts:, So ware and its engineering → Compilers, •Computing methodologies → Parallel programming languages, Machine learning, Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs Ribeiro, et al

Heterogeneous multicore systems, such as the ARM big.LITTLE, feature a single instruction set with di erent types of processors to conciliate high performance with low energy consumption. An important question concerning such systems is how to determine the best hardware con guration for a particular program execution.

e hardware con guration consists of the type and the frequency of the processors that the program can use at runtime. Current solutions are either completely dynamic, e.g., based on in-vivo pro ling, or completely static, based on supervised machine learning approaches. Whereas the former solution might bring unwanted runtime overhead, the la er fails to account for the diversity in program inputs. In this paper, we show how to circumvent this last shortcoming. To this end, we provide a suite of code transformation techniques that perform numeric regression on function arguments, which can have either scalar or aggregate types, so as to match parameters with ideal hardware con gurations at runtime. We have designed and implemented our approach on top of the Soot compilation infrastructure, and have applied it onto programs available in the PBBS and Renaissance suites. We show that we can consistently predict the best con guration for a large class of programs running on an Odroid XU4 board, outperforming other techniques such as ARM's GTS or CHOAMP, a recently released static program scheduler.

INTRODUCTION

Modern multicore platforms provide developers with a suite of technologies to produce code that is more energy-e cient [START_REF] Orgerie | A Survey on Techniques for Improving the Energy E ciency of Large-scale Distributed Systems[END_REF]). Among these technologies, two stand out today: dynamic voltage & frequency scaling [START_REF] Semeraro | Energy-E cient Processor Design Using Multiple Clock Domains with Dynamic Voltage and Frequency Scaling[END_REF] and single-ISA heterogeneous architectures in which di erent processors are combined into the same chip. e ARM big.LITTLE design exempli es the la er technology [START_REF] Hähnel | Heterogeneity by the Numbers: A Study of the ODROID XU+E Big. LITTLE Platform[END_REF]. Processors using both these technologies are today commonly found in smartphones and embedded systems. As an example, the Samsung Exynos 5422 chip has eight processors, four fast, but power hungry (the so called "big" cores), and four slow, but more power parsimonious (thus called "LITTLE" cores). Each processor has up to 19 di erent frequency levels, going from 200MHz to 1.5GHz in the LITTLE processors, and from 200MHz to 2.0GHz in the big cores [START_REF] Greenhalgh | Big.LITTLE processing with ARM cortex-A15 & cortex-A7[END_REF]).

e combination of fast and slow processors, each one featuring multiple frequency levels, gives programmers a vast suite of f j ∈ Freq(π i), then processor π i is said to be active in h with frequency f j , otherwise it is said to be inactive.

Example 2.2 (Hardware Con guration).

e HardKernel Odroid XU4 has four big cores {b 0 , b 1 , b 2 , b 3 } and four LITTLE cores {L 0 , L 1 , L 2 , L 3 }. Each big core has 19 frequency levels (200MHz,300MHz,. . . ,1.9GHz,2.0GHz). Each LITTLE core has 14 frequency levels (200MHz,300MHz,. . . ,1.4GHz,1.5GHz).

is SoC supports any number of active processors; however, big cores must always use the same frequency level. e same holds true for LITTLE cores. In this se ing, an example of hardware con guration would be (b 0 , 2.0GHz), (b 2 , 2.0GHz), (L 1 , 1.3GHz), (L 2 , 1.3GHz), (L 3 , 1.3GHz).

Example 2.2 describes a big.LITTLE architecture: a design introduced by ARM to denote architectures that combine high and low frequency clusters of cores. is design is today very popular in the implementation of smartphones, being used in models produced by Allwinner, HiSilicon, LG, MediaTek, alcomm, Samsung and Renesas, for instance. Yet, in spite of its rising popularity, big.LITTLE is far from being the only single-ISA heterogeneous architecture available today at a relatively low cost. ARM itself, in partnership with NVIDIA, has designed technologies such as Tegra [START_REF] Di Y | NVIDIA's Tegra K1 system-on-chip[END_REF], which came before the big.LITTLE model, and DynamicIQ1 , which makes it more granular, allowing clusters of cores with di erent performance and power characteristics.

Adaptive Compilation. e notion of hardware con guration naturally leads to an interesting problem in the eld of adaptive compilation. In the words of Cooper et al., "an adaptive compiler uses a compile-execute-analyze feedback loop to nd the combination of optimizations and parameters that minimizes some performance goal, such as code size or execution time". In this paper we are interested in solving the adaptive compilation problem that we de ne below:

De nition 2.3. I A S S ISA H A (I) Input: a program P, its input i, a set of hardware con gurations H = {h 1 , . . . h n }, and a cost function O i P : H → R, which determines the cost of running P with input i on con guration h ∈ H . Examples of cost functions include runtime, energy, energy-delay product, throughput, etc. Output: a con guration h ∈ H that minimizes O i P . We believe that this paper provides the rst solution to I . However, this problem is part of a more general family of compiler-related problems, henceforth called Scheduling of Programs in Heterogeneous Architectures (S). Given a program P, S asks for a new version P of it, which uses the hardware con guration that best suits di erent runtime conditions. e program input is a type of runtime condition, but other conditions exist. Examples include number of resident processes, ratio of cache misses, quantity of context switches, etc. Solutions to S run aplenty in the literature. Section 5 explains how our work stands among them.

Core Configuration in Single-ISA Heterogeneous Architectures

Mainstream compilers, such as G or C

, which generate code for the systems previously mentioned, do not try to capitalize on di erences between cores when producing binary programs: the same executable runs in both cores. Nevertheless, we know of research artifacts that take these di erences into consideration -CHOAMP being the most recent technique in this direction [START_REF] Krishna | CHOAMP: Cost Based Hardware Optimization for Asymmetric Multicore Processors[END_REF]). e compiler technique proposed by CHOAMP tries to match program features, such as syntax denoting branches, barriers, reductions and memory access operations with the ideal con guration for each function. CHOAMP has been tried on the OpenMP version of the NAS benchmark suite [START_REF] Bailey | NAS Parallel Benchmarks&Mdash;Summary and Preliminary Results[END_REF] with great bene ts: on average, it could produce code that was 65% more energy-e cient than its counterparts. A er CHOAMP trains a regression model, the same core con guration decision applies for a function, regardless of its actual inputs. is shortcoming of purely static approaches has been wellknown, even before the advent of CHOAMP and similar techniques.

oting Nie and Duan: "since the properties they have collected are based on the given input set, those o ine pro ling approaches are hard to adapt to various input sets and therefore will drastically a ect the program performance" [START_REF] Nie | E cient and Scalable Scheduling for Performance Heterogeneous Multicore Systems[END_REF]. We corroborate this observation and show that it is possible to nd di erent programs for which the ideal hardware con guration varies according to their inputs. Example 2.4 illustrates this nding with an actual experiment.

Example 2.4. Function in Figure 1 inserts into a global map all the values stored in a stream. Values are associated with a key, whose size varies according to the formal parameter S . T has a synchronized block; hence, it can be safely executed by multiple threads. e number of threads is a a hidden input. ese three values: size of input stream, size of keys, and number of threads, form a three dimensional space, which Figure 1 illustrates. e ideal hardware con guration for varies within this space. Figure 2 illustrates this variation for 3 × 25 di erent input sets. e notation XbYL denotes X big cores, and Y LITTLE cores. In this experiment, we have set Freq(b) = 1.8GHz, for any big core b, and Freq(L) = 1.5GHz, for any LITTLE core L.

Example 2.4 is interesting because the ideal con guration for varies even for very large values of .

() and S . e construction of a key, at line 5 of Figure 1 is a CPU-heavy, synchronization-free task. e larger the key, the more incentive we have to use the big cores. However, the updating of M at line 9 is a synchronization-heavy task: the more threads we have, the less they bene t from the big cores. Indeed, as already observed by [START_REF] Kim | Looking into heterogeneity: when simple is faster[END_REF], context switches are more expensive in the big than in the LITTLE cores. So are memory accesses: on the Odroid XU4, L2 latency for big cores is 21 cycles while for LITTLE cores it is 10 cycles [START_REF] Greenhalgh | Big.LITTLE processing with ARM cortex-A15 & cortex-A7[END_REF]. Furthermore, the larger the size of the input streams, the more o en we access the synchronized region between lines 7 and 10 of Figure 1. It is worth noting that we can observe results similar to those seen in Example 2.4 in algorithms like Integer Sort, a benchmark used by Sreelatha et al.. We evaluate a Java implementation of this algorithm in Section 4.

Accounting for Energy E iciency

Today, optimizing a program for energy is as important as optimizing for performance [START_REF] Cao | e Yin and Yang of Power and Performance for Asymmetric Hardware and Managed So ware[END_REF][START_REF] Kambadur | An experimental survey of energy management across the stack[END_REF][START_REF] Pinto | Understanding Energy Behaviors of read Management Constructs[END_REF]. Such importance comes with extra di culties: once we add in energy e ciency alongside runtime as another optimization dimension, the impact x 0b2L, 0b4L, 2b0L, 4b0L, 4b4L 0b2L, 0b4L, 2b0L, 4b0L, 4b4L

x 0b4L, 2b0L, 4b0L, 4b4L x 0b4L, 2b0L, 4b0L, 4b4L x x Fig. 2. The ideal configuration for di erent parameters of the function seen in Figure 1, for 4, 8 and 16 threads, measured on an Odroid XU4 with the userspace governor, and default configuration 4b4L. The name(s) inside each box indicate the best configuration(s) for that input. 'X' indicates setups with three or more configurations tied as best. To produce these charts, we followed a methodology yet to be described in Section 4.7. Notice that even considering 4 threads, there is benefit to enable more than four processors, as the Java virtual machine creates threads for garbage collection and JIT compilation, for instance.

of program inputs onto the choice of the ideal con guration becomes much higher. Because low-frequency cores tend to be more power e cient than high-frequency processors, we end up having more incentive to use them. However, these low-frequency cores also tend to take longer to nish tasks; consequently, using more energy to perform a job. is observation is critical in ba ery-powered devices, such as smartphones. e next example analyzes such tradeo s.

Example 2.5. We have used the power measurement apparatus shown in Figure 3(a) to plot runtime and energy consumption for the function earlier seen in Fig. 1, considering two di erent input sets. Figure 3(b) shows the power pro le of T for a synchronization-free set of inputs (top) and for a synchronization heavy set (bo om). Following da Silva et al., we call the chart relating runtime and energy a constellation. e constellation in Figure 3(c) shows the behavior of for the synchronization-free input. In this case, the size of keys is very large, and the number of insertions in the M is very low, thus con icts seldom happen. On the other hand, if we make the size of keys very small, and the size of the stream very large, then we obtain a rather di erent constellation, which Figure 3(d) outlines. is constellation shows how T performs in a synchronization-heavy environment.

We found the results shown in Example 2.5 rather unexpected, given how drastically changes in inputs modify the disposition of hardware con gurations in the constellations. e best energy and time con guration in the CPU-heavy se ing, 4b4L, happens to be one of the worst con gurations in the synchronization-heavy se ing. Such dramatic changes make it very di cult for a completely static approach to nd good hardware con gurations for program parts.

e size and type of program inputs are only known at runtime. As a typical way to handle the lack of information at compile time, researchers have been resorting to online monitoring. In this case, an in-vivo pro ler, à la F L [START_REF] David | Continuously Measuring Critical Section Pressure with the Free-lunch Pro ler[END_REF], constantly veri es hardware state, and takes core con guration decisions based on dynamic information.

is approach has been adopted in systems such as O M [START_REF] Petrucci | Energy-E cient read Assignment Optimization for Heterogeneous Multicore Systems[END_REF] and H [START_REF] Nishtala | Hipster: Hybrid Task Manager for Latency-Critical Cloud Workloads[END_REF]). Yet, the same problems pointed by Nie and Duan already in 2012 persist: "online monitoring approaches had to trace threads' execution on all core types, which is impractical as the number of core types grows." is observation, together with the examples discussed in this section, has motivated the contributions of this paper, which we shall detail in Section 3.

SOLUTION

We apply statistical regression on the arguments of a function to determine the ideal hardware con gurations for di erent inputs of that function. e e ective implementation of this idea asks for the parsing and modi cation of programs. e pipeline in Figure 4 provides an overview of our code transformation techniques. To ease our presentation, we shall be using source code in all our examples, as seen in that gure. However, our solution works at the Java bytecode level and all our interventions on the program happen within the compiler -more precisely in the program's intermediate representation. Our techniques could have been applied directly onto Java sources or even onto a di erent programming language. Nevertheless, working at the bytecode level brings one major advantage: we can optimize programs wri en in di erent languages that run on the Java Virtual Machine. Indeed, in Section 4 we shall validate our techniques using Java and Scala benchmarks.

Multiple Linear Regression

e key ingredient of our work is the application of multivariate regression onto the arguments of functions. We explore linear regression to build a prediction model that can match actual function parameters with resource-e cient hardware con gurations. Because a function might have several parameters, we use multiple linear regression when building predictors. We extend our regression model to a multivariate system, as the output is a vector (of ideal con gurations). In this model, we de ne a number of dependent variables, grouped into a matrix C, plus a number of independent . Formula to train a 3-ary function f (α 0 , α 1 , α 2). The goal of multivariate linear regression is to find the coe icients Θ that approximate the product C = σ (AΘ). Training set contains four samples.

variables, grouped into a matrix A. e goal of the regression model is to determine a matrix Θ that approximates the product C = σ (AΘ). In this case, σ is the so max function, applied on the lines of the matrix product AΘ. If Z is an 1 × n vector, e.g., a line of AΘ, then σ (Z) is also an 1 × n vector, whose j t h element is de ned as: σ (Z) j = e Z j / n 1 e Z k . e so max function receives a vector of real numbers, and produces a vector of same size normalized over a probability distribution. Every σ (Z) j is a number between 0.0 and 1.0, and the sum of all the elements within σ (Z) is 1.0.

Example 3.1. Figure 5 presents a formula for regression involving a function f that has three formal parameters. We assume a universe of ve valid con gurations (0 1L, 1 0L, 1 1L, 2 0L and 2 1L). e frequency level is immaterial for this example: big and LITTLE cores run at a certain xed frequency, which is not necessarily the same for the two clusters. In this example we have a training set containing four samples, each one representing a di erent invocation of function f , ideally with di erent actual arguments. e matrix C of dependent variables. C represents the ideal hardware con guration for each input in the training set. If we admit k valid con gurations, and our training set has m samples, then C is an m × k matrix. Each line of C is a unitary vector e i , which has all the components set to zero, except its i t h index, which is set to one. If C ji = 1, then i is the best con guration for input j.

e next example illustrates these notions with actual data.

Example 3.3. Figure 7 reuses the ten samples earlier discussed in Example 3.2 to show how we build the matrix of dependent variables. Notice that this matrix has one line per sample, and one column per con guration of interest. Because a typical heterogeneous architecture might support thousands of di erent con gurations, usually we separate a few when doing regression. For instance, in Section 4, to render our approach practical, we shall consider only 10 out of the 4,654 possible con gurations of the Odroid XU4 board. is need for bounding the search space might, of course, prevent us from discovering good optimization opportunities; however, it ensures that our methodology is practical. Section 4 discusses the criteria used to build the search space of allowed con gurations.

Finding the parameter matrix Θ. As previously mentioned, the problem of constructing a predictor based on multivariate linear regression consists in nding a matrix Θ that maximizes the quantity of correct predictions on the training set.

e underlying assumption is that if Θ approximates the behavior of the training set, then it is likely to yield also good results on the test set. ere exist e cient techniques to nd Θ -gradient descent being the most well-known of them [START_REF] Cauchy | Méthode Générale pour la résolution des systèmes d' Équations simultanées[END_REF]). Because our model involves only searches over a linear space, gradient descent converges quickly to a global optimum. By a linear search space, we mean that, for each element T"="4" T"="8" T"="16" T"="32" 1.E+00" (i, j) in C, we have that:

1.E+01" 1.E+02" 1.E+03" 1.E+04" 1.E+05" 10^1" 10^2" 10^3" 10^3" 10^4" # T h
C i j = Θ 0j + α i1 Θ 1j + . . . + α im Θ mj .
erefore, non-linear expressions such as α ip α iq bear no impact on C i j . Henceforth we shall assume that Θ can be e ciently approximated for any training set. In Section 4.4 we shall demonstrate that such is the case.

Example 3.4. Figure 8 shows a possible matrix Θ that gradient descent nds for the T function, when given the training set seen in Figures 6 and7. Once we apply the so max function onto the product AΘ we obtain a predicted matrix C , which approximates the target matrix C, e.g., C = σ (AΘ). Each line of C adds up to2 1.00. e largest value in each line i of C determines the ideal con guration for the input set A i . e matrix Θ seen in Figure 8 led us into a C that correctly matches the target C in all but two inputs. Some misses are expected. If we resort to more complex regression models, for instance, with non-linear components, then we might nd a Θ that correctly predicts every row of C. However, this matrix, which ts too well the training set, might not yield good predictions on unseen inputs.

1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1b4L 4b0L 4b2L 4b4L
The predicted matrix C'

× ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔
1.00 0.00 0.00 0.00 0.00 0.67 0.01 0.33 0.00 0.00 0.22 0.78 0.00 0.57 0.30 0.13 0.00 0.06 0.00 0.94 0.00 0.00 0.39 0.61 1.00 0.00 0.00 0.00 0.01 0.89 0.01 0.09 0.00 0.59 0.37 0.05 0.00 0.00 0.00 1.00 Using Θ to carry out predictions. e single output of regression is the matrix Θ. Once we nd a suitable Θ, we can use it to predict the ideal con guration for inputs that we have not observed during training. To this e ect, as we shall be er explain in Section 3.3, the constants in Θ are Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:11 hardcoded into the binary text that we generate for the function f under analysis. If f is invoked with a set of inputs A i , then the expression σ (A i Θ) is computed on-the-y. e result of this evaluation determines the con guration that will be active during the invocation of f . Example 3.5. Figure 9 shows how the matrix Θ found in Figure 8 supports prediction. We use it to guess the best con guration for four di erent input sets. ese unseen invocations of T are marked as the dark spheres in Figure 9. In this example, Θ lets us correctly predict the ideal con guration for three out of the four samples. In one case, the last input in Figure 9, we wrongly predict the best con guration as 4b2L, whereas empirical evidence suggests that it should be 4b4L.

(× ϴ) = (× ϴ) = (× ϴ) = (× ϴ) = T"="4"
T"="8"

T"="16"

T"="32" 1.E+00"

1.E+01" 1.E+02" 1.E+03" 1.E+04" 1.E+05" 10^1" 10^2" 10^3" 10^3" 10^4" # T h

Engineering the Training Phase

In the following subsections we describe our design decisions for the training phase.

3.2.1 Code Annotation. We use a system of annotations to tell J C what are the methods and their inputs that should be used in the multivariate regression. is can be used as either Java or Scala comments. We de ne three types of annotations: @AdaptiveMethod: marks a method as the target of multivariate regression. e annotated method will go through every stage outlined in Figure 4. Unless the @Input annotation is also used, every formal parameter of the method will be used as an independent variable of the linear regression. Global variables are not considered inputs in this case. @Input: speci es which references or primitive values are independent variables (the α s in Figure 5) in the regression. is annotation must be employed when J C's users know that some function arguments bear no e ect onto the choice of ideal con gurations for the target method. Function parameters and global variables (whose scope includes the point where the target method is declared) can be marked as inputs. If names marked as inputs are not visible within the target method, a compilation error ensues. @HiddenInput: speci es extra information to be used as independent variables. ese hidden inputs are mostly system variables, such as the number of threads; however, hidden inputs can also be global variables that are not directly used within a function, albeit they are accessed within methods called by said function. A method, chain of methods or any expression can be used to obtain a reference to a hidden input. e names used in these expressions must be visible during compilation time, otherwise an error is thrown.

Example 3.6. Figure 10 shows two examples of annotated methods. ese examples were taken from actual applications. However, for the sake of readability, we have removed some boilerplate PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017. code that, otherwise, would render the programs di cult to understand. e V method, which is part of an implementation of the Breadth-First Search algorithm, contains three Input annotations. Two of them, referring to V and G , were applied onto global variables. e other, on NT, refers to a method argument. e method C

, part of a sorting application, contains two Input annotations, all used on function arguments. ese annotations are redundant in this example, because whenever an adaptive method does not present an Input annotation, all its arguments are marked as independent variables. Because this method is invoked by threads in a Java thread pool, the number of active threads in the pool is marked as a hidden input. @AdaptiveMethod @Input (global="visited") @Input (global="graph") @Input (param="NT") e expression (expr="forkJoinPool.getActive readCount()") will be parsed by S , which will split it into 2 parts: forkJoinPool and getActiveThreadCount(). e former, forkJoinPool, must be an object accessible from the C method, so forkJoinPool needs to be global in the current class or be a class visible in the path. Notice that our annotations can only be processed if we compile the original java (or Scala) le with debug information. For instance, if we use J C to produce bytecodes, then we must pass the -g ag to it.

Extracting Sizes from Annotated Terms. Annotations tell J

C to build expressions denoting the size of the annotated names. e technique used to obtain these sizes depends on the type of the target input. Currently, we can reconstruct sizes for the following pa erns:

• Primitive types: the size of a primitive type is its own value. We do not allow annotations on booleans and characters, as their values do not have a direct conversion to a real (e.g., a double) number. • Wrappers: types such as Integer or Double, which work as wrappers of primitive types, give us a size through their value() methods, e.g., intValue() for Integer, doubleValue() for Double, etc. • Arrays and Strings: we derive the size of such types via the length property.

• Collections: we derive the size of collections by invoking their size() method.

• Other classes: we search within the declaration of the type, or in any of its super-types, for a method called size(); otherwise, we search for a property called length. If such names are not to be found, an error ensues. Notice that, in this case, users can still use the HiddenInput annotation to specify an expression that yields the size of the target type.

Example 3.7. Figure 11 shows the instrumented version of the annotated programs discussed in Example 3.6. We remind the reader that such pro ling interventions are inserted in the intermediate representation of these programs -source code is used only for readability. Instrumentation is performed by a singleton class Instrumenter, which stores "bundles" of data. Each bundle contains an identi er, a hardware con guration, the independent variables of the adaptive method, and the runtime for those variables. e identi er associates a method with a bundle. Multiple invocations of the same method will produce one bundle per call.

Profiling, Logging and

Training. Currently, we use a pro ling infrastructure wri en as a combination of Java code and bash scripts. e part implemented in Java consists of a driver -a service that runs the program that we want to optimize in a controlled environment. e driver has two responsibilities. First, it is in charge of warming up the target program. We call warm-up an execution of the target program performed before pro ling starts. e warm-up phase tends to put the virtual machine into a steady state; thus, ensuring the consistency of the results that we produce during the training phase. J C's users must determine the number of warm-up rounds. Barre et al. [START_REF] Barre | Virtual Machine Warmup Blows Hot and Cold[END_REF]) have shown that it is very di cult to ensure that a given virtual machine will always reach a steady state of peak performance. Nevertheless, in the experiments that we report in Section 4 using Java Hotspot, a steady state is reached. e second responsibility of the driver is to change hardware con gurations before every pro ling experiment takes place. To this end, the driver goes over a range of pre-de ned con gurations, repeating the same experiment a number of times for each of them. 1:14 Ribeiro, et al.

times by the W U function in Figure 12. Any implementation of B must invoke the target program once over a particular set of inputs. Users must specify the code that reads and loads inputs. Implementing B is one, out of the two tasks, that we expect from J C's users. e other task is to provide inputs for training. We use a suite of bash scripts to traverse and organize the program inputs, changing hardware con gurations between experiments. Our framework provides functions to setup the hardware con guration. As an example, Figure 12 shows function C C , which determines the number of big and LITTLE cores available on the Odroid XU4 board that we use in this paper.

J C receives an annotated program P, a set of di erent inputs I = {ι 1 , ι 2 , . . . , ι m } of P, a set of acceptable hardware con gurations H = {h 1 , h 2 , . . . , h n }, and the implementation of the B method. It will then invoke B a pre-determined number of times for each pair (h, ι), h ∈ H, ι ∈ I . e best con guration for each input ι is chosen among the most frequent winner, according to some objective function, such as time or energy consumption. In case of ties, we choose the con guration with the smallest quantity of resources. Resources are ordered according to the number of big cores, the number of LITTLE cores, the frequency of the big cores and the frequency of the LITTLE cores, in this sequence.

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Fig. 13. Training output produced by the driver on a few inputs seen in Figure 6. Y-axis is runtime in seconds.

Example 3.8. Figure 13 shows a typical output produced during J C's training phase, considering runtime as the objective function. In this experiment, each pair formed by a hardware con guration and an input is sampled ten times. Vectors at the bo om of Figure 13 are the inputs passed to function T (Fig. 1). ese vectors are the independent variables in the regression model. Vectors at the top of Figure 13 are the best con gurations. ese vectors will give us the dependent variables used in the regression.

Generation of Adaptive Code

e product of training is a collection of oating-point constraints, organized into a matrix Θ. ese constraints are hardcoded into the production code that we want to optimize. Such step happens in the phase labeled "add prediction instrumentation" in Figure 4. e instrumentation that we add into a function f of interest evaluates the expression σ (A i Θ), where A i is an 1 × n vector. e size of A i is one plus the number of inputs of the target function. e expression σ (A i Θ) yields an 1 × k PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:15 vector of probabilities, whose sum adds up to 1.0. e largest element within σ (A i Θ) determines the next con guration that will be used during the current invocation of f .

Example 3.9. Figure 14 shows the production version of our running example, the function T , originally seen in Figure 1. e dashed box outlines the code that we add to T to change the current hardware con guration. We show, on the right of the gure, the key methods used to change and restore the current hardware con guration. e matrix Θ seen in the production version of function T was found a er training, as Example 3.4 explains.

EVALUATION

e goal of this section is to demonstrate the e ectiveness of the technique presented in this work when optimizing bytecodes that run on top of the Java Virtual Machine. To this end, we shall provide answers to the following research questions:

RQ1 C or CHOAMP happen at the bytecode level, and are carried out via Soot. To mitigate the e ect of JIT compilation in the execution time of benchmarks, each application has a warm-up stage before its actual execution. e exact number of warm-up runs is speci c for each benchmark and was manually tuned for each one of them (details in Table 1). Tuning is made possible by the JVM ag -XX:+PrintCompilation, which allows us to see when JIT compilation kicks in during the execution of an application. us, we can change the number of warm-up rounds, to minimize the amount of compilation taking place during the nal -metered-run of a given benchmark. We have used Python 3.4 and Scikit Learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]) to implement regression. Python was also used, in addition to GNU Bash 4.4.19, to generate the suite of micro-benchmarks used by CHOAMP during its training stage (details in section 4.3).

e Operating System in the Odroid XU4 used in our experiments is the GNU/Linux Ubuntu 18.04 LTS with kernel 4.17.

e Benchmark Suite. is paper uses the 18 benchmarks shown in Table 1. Eight of them were taken from Acar et al. (2018), who had selected nine programs from Problem Based Benchmark Suite (PBBS) [START_REF] Shun | Brief Announcement: e Problem Based Benchmark Suite[END_REF] to evaluate concurrency models. e version of PBBS used by Acar et al. was implemented in C/C++, so we had to reimplement all the benchmarks in Java. We had to remove D T from our collection, because we could not ensure that its parallel implementation always produces the same output: the triangulation varies depending on how threads are scheduled. We have replaced it with BFS, which is also part of PBBS, but was not in Acar et al.'s suite.

We also chose six benchmarks from the Renaissance benchmark collection, which was recently released by [START_REF] Prokopec | Renaissance: Benchmarking Suite for Parallel Applications on the JVM[END_REF]. Renaissance contains 21 benchmarks. All the programs in that collection come with only one set of input values. We chose only six benchmarks because we had to understand and augment each program with more inputs and veri cation code. e extra inputs enable pro ling, and the veri cation code is necessary to check execution correctness. e six benchmarks that we chose are implemented in Scala; however, they rely on a variety of Java libraries, such as Twi er's Finagle (Twi er 2019), Java Jenetics (Wilhelmst er 2019), the Spark Machine Learning Library [START_REF] Meng | Mllib: Machine learning in apache spark[END_REF], and the standard Java library. Our criterion when picking up programs was simplicity: we selected benchmarks that were easy to extend with more inputs. We have opted for Scala programs to demonstrate that J C can deal well with languages other than Java.

In addition to PBBS and Renaissance, J C is distributed with four extra benchmarks. ese programs are typical parallel algorithms. ree of them were taken from public repositories; the fourth, H S , was adapted from Butcher's book. We shall refer to these four programs as part of J C's test suite. All the 18 benchmarks used in this paper share a similar running environment: an execution driver that is responsible for warming them up, preparing the inputs and collecting time and energy values. e time and energy used by the driver itself is never considered in our experiments. Table 1 presents an overview of the used benchmarks, as well as basic characteristic of their code. e Available Inputs. We have augmented every one of our benchmarks with 14 inputs. We have separated 10 of these inputs for training. When evaluating the trained model, for each application we used four new, unseen, and randomly chosen inputs. Sections 4.5 and 4.6 further discuss the impact of di erent inputs in the execution time and energy consumption of the applications.

On the Choice of Hardware Configurations

When training J C and CHOAMP, we consider a universe of six core con gurations: 4b4L (4 big and 4 LITTLE cores), 4b0L, 0b4L, 2b2L, 2b0L and 0b2L. e LITTLE cores run always at maximum frequency: 1.5GHz; for the big cores, we let them run at either 1.6GHz or 1.8GHz. erefore, the two adaptive approaches that we use might choose from a pool of ten di erent hardware con gurations: 4b4L at either 1.6 or 1.8GHz (plus LITTLE cores at 1.5GHz), 0b4L at 1.5GHz, 4b0L at either 1.6 or 1.8GHz, etc. GTS runs on 4b4L by default, meaning it is allowed to choose among any possible hardware con guration involving big and LITTLE cores. We coupled GTS with the on-demand frequency governor, meaning that the runtime system is free to choose any frequency level available in the hardware. For the sake of reproducibility and to be er understand the impacts PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

of our technique, we have disabled Dynamic Voltage and Frequency Scaling (DVFS) when using either J C or CHOAMP, but not GTS. Before presenting results, one last observation is in order: we chose 1.6GHz and 1.8GHz, instead of the highest frequency levels (1.9 and 2.0GHz), for the big cores to be er deal with thermal thro ling. ermal thro ling forces the Operating System to downscale CPUs' frequencies [START_REF] Cohen | On Estimating Optimal Performance of CPU Dynamic ermal Management[END_REF]. As stated by Mishra et al., this is a security feature that keeps the system temperature under a safe threshold. Excessive exposures to high temperatures could damage the equipment.

We have noticed empirically that thermal thro ling renders experiments at 1.9 or 2.0GHz hard to reproduce. Figure 15 (a) illustrates this issue on the Odroid Xu4 board. e image displays the online values for temperature and clock frequency when executing a parallel application that performs math calculations during 15 seconds. e benchmark uses all 8 available cores and every time the temperature surpasses 176 F (80 C) the clock speed is decreased, leading to thermal values under the acceptable threshold. Such behavior happens even when DVFS is disabled. is experiment can be easily reproduced with the code in Figure 15 (b

On the Implementation of CHOAMP

CHOAMP is a system that, di erent from our approach, relies on the syntax of the program text -and on its implied semantics-to predict ideal hardware con gurations. CHOAMP represents this text of code as a set of characteristics that are useful for training and prediction. Such characteristics, also called prime features, are split into two di erent groups: language dependent and independent. Language independent features, such as number of branches or memory accesses, are easier to identify and port, as they tend to appear in most languages. On the other hand, features that depend on a speci c programming language need to be adapted when porting the technique to new environments. CHOAMP was initially designed to work with OpenMP applications implemented in C; therefore, some of the prime features used by Sreelatha et al. depend on OpenMP constructs. Our re-implementation of CHOAMP targets Java applications running on Hotspot; thus, some of its features had to be adapted to our needs. Table 2 presents the list of program characteristics originally used by CHOAMP for OpenMP and the new version of them, adapted to the JVM scenario.

Most language dependent features nd correspondents in the Java standard library, as is the case of the omp atomic pragma, which we derived from classes in the package java.util.concurrent. atomic. For instance, the occurrence of method incrementAndGet(), from the AtomicInteger class, would add an "Atomic Operation" to the feature vector of the function where incrementAnd e user adjusts the intensity of each prime feature through command line inputs. We used the original generator scripts 5 , adjusting the code to Java. We also used the same range and intensity of features as used in the original work of CHOAMP. Sreelatha et al. have proposed three di erent regression models for CHOAMP. We have experimented with all of them, and ended up choosing the linear t, because, in our setup, it yields be er results than the adratic and Gaussian predictors. is result in on par with the ndings of Sreelatha et al..

RQ1: Training time

Both techniques, J C and CHOAMP, require training. Training adjusts the parameters of the regression models to enable predictions of good hardware con gurations. While this cost is paid once by CHOAMP, when performing the training over a set of generic micro-benchmarks, J C pays this cost for each application that it optimizes. CHOAMP uses micro-benchmarks for training; J C uses the application itself. e training time of CHOAMP is computed over a set of 285 micro-benchmarks over all the hardware con gurations previously described in Section 4.2. In our hardware, we took about 780 minutes to train our implementation of CHOAMP. Out of this training time, 365 minutes were spent running the micro-benchmarks with the 1.8GHz CPU frequency for the big cluster. When using the frequency of 1.6GHz, the time required for training was 415 minutes.

To train J C, we follow the methodology described in Section 3.2.3: we run the target application on the allowed hardware con gurations using the inputs available for training. J C's training time, naturally, depends on the target application's run time, and on the number of available inputs. Table 1 shows the training time of each individual benchmark. Using ten inputs and ten allowed hardware states (clock speed × hardware con gurations) per benchmark, we took around 903 minutes to train the 18 programs used in this section. e longest time, three hours and 45 minutes were spent in Renaissance's F HTTP. PBBS's R S gave us the fastest training time: 20 minutes and 51 seconds.

Once the benchmark is trained, no further pre-processing is required, and, as we will see in Section 4.5, runtime overhead tends to be minimal. is overhead is due to the matrix multiplication that happens once a hot function is invoked, as we have discussed in Section 3.3. e product of training, the code earlier seen in Figure 14, is embedded directly into a program's bytecode. us, di erent programs adapted by J C can coexist independently in the same runtime environment, for no changes are required in the operating system as a result of training.

RQ2: Optimizing for Speed

We have tested J C and CHOAMP with two objective functions: speed and energy consumption. When the cost function is speed, the tools try to decrease the execution time of target applications. Figure 16 reports results observed when optimizing for speed. In Section 4.6 we discuss energy consumption. We have tested each benchmark with four input sets. Each chart within those gures shows four sets of three boxplots. Boxplots refer, in this order, to J C, CHOAMP and GTS. We adopt a signi cance level α = 0.05; i.e., a con dence interval of 95%. So, if the results reported by, for instance, J C and CHOAMP cannot be distinguished with a con dence of more than 95%, then we consider them as originating from the same population. In practical terms, we use Student's Test to measure the p-value of two populations, and consider signi cant results with a p-value lower than 0.05. White boxes with le ers identify the technique which achieved the best result for a combination of benchmark and input. J stands for J C, C for CHOAMP and G for GTS. e grey box x means that the two winning systems have produced results very similar (with a p-value greater than 0.05). Above each one of the four input sets used in each benchmark, we show the con guration that J C chose for that input. We also show, in a grey box, to the right of the name of each benchmark, the con guration that CHOAMP chooses for that benchmark.

e data in Figure 16 shows that, in 26 cases, out of 72 combinations of [benchmarks × inputs], J C achieved be er results when compared to the other techniques. In other 42 cases, J C was at least as fast as GTS or CHOAMP. CHOAMP, in turn, accounted for 3 best results, and GTS for only one, in S 's I 4. ese results are summarized in Figure 17. All the winning con gurations, regardless of the technique, featured the frequency of 1.8GHz whenever at least one big core was present. e most recurring con gurations were 4b4L (16x for CHOAMP and 37x for J C), 0b4L (2x/11x), 4b0L (17x for J C only), 2b0L (4x for J C only), and 0b2L (2x for J C only). J C performed rather poorly in P . Such bad results were due to the fact that we have not chosen good inputs for training. Indeed, the 10 training inputs chosen when optimizing P nd in 4 4L their best con guration; however, coincidentally, three of the test inputs ask for 4 0L. It su ces to switch one of the test and training inputs to put J C on par with the other schedulers. On the other hand, for some benchmark, such as S or G , J C's choices outperformed other scheduling techiniques, with rather di erent con gurations for di erent inputs, as it is expected for the tool. In the S case, for example, with the rst input (= 2, SIZE = 1023464), J C prediction of the con guration 4b0L led to a mean run time of 8.18 seconds, while CHOAMP's decision led to 8.47 and GTS to 9.00, with all values for the p-value less than 0.008. For its second input (= 4, SIZE = 2250467), we observed that J C's predicted con guration (2b0L) led to a mean runtime of 17.00 seconds, while CHOAMP's had a runtime of 18.70 and GTS 17.76. For the second input, all the p-values were below 0.0005, resulting in a con dence interval over 99%. ese scenarios illustrate well the e ectiveness of J C in identifying the most suitable con guration for applications that behave di erently according to the inputs fed to them. Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:21 reduce energy consumption, J C and CHOAMP build models to estimate the most adequate hardware con guration to save energy. e clock speed of 1.6GHz was the most common among all the schedulers, except for one input set of R S , when CHOAMP chose to use 1.8GHz. When optimizing for speed and energy, GTS with the on-demand DVFS governor was free to choose any possible con guration with frequency levels ranging from 200MHz to 1.8GHz in the big cluster and from 200MHz to 1.5GHz in the li le one. As this is the default and expected behavior for the GTS scheduling policy, we kept it as is. Observe that this scheduling technique may lead to performance degradation because GTS increases frequency gradually, until it arrives at the top levels in computation intensive programs. Additionally, even with several warm-up rounds, GTS might take an excessively long time to achieve maximum frequency levels for some applications.

RQ3: Energy Consumption

• • • • • • • 2 3 4 5 In1 In2 In3 In4 collinearPoints • • • • • • • • • • • • • 0 2 4 6 8 In1 In2 In3 In4 randomNumComp • • 0 1 2 3 4 5 In1 In2 In3 In4 hashSync • • • • • 0 10 20 30 40 In1 In2 In3 In4 bfs • • • • • • • 0.050 0.075 0.100 0.125 0.150 In1 In2 In3 In4 spaningForest • • • • 0 10 20 30 In1 In2 In3 In4 insertAndAdd • • • • • • 1 2 In1 In2 In3 In4 nearestNeighbors • • • • • • • • • 0.4 0.8 1.2 1.6 In1 In2 In3 In4 convexHull • • 1.5 2.0 2.5 3.0 In1 In2 In3 In4 removeDuplicates • • • • • • • 1 2 In1 In2 In3 In4 suffixArray • • • • • • • • • • • 0 5 10 15 In1 In2 In3 In4 sampleSort • • • • • 0.2 0.4 0.6 In1 In2 In3 In4 radixSort • • • • 10
J J J J X X 4b0L 4b0L 4b0L 4b4L 4b4L X X 4b4L 4b4L 4b4L 4b4L 4b4L 0b4L 0b2L 0b2L 0b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b0L 4b4L 4b0L 4b4L 4b4L 0b4L 0b4L 0b4L 0b4L 4b4L 4b4L X X X X X X J X X X J X X X X X G J J J J C X 4b4L 4b0L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 0b4L 4b4L 4b4L 4b4L 4b0L 4b0L 4b0L 4b0L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b0L 4b4L 4b4L 4b4L 4b4L 2b0L 4b0L 2b0L 4b0L 4b4L 4b4L 4b4L 4b4L 4b4L 0b4L 4b0L 4b0L 4b0L 4b0L 4b4L 4b0L 0b4L 0b4L 0b4L 4b4L 2b0L 2b0L 0b4L 0b4L X X X X J J J J X X X C X X X X J J J J J J J X J X X X J J C X J X X X 4b4L 4b4L 4b4L J X X X X
Figure 18 reveals that J C achieved best results in 20 experiments (out of 72); GTS was the best approach in 2, and CHOAMP in 6. Figure 19 summarizes these results. Most of the experiments did not have a clear winner -this di culty to pinpoint a best technique is, in part, due to the fact that we measure energy for the entire board, not only for the cores. erefore, peripherals such as the fan and the memory bus increase the variance of our results.

We have observed that J C outperforms GTS mostly due to its ability to choose highperformance hardware con gurations, such as 4b4L at 1.6GHz immediately, whereas GTS needs a warm-up period to arrive at them. Our implementation of CHOAMP has chosen the 0b4L con guration at 1.6GHz for almost all the samples in this evaluation. We speculate that this behavior happens because some features, such as branching and memory operations, tend to dominate the others in most of the functions that constitute a benchmark. We believe that it is possible to improve this behavior by scaling the relative importance of the features; however, this optimization is out of the scope of this work.

On the In uence of Execution History. e execution history impacts the energy consumed by di erent programs. Take as an example the entry corresponding to H S in Figure 18. When analyzing the second input set (In2), we observed that, although predicting the same con guration as CHOAMP, J C led to marginally higher energy consumption. is behavior is even more surprising once we consider that J C's and CHOAMP's codes run in about the same time, as Figure 16 reveals. e culprit of this apparently counter-intuitive result is the board state at the time measurement started. e warm-up phase, in this case, is responsible for giving J C's and CHOAMP's codes di erent starting states. In the discussion that follows, we shall separate the execution of a benchmark into two parts: warm-up, when the target routine is called a number of times to stabilize the Java Virtual Machine; and measurement, when the behavior of the benchmark is actually gauged.

2b0L 2b0L 0b4L 0b4L X X X X C X X X C C X X X X X J X 4b4L 4b4L 4b4L C X J G X J J J J X X X X G X J J J J J J C X X X X X J J X X X X J J X X X X X X X
Fig. 18. Energy consumed by the benchmarks in Table 1. Y -axis shows energy in Joules. X -axis shows di erent experiments. Boxplots are sorted as in Figure 16.

Figure 20 shows the power pro le of H S , including warm-up and measurement phases. e invocations of H S in the warm-up stage have di erent set of inputs compared to its invocation in the measurement stage. As a result, our technique predicted the con guration Fig. 19. Summary of the results displayed in Figure 18 4b4L for the last warm-up invocation, which is di erent than 0b4L, the con guration predicted at measurement. e use of big cores during warm-up increased the amount of energy consumed by the board in the measurement step, due to the hysteresis of power dissipation. is inertia is a well-known phenomenon [START_REF] De | A simple representation of dynamic hysteresis losses in power transformers[END_REF][START_REF] Jean C Pique E | Generalization of a model of hysteresis for dynamical systems[END_REF]; it may be seen as the tendency of a system to conserve an electrical deformation caused by a stimulus. In the context of this example, such stimulus is the use of the big cluster in the warm-up phase. e mean power dissipated by J C's version of H S in Figure 20(a) was 4.68W. CHOAMP's mean power is 4.09W, as taken from Figure 20(b). us, J C's program consumes more energy (9.47J vs 8.22J). However, if we x the hardware con guration in the warm-up phase of J C's code, then we observe that the average power dissipation goes down to 3.95W. Figure 20(c) reports the power pro le of this setup. e only di erence between the two executions of J C, in Figures 20 (a) and (c), is the con guration used in the warm-up stage. ere is no statistically signi cant di erence between the amount of energy consumed by CHOAMP and J C once we ensure that both use the same hardware con guration during warm-up.

is behavior caused by di erences between con gurations chosen at warm-up and measurement phases only a ects J C. CHOAMP always chooses the same hardware con guration per function, and GTS increases frequency gradually. e only further impact that this di erence had in J C's behavior was observed in D T and C P . In both cases, only for the last input set (In4), and only when measuring runtime (Fig. 16). e need to change con guration when moving from warm-up to measurement has costed J C's code some time. Although a small fraction of the overall execution, it let CHOAMP's program run slightly faster than J C's. When reporting the results in this paper (Figs. 16 and 18), we have opted to let the hardware con guration uctuate during warm-up, as this is the expected behavior of J C, once it is deployed in production.

RQ4: Convexity

A convex space is a region within an Euclidean Space whose intersection with any line results in a continuous line segment. If the convex space can be described by a function, then said function is also called convex. Convex functions are very important in optimization problems, because exploration methods based on derivatives, such as gradient descent, are guaranteed to converge to the optimal solution when applied on them [START_REF] Boyd | Convex Optimization[END_REF]. erefore, we can restrict ourselves to them, as they are known to be much faster than other space exploration techniques, such as those that use quadratic or higher-order polynomials (e.g., multi-layer perceptrons). at is the reason why we chose a linear model to match hardware con gurations with program inputs. void unlikely(int i) {if (10 <= i && i <= 100) sync_intensive(); else comp_intensive();} e unlikely routine receives one input, namely, the integer i. If i is less than 10 or greater than 100, it invokes a computationally intensive procedure; otherwise, it invokes a synchronization intensive one. e optimal con gurations for these two pieces of code di er. Let con guration h c be the optimal hardware con guration for procedure comp intensive. e space occupied by h c , i.e., [-∞, 10[∪], 100, +∞] is non-continuous; hence, concave. e program discussed in Example 4.1 is unlikely to exist in real-world code. To support this statement, Figure 21 provides a glimpse of the best hardware con gurations for di erent inputs of four benchmarks in our collection. e gure contains four parts. Each part is a table, which associates a pair of inputs with the hardware con gurations that yielded the fastest execution times for those inputs. In this experiment, we chose the two benchmarks from our collection that contain two inputs. 21(c). If we x the value for keySize in 106 , and vary s.size() in the set {10, 10 2 , 10 3 , 10 4 , 10 5 }, we observe that each one of the continuous intervals [10, 10], [10 2 , 10 2] and [10 3 , 10 5] is governed by the same set of optimal hardware con gurations.

However, to arrive at this result, we had to account for small variations in runtime. To generate the data in every table seen in Figure 21, we considered 5 × 5 combinations of inputs, and the ve hardware con gurations used in the previous sections. We run each pair of inputs with every con guration of interest 20 times. To reduce variance, we removed the four fastest and the four slowest samples; hence, considering 12 executions per input per con guration. Nevertheless, this expedient only would not be enough to mitigate the problem of high variance, mostly when considering input se ings with small runtimes. us, to deal with variance, we had to resort to more sophisticated statistical tools, as we explain in the rest of this section. Dealing with variance: Had we simply picked for every input pair the con guration with the best average runtime, then variations would lead to almost random results for small inputs. To avoid this problem, we consider not the best, but the set of best hardware con gurations per input. For each input, we ed our linear regression model (via Python's statsmodels module (Seabold and Perktold 2010)) using the ordinary least squares method to estimate the model parameters. en, we analyze the di erences among group means with standard analysis of variance (ANOVA) [START_REF] Fisher | e Correlation Between Relatives on the Supposition of Mendelian Inheritance[END_REF]. ANOVA generalizes the T-test beyond two means. In the context of this work, we consider groups of hardware con guration; and the null hypothesis states that samples from di erent hardware con gurations came from the same probability distribution. us, the null hypothesis means that there is no statistical di erence between the execution time of di erent hardware con gurations. We checked if the data were statistically signi cant considering a con dence of 95%, i.e., a P-value less than 0.05. ANOVA is an omnibus test -it analyzes the data as a whole; hence, we performed a post-hoc test to nd out where the di erences among the groups were.

e post-hoc test consists of a series of T-tests between each existing pair of con gurations. As a result, the signi cance level had to be adjusted to avoid spurious positives. To that end, we used the Bonferroni correction [START_REF] Emilio | Teoria statistica delle classi e calcolo delle probabilità[END_REF][START_REF] Jean Dunn | Estimation of the Means for Dependent Variables[END_REF]. Each individual hypothesis is tested with a threshold of α/n, where α is the signi cance level for the entire set of comparisons, e.g., 0.05, and n is the number of statistical tests performed. us, analogously to the ANOVA test, if the resulting P-value is lower than the signi cance level given by the Bonferroni correction, then the null hypothesis can be rejected. Rejection of the null hypothesis is equivalent to assume that the two groups of con gurations present a statistically signi cant di erence. Otherwise, the two groups are considered identical and become part of the same cluster of con gurations. e runtime of a cluster of con gurations is the average of all the samples in that cluster.

RELATED WORK

is paper uses a type of machine learning technique -multivariate linear regression-to solve an instance of program scheduling in heterogeneous architectures. Machine learning and scheduling in heterogeneous systems have played an important role in compiler design in recent years. For an overview of the impact of machine learning onto compiler construction, we recommend surveys from Wang and O'Boyle and Ashouri et al. e rest of this section focuses on scheduling.

A General Overview on Program Scheduling in Heterogeneous Systems

e general problem of scheduling computations in heterogeneous architectures has a racted much a ention in recent years, as Mi al and Ve er have thoroughly discussed. Table 3 provides a taxonomy of previous solutions to this problem. We group them according to the level at which they are implemented, and to the way they answer each of the following questions:

• Architecture: do they apply to Single or Multi-ISA systems?

• Source: is the program's code modi ed?

• Input: is the approach input-aware?

• Auto: is user intervention required to choose a con guration?

• Runtime: is runtime information exploited?

• Learn: is there any adaptation to runtime conditions? Perhaps the most important di erence among the several strategies proposed to nd ideal hardware con gurations concerns the moment at which said strategy is used. In the rest of this section, we consider the following three possible choices: at compilation time, at runtime, or both. Static Solutions.

ese approaches work at compilation time. ey might be applied by the compiler, either automatically, i.e., without user intervention [START_REF] Cong | Energy-e cient Scheduling on Heterogeneous Multi-core Architectures[END_REF][START_REF] Jain | Continuous shape shi ing: Enabling loop co-optimization via near-free dynamic code rewriting[END_REF][START_REF] Luk | Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors with Adaptive Mapping[END_REF][START_REF] Poesia | Static placement of computation on heterogeneous devices[END_REF][START_REF] Rossbach | Dandelion: A Compiler and Runtime for Heterogeneous Systems[END_REF][START_REF] Krishna | CHOAMP: Cost Based Hardware Optimization for Asymmetric Multicore Processors[END_REF][START_REF] Tang | ReQoS: Reactive Static/Dynamic Compilation for QoS in Warehouse Scale Computers[END_REF], or not. In the la er case, users can use annotations [START_REF] Mendonc ¸a | DawnCC: Automatic Annotation for Data Parallelism and O oading[END_REF], domain speci c programming languages [START_REF] Luk | Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors with Adaptive Mapping[END_REF][START_REF] Rossbach | Dandelion: A Compiler and Runtime for Heterogeneous Systems[END_REF] or library calls [START_REF] Augonnet | StarPU: A Uni ed Platform for Task Scheduling on Heterogeneous Multicore Architectures[END_REF] to indicate where each program part should run. e main bene t of static techniques is low runtime overhead: because scheduling decisions are made before the program runs, no dynamic checks are necessary to schedule computations. However, these techniques are unable to take runtime information into consideration; hence, the same program phase is always scheduled in the same way. In Table 3, techniques implemented at either the compiler or library levels are purely static. Dynamic Solutions. Purely dynamic approaches take into account runtime information. ey can be implemented at the architecture level [START_REF] Joao | Bo leneck Identi cation and Scheduling in Multithreaded Applications[END_REF][START_REF] Lukefahr | Exploring Fine-Grained Heterogeneity with Composite Cores[END_REF][START_REF] Rangan | read Motion: Fine-grained Power Management for Multi-core Systems[END_REF]Van Craeynest et al. 2012a;[START_REF] Yazdanbakhsh | Neural acceleration for GPU throughput processors[END_REF], or at the virtual machine VM/OS level [START_REF] Barik | A Black-box Approach to Energy-aware Scheduling on Integrated CPU-GPU Systems[END_REF][START_REF] Gaspar | A Framework for Application-Guided Task Management on Heterogeneous Embedded Systems[END_REF][START_REF] Nishtala | Hipster: Hybrid Task Manager for Latency-Critical Cloud Workloads[END_REF][START_REF] Petrucci | Energy-E cient read Assignment Optimization for Heterogeneous Multicore Systems[END_REF][START_REF] Annirmalai Somu Muthukaruppan | Price eory Based Power Management for Heterogeneous Multi-cores[END_REF][START_REF] Zhang | Maximizing Performance Under a Power Cap: A Comparison of Hardware, So ware, and Hybrid Techniques[END_REF]. Examples of runtime information include input sizes and resource demands. However, there may be some overhead on accurately collecting and processing runtime data. Besides, because scheduling decisions are taken on-the-y, usually the scheduler does not spend much time weighing choices. us, the scheduler might take suboptimal decisions due to its inability to solve hard combinatorial problems. (Cong and 3 indicates in the column Learn. Guards, once created, behave always in the same way.

Scheduling in Single-ISA Heterogeneous Systems

Much a ention has been dedicated to the problem of nding good placements of computation on Single-ISA systems, as Mi al has summarized in a 2016 survey. However, we emphasize that a large part of this literature concerns the design of scheduling heuristics implemented at the level of the hardware or the operating system [START_REF] Cai | Montgol er: Latencyaware power management system for heterogeneous servers[END_REF][START_REF] Garcia-Garcia | Contention-Aware Fair Scheduling for Asymmetric Single-ISA Multicore Systems[END_REF][START_REF] Sparsh | A Survey of Techniques for Architecting and Managing Asymmetric Multicore Processors[END_REF][START_REF] Park | RPPC: A Holistic Runtime System for Maximizing Performance Under Power Capping[END_REF]Van Craeynest et al. 2012b). is section describes works that, like J C, are adaptive, and have been speci cally designed for big.LITTLE architectures. Table 4 categorizes these techniques along the following lines:

• Granularity: what is the data used for training? Most of the techniques use the system's workload -available through performance counters. C relies on features mined from the target's program code. We use the program's inputs to perform predictions. • Data: what is the source of training data? OS-based o -line systems usually rely on microbenchmarks (µ-benchs) to perform calibration. C uses features of the program, which it extracts from its syntax. Techniques used in servers can rely on the target program itself as the source of training data, for said program is bound to run for a long time.

• Target: in which scenario is the technique meant to be used? Most of the papers that deal with I , ours included, present solutions for embedded devices and smartphones. O M and H were designed for data-centers. • Level: as seen in Table 3. e di erent adaptive techniques that we list in Table 4 either run on the operating system (OS), or are implemented in the compiler. e two related works that implement scheduling of computations in big.LITTLE architectures at the compiler level are Sreelatha et al.'s CHOAMP, and Krishna and Nasre's SIAM. We have compared J

C with CHOAMP extensively in this paper. SIAM, in turn, is a system that targets speci cally graph algorithms parallelized via OpenMP. It consists of a prediction model that, given a particular shape of graph, determines the best data-structure format and hardware con guration for that shape. We could, in principle, adapt it to implement some of our benchmarks, such as S F and BFS -graph-based algorithms. However, this implementation would involve providing each algorithm with di erent graph representations -a task to be paid at a non-negligible programming cost.

CONCLUSION

is paper has presented a code generation technique that adapts programs to good hardware con gurations, in the context of a single-ISA heterogeneous system. e key insight of this work was the observation that the values of a function's inputs o en provide enough information to predict the best hardware con guration that suits said function. To capitalize onto this observation, we showed how to build predictors based on linear regression on function inputs. Our technique is able to outperform, be it in energy consumption, be it in speed, the default Linux scheduler (the Global Task Scheduler), and CHOAMP, a state-of-the-art tool that predicts the best hardware con guration to a program based on its syntax (and implied semantics). e intuition nurtured during the cra of our tool, J C, lets us believe that our technique -linear regression on function inputs-can be applied onto di erent programming languages and runtime environments. e realization of such intuition on concrete technologies is an interesting research direction that we still would like to explore in the future.

5 /

 5 Fig. 1. A program, and its input space.

Fig. 3 .

 3 Fig. 3. (a) The energy measurement apparatus. (b) Instantaneous power charts for configuration 4b4L when running with di erent inputs. (c) Constellation for synchronization-free input set. (d) Constellation for synchronization-heavy input set. Frequencies are set to 2.0GHz for big, and 1.5GHz for LITTLE cores.

Fig. 4 .Fig. 5

 45 Fig. 4. The execution pipeline of J C.

 Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:9 e matrix A of independent variables. As Example 3.1 illustrates, the matrix A encodes known values of function arguments. ese values are called the training set of our regression. If we are analyzing a function with n arguments, and our training set contains m function calls, then A is a matrix with m lines, and n +1 columns. e extra column is the all-ones vector 1 m , which represents intercepts -constants that allow us to handle a scenario in which the training set contains only null values. is all-ones column is the rst column of matrix A in Figure 5. Example 3.2. Figure 6 shows how ten di erent samples of function T , from Fig. 1, are organized into a matrix A of independent variables.

Fig. 6 .

 6 Fig.6. Training set for the T method (Fig.1). The table on the right is matrix A of independent variables.

Fig. 7 .

 7 Fig. 7. Matrix of independent variables built for ten di erent invocations of function T in Figure 1.

Fig. 8 .

 8 Fig. 8. The result of multivariate linear regression produced by the training set seen in Examples 3.2 and 3.3.

Fig. 9 .

 9 Fig. 9. The matrix Θ found in Figure 8 used to predict the ideal configuration for four unseen input sets. Inputs used in the training set are the light-grey points, whereas inputs in the test set are dark-grey.

Fig. 10 .

 10 Fig. 10. Examples of annotated code snippets. (Le) Breadth-first search. (Right) Sorting application.

 Fig. 11. Instrumented version of programs seen in Figure 10. (Le) Breadth-first search. (Right) Sorting application.

Fig. 12 .

 12 Fig. 12. Example of functionalities provided by the driver. (Le) simplified version of the warm-up code. (Right) library code that changes the number of cores visible to the target program.

Figure 12

 12 Figure12shows part of the driver's implementation. e code is organized as a framework: users must implement one method called B , which is then invoked a preset number of

Fig. 14 .

 14 Fig. 14. The production version of function T (Fig.1).

Fig. 15 .

 15 Fig. 15. Variation in CPU frequency and temperature values for the big cluster while running a sample application that uses all 8 available cores. Samples collected at each 50 ms from thermal sensors present in the Odroid Xu4 board. The code in the right side shows where such values are set in the Operating System.

Figure 18

 18 Figure 18 compares CHOAMP, GTS and J C regarding energy consumption. When set up to

Fig. 16 .

 16 Fig. 16. Execution time of benchmarks from Table 1. Y -axis shows time in seconds. X -axis shows di erent experiments; each experiment uses di erent inputs. Boxplots are ordered by J C, CHOAMP and GTS.

Fig. 17 .

 17 Fig. 17. Summary of the results displayed in Figure16

 PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017. Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1

Fig. 21 .

 21 Fig.21. Best configurations for 4 benchmarks used in our evaluation. The charts exemplify the convex space over benchmarks inputs. HashSync and FutureGenetic receive 3 inputs each, but for this experiment we fixed the number of workers in HashSync to 16 and the number of generations in FutureGenetic to 5000.

Hybrid

 Solutions. Approaches that mix static and dynamic techniques are called hybrid. Examples of hybrid solutions to scheduling include works from[START_REF] Piccoli | Compiler Support for Selective Page Migration in NUMA Architectures[END_REF],[START_REF] Cong | Energy-e cient Scheduling on Heterogeneous Multi-core Architectures[END_REF], and[START_REF] Tang | ReQoS: Reactive Static/Dynamic Compilation for QoS in Warehouse Scale Computers[END_REF]. Piccoli et al have used a compiler to instrument a program with guards that determine, based on input sizes, where each loop should run. Cong and Yuan, in turn, use the compiler to partition a program in regions of similar behavior, and rely on runtime information to schedule computation so as to minimize the energy consumed by each region. Finally, Tang et al. use a compiler to populate a program code with markers, so that low-priority applications can manage their own contentiousness to ensure the QoS of high-priority co-runners. None of these previous work use any form of learning technique to tune the behavior of the scheduler, as Table

@AdaptiveMethod @HiddenInput (expr="Thread.activeCount()") void

			task(Stream<Value> s, long keySize) {
		while (!s.empty()) {	
		BigInteger key = getNextKey(keySize);	
		synchronized(globalMap) {	
			Value value = s.next();	
			globalMap.put(key, value);	
		}		
		}		
		}		
	void task(Stream<Value> s, long keySize) {		
	…			
	.jar/.class	Soot	Regression	Python
	instrumented for production	add prediction instrumentation	Coefficients (matrix)	Regression Analysis

config = // predicted configuration for // (s.size(), keySize, Thread.activeCount()); Regression.changeConfig(config);

	while (!s.empty()) {
	BigInteger key = getNextKey(keySize);
	synchronized(globalMap) {
	Value value = s.next();
	globalMap.put(key, value);
	}
	}
	/

/ Restore original configuration (See Fig.14) }

	Annotated
	.java/.kt
	Javac/Kotlinc
	Pre-process
	annotations
	Annotated
	.jar/.class

 void visit(final int NT) throws ... {

		@AdaptiveMethod
		@Input (param="START")
		@Input (param="END")
		@HiddenInput (expr="forkJoinPool.getActiveThreadCount()")
		void count(final int START, final int END) {
	Vector<Visitor> bots = new Vector<Visitor>(NT);	for (int j = START; j <= END; j++) {
	for (int i = 0; i < NT; i++) {	SingleCounter aux = counters[elements[j]];
	bots.add(new Visitor(graph, i));	synchronized (aux) {
	}	aux.value += 1;
	for (Visitor v : bots) { v.start(); }	}
	for (Visitor v : bots) { v.join(); }	}
	}	}

 [START_REF] Je | LITTLE Technology moves towards fully heterogeneous Global Task Scheduling[END_REF]. GTS, short for Global Task Scheduling, is the default scheduler for big.LITTLE systems running the Linux Kernel. Before delving into numbers, in Section 4.1 we introduce the runtime environment we have used to carry out the evaluation of J C. Experiments were performed in an Odroid Xu4 development board. is device is powered by a Samsung Exynos 5422 SoC with four ARM Cortex A15 cores, running at up to 2.0GHz, and four Cortex A7 cores running at up to 1.5GHz. e board features 2GB of LPDDR3 RAM. To measure the energy consumed exclusively by speci c functions, we send signals to the synchronization circuit seen in Figure3-a through one of the board's GPIO pin. We use the energy measurement framework proposed byBessa et al.. Power is measured by a National Instruments DAQ USB 6009 device, at a rate of 12,000 samples per second. e So ware Stack We use Oracle's openJDK/JRE 11 LTS 3 and Soot 3.2.0 4 to analyze, instrument and run bytecodes. No modi cations have been made in the Java Virtual Machine or its Just-in-Time compilers -all the interventions performed by either J

	1:16		Ribeiro, et al.
	4.1 Experimental Setup	
	e Hardware.	
	-Speed: what is the speedup that can be obtained by J	C when compared to sched-
	uling techniques of similar goals?	
	RQ2 -Energy: what is the improvement that J	C delivers on top of other tools, in terms
	of energy consumption?	
	RQ3 -Training: what is the training time of J	C, and how does it compare to the training
	time of similar tools?	
	RQ4 -Convexity: how is the space of best con gurations that J	C explores when trying
	to optimize programs?	
	We compare J	

C with two state-of-the-art approaches: Sreelatha et al.'s CHOAMP, and ARM's GTS (PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Table 1 .

 1 Benchmarks used for evaluating J C. The TTime column shows the time required to train each benchmark, which will be further explained in Section 4.4. Lang. contains the source language of benchmarks, where J stands for Java and S stands for Scala. The W column shows the number of warm-up executions

	Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs	1:17
	Source		Benchmark		TTime		Lang. LoC W Class
	Shun et al.		bfs		42m33s		J	353 4 graph manipulation
	Shun et al.		radixSort		20m51s		J	501 4 sorting algorithm
	Shun et al.		sampleSort		26m17s		J	414 3 sorting algorithm
	Shun et al.		su xArray		30m12s		J	316 3 string manipulation
	Shun et al.		removeDuplicates 30m31s		J	174 4 sequence manipulation
	Shun et al.		convexHull		56m30s		J	499 5 geometry and graphics
	Shun et al.		nearestNeighbors 30m29s		J	715 3 geometry and graphics
	Shun et al.		spanningForest	21m40s		J	410 4 graph manipulation
	Prokopec et al. als		80m12s		S/J	97	1 matrix factorization
	Prokopec et al. philosophers	21m15s		S/J	146 1 synchronization algorithm
	Prokopec et al. futureGenetic	26m8s		S/J	115 1 genetic algorithm
	Prokopec et al.	nagleHTTP	225m10s	S/J	119 1 server-client exchanges
	Prokopec et al. chiSquare		27m15s		S/J	101 1 statistical algorithm
	Prokopec et al. decTree		64m22s		S/J	129 1 random forest algorithm
	J	C		collinearPoints	32m1		J	565 3 geometry and graphics
	J	C		hashSync		94m7s		J	73	3 sequence manipulation
	J	C		insertAndAdd	47m30s		J	130 4 database manipulation
	J	C		randomNumComp 26m7s		J	89	6 system exploration
	performed by each application. among J	C's benchmarks, C	P	finds three points on the same
	line; H S	inserts in a concurrent table; R	N C	has several long sequences of branches that
	are hard to predicted; and I	A A implements parallel operations on a DataBase.

).

		85																			2.2
	Temperature (ºC)	50 60 65 70 75 80 55	Execution begins			Temperature threshold Execution ends		1.2 1.4 1.6 1.8 2.0	Clock speed (GHz)	cat /sys/class/thermal/thermal_zone0/ type cpu0-thermal cat /sys/class/thermal/thermal_zone0/ trip_point_2_type active cat /sys/class/thermal/thermal_zone0/ trip_point_2_temp 80000
		1	17 33 49 65 81 97	11 3	12 9	14 5	16 1	17 7	19 3	20 9	22 5	24 1	25 7	27 3	28 9	30 5	32 1	33 7	35 3	36 9	38 5
			Temperature	Clock speed	Samples									
									(a)											(b)

Table 2 .

 2 Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs 1:19 Prime features and their correspondent Java VM implementation. Get() is invoked. However, some features like ush operations, proposed by Sreelatha et al., were not reused in our implementation, due to a lack of correspondents in Java. Training and Tuning Following Sreelatha et al., we have trained the probabilistic model of CHOAMP by running it on a set of generic micro-benchmarks. As the original training set was wri en in C and OpenMP, we had to create a new training set that suits Java. e micro-benchmarks we used were directly based on the scripts made public by Sreelatha et al.. ese scripts generate hundreds of micro-benchmarks.

	Prime Feature Language dependent	OpenMP	Java VM
	Branch operations	No	-	-
	Memory operations	No	-	-
	Atomic operations	Yes	omp atomic	atomic
	Barriers	Yes	omp barrier	CyclicBarrier, Phaser
	Critical Sections	Yes	omp critical Synchronized blocks/methods
	False Sharing	No	-	-
	Flush operations	Yes	omp ush	not used

 × 2 matrix -for aesthetic reasons only. However, to avoid having to draw a 3D-gure, we have xed one input for each benchmark 6 : number of Generations for F G , and number of workers, for H S . e choice of benchmarks is arbitrary. We did not add more benchmarks to this experiment because the generation of the data necessary to build each table demands considerable computational time, e.g.: keep evaluation within a reasonable time frame, we have used only the frequency level of 1.8GHz for the big cores. Had we also included the level of 1.6GHz, as in the previous sections, then our total running time would more than double. Experimental Setup: e four tables in Figure21show convex spaces: any sequence of rows or columns traverses a continuous region.Example 4.2 illustrates what we mean by a continuous region.

	Scheduling in Het. Archs. via Multivariate Linear Regression on Function Inputs	1:27
	into a 2 • R	S	: 1 hour and 37 minutes
	• P		: 2 hours and 24 minutes
	• F	G	: 55 hours and 53 minutes
	• H	S	: 58 hours and 12 minutes
	Furthermore, to Example 4.2. Consider H	S	in Figure
		We have augmented this set with H	S	and F	G	, to t the gure

Table 3 .

 3 Di erent solutions to the problem of finding ideal hardware configurations. We consider the following levels: Architecture (A), Operating System (O), Compiler (C) or Library/Programming model (L).

	Yuan 2012) O/C Multi	Yes	No	Yes	Yes	No
	(Sreelatha et al. 2018)	C	Single	Yes	No	Yes	No	Yes
	J	C	C	Single	Yes	Yes	Yes	No	Yes

 • Training: when does learning occur? O -line systems calibrate the prediction model before the target program runs; on-line systems do it while the program executes.

		Approach Granularity	Training	Data	Target Level
	O	M (Petrucci et al. 2015)	runtime	on-line	self	server	OS
	S	(Donyanavard et al. 2016)	runtime	o -line	µ-bench	client	OS
		D PO (Gupta et al. 2017)	runtime	o -line	µ-bench	client	OS
		Tzilis et al. (2019)	runtime	o -line	µ-bench	client	OS
	H	(Nishtala et al. 2017)	runtime	o /on-line µ-bench+self server	OS
	C	(Sreelatha et al. 2018)	syntax	o -line	µ-bench	client Comp.
	SIAM (Krishna and Nasre 2018) syntax+data	o -line	self	client Comp.
		J	C	data	o -line	self	client Comp.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Table 4 .

 4 Di erent solutions to I published in recent years.

h ps://developer.arm.com/technologies/dynamiq PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

We are using only two decimal digits; hence, rounding errors prevent us from obtaining 1.00 in every line.PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

h ps://jdk.java.net/11/

h ps://github.com/Sable/soot/releases/tag/3.2.0 PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

h ps://bitbucket. org/jkrishnavs/openmp-eigenbench PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Notice that varying all the three inputs would also increase substantially the time to run this experiment. We speculate that this time would jump from 58 hours up to 12 days for H S only.PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

In our se ing, the search space is a function that maps program inputs to optimal hardware con gurations. is function is discrete, because its image is a nite set of hardware con gurations. Convexity, in this case, means that if we x all the program inputs, and vary the one le , every region covered by the same optimal con guration is continuous. In other words, while varying this single input monotonically, we will not leave a region r where a certain con guration h is the best, nd a new region r governed by a di erent con guration h , only to nd h again later, once we cross the boundary between r and a third region r ". In this section, we analyze the space of optimal hardware con gurations, to provide some evidence that these regions tends to be convex in practice. Notice that convexity is a tendency, not a principle. In other words, it is possible to implement programs whose space of optimal con gurations is not convex. Example 4.1 shows an instance of such a program.

Example 4.1. If we build a function that associates the input i of the procedure unlikely (seen below) with optimal hardware con gurations, then we obtain a non-convex (concave) space: