
HAL Id: lirmm-02288800
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02288800

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method for Trading Test Time, Area and Fault
Coverage in Datapath BIST Synthesis
David Berthelot, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
David Berthelot, Marie-Lise Flottes, Bruno Rouzeyre. A Method for Trading Test Time, Area and
Fault Coverage in Datapath BIST Synthesis. Journal of Electronic Testing: : Theory and Applications,
2001, 17 (3/4), pp.331-339. �10.1023/A:1012227715327�. �lirmm-02288800�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02288800
https://hal.archives-ouvertes.fr

Page 1 of 6

A Method for Trading Test Time, Area and Fault Coverage in Datapath BIST
Synthesis

D. Berthelot, M.L. Flottes, B. Rouzeyre
Laboratoire d'Informatique, de Robotique et de Micro-Electronique de Montpellier,

U.M.R. 5506 CNRS/Université de Montpellier 2, 161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract
This paper presents a method for deriving a BIST
specification from the initial specification of datapaths.
This method minimizes BIST area overhead under test time
constraint while guaranteeing a user chosen fault coverage.
The designer can thus explore a wide range of solutions
and keep the one that best fits with design constraints.
Results show great improvements over lower level
techniques.
1. Introduction
The expected benefits of BIST insertion techniques at gate
or RT level (e.g. [1, 2, 3, 4, 5, 6, 7]) are limited because the
architecture is fixed. After synthesis, test insertion can only
degrade the initial design by adding extra test resources and
interconnects. That is the reason why many research groups
study BIST insertion before architecture definition. In fact,
BIST scheme may be decided during HLS (High Level
Synthesis) e.g [8] or even before at behavioral level.
Several high level BIST insertion methods have been
proposed in the literature, they can be broadly classified
into two categories: those that target minimal area overhead
[9, 10, 11] and those that target minimal number of test
sessions [12]. Three remarks can be made concerning these
works. First, in any case they are based on specific HLS for
BIST algorithms and, consequently, corresponding
techniques cannot be used with a classical HLS flow.
Second, the FC (Fault Coverage) is evaluated a posteriori,
by fault simulation for instance. Consequently, it cannot be
used to guide the test insertion process. Finally, related
methods suffer from lack of generality in the sense they
target a single type of TPGs (Test Vector Generators) and
CMPs (response CoMPactors). However, the need to
combine several test pattern generation and compaction
techniques arises because each technique has its strong and
weak points. In one hand, the initial design may be more or
less favorable to the intrusion of a given type of test
resources in terms of area overhead. On the other hand,
pseudo-exhaustive test pattern generators, as arithmetic
ones, are well suited for testing regular structures (adders,
substracters, multipliers...) while pseudo-random
sequences, generated with the help of LFSRs for instance,
give better results on random logic. Combining several test
resources types has already been proven to be very
powerful at RT level [13] as well as behavioral level [14].

This paper describes a new method for implementing a test-
per-clock BIST scheme for operators in data-paths. This
method targets minimal area overhead while respecting a
test time limit (TL). It aims at BISTing data paths as soon as
possible in the design flow. The FC to achieve on data
path's operators is a user-given parameter; it is used to
guide the choice of a TPG among all possibilities. Finally,
several types of TPGs/CMPs are eventually inserted within
the same design for better optimization.
Section 2 discusses our objectives. Section 3 describes the
proposed test synthesis methodology. Experimental results
are presented in section 4.
2. Test Time and Definitions
While area overhead is the usual main criterion when
BISTing a circuit, it had been shown [13] that a light
increase in area may lead to large savings on test time. So
we state the problem as minimizing area while respecting
TL. Using various TL values, the designer can thus explore
a wide range of BIST solutions and select the one that best
fits with its constraints. Apart from the above mentioned
drawbacks, published methods targeting test time
minimization suffer from the following limitations:
- All operators are assumed to be tested by the same type of
TPG with the same number of test patterns. In other words,
these methods minimize the number of test sessions and not
really the test time. Test parallelism is limited by test
resources conflicts.
- Area overhead is not an input parameter but just a
consequence.
Thus these methods do not allow trade-off between area
overhead and test time. An exception is the method
presented in [15]. In this method datapath is not partitioned
into kernels. A single LFSR and a single MISR are
connected to the primary I/Os. For a given test length some
control/observation points are added to the datapath in
order to increase fault coverage. If achieved fault coverage
is not sufficient, test length is increased and so on and so
forth. This method leads generally to very long test time if a
high FC is desired because of the use of a single pseudo-
random TPG and the highly sequential nature of the
datapaths.
Here we do not assume such restrictions. Test time depends
on both the kinds of TPG used for each operator and on
scheduling of test sessions.

Page 2 of 6

Test resource characteristics are stored in a test library. For
each resource, the library includes a functional model and
the logic implementation when necessary (e.g. feedback
loop and shift operation of an LFSR). Concerning the
TPGs, the test library also includes the corresponding
achievable FC for a given test length. Fig.1 gives some
examples. From this table we can see that TPG1, an
arithmetic TPG, achieves 100% of FC on RC-Adder, a
Ripple-Carry adder, with the help of 15 test vectors. TPG5
is an other example. It achieves respectively 90,4% and
95,2% of FC on operator RandomLogic, if the test length is
extended from 255 to 1200 vectors. FCs and test lengths are
computed in a pre-process task for every pair (TPG,
operator). For each entry in this table, area corresponding to
the modification of registers in test resources is also stored.
Only entries in the library for which the desired fault
coverage can be achieved are considered in the following.
We use the following notations and definitions.
TPG(M i) and CMP(M i) denotes the type of TPG and CMP
used to test operator M i. Test time necessary to test Mi with
TPG(M i) is denoted Time (M i, TPG(M i)).
Definition 1: A test session is a set of operators tested
concurrently. In order to simplify the BIST controller, we
assume that in a session the tests of concerned modules
start and end at the same time. TS is the set of test sessions.
Definition 2: The duration T of a test session S is the test
time of the longest-test-time operator in the session, that is
T(S) = Max {Time(M i,TPG(M i)).
Definition 3: The total time TT for testing operators
grouped into test sessions is given by : ∑

∈

=
TSS

STT)T(

The organization of individual tests into test sessions is
constrained by the following properties.
Property 1 : A TPG can be used for testing several operators
in a test session or in different sessions.
Property 2: Several operators can not share a CMP in one
test session. Conversely, a CMP can be used for several
operators in different sessions.
Theorem: The number of ways of grouping the tests of n

operators into test sessions is given by: ∑
−

=
−=

1

0
1C

n

j
j

j
nn PP

with
!)!(

!
C

ppn
np

n −
= (Pn are known as the Stirling

coefficients). Pn growths very quickly with n (e.g. P7 = 876)

3. Test Synthesis
BIST definition is performed at behavioral
level. It consists in deriving a behavioral
description for the test mode from the original
specification of the design. Both TBD (Test
Behavioral Description) and IBD (Initial
Behavioral description) are then jointly
synthesized using a classical high level
synthesis flow for full optimization of the
entire architectural solution.

The IBD is first scheduled under timing and hardware
constraints, then operators are allocated and assigned to
operations. The actual operators to test are thus determined.
The so-computed intermediate level of representation,
SDFG (Scheduled Data Flow Graph), and the test library
support the TBD definition.
The TBD is built up from fragments extracted from the
SDFG, these fragments are called BPs (Behavioral
Patterns) in the following. Section 3.1 discusses BPs
extraction and section 3.2 describes TBD definition.
3.1 Behavioral Patterns in the SDFG
A BP is a fragment of the original SDFG. It defines the
behavioral components involved in a future test resource
and the way they are interconnected.
It exists two types of behavioral patterns. A type1-BP is
complete in the sense that the pattern is sufficient to lead to
the generation of a test resource after register assignation.
Conversely, a type-2 BP may lead to the generation of a test
resource if a test function is used to complete the pattern.

Fig.2 gives two examples of type1-BPs; both of them may
be used to implement a CMP based on an arithmetic
compaction technique. The fragment in Fig.2.a includes an
adder performing an operation between two variables t and
z. The result of this operation is written back into variable
z. The BP in this case is composed of one operator and two
variables: (Add1, t, z). After synthesis, this BP leads to the
RTL pattern presented on the right-hand side Fig.2.a. Such
a type1-BP is said 'obligatory' since it leads to the
generation of an arithmetic compactor whatever the register
assignation is. Conversely, the type1-BP (Add1, t, y, z)
presented in Fig.2.b is a 'potential' pattern. In fact, it leads
to the generation of an arithmetic compactor if, and only if,
variables z and y are stored into the same register. When a
test solution is selected for a given operator, register
assignations involved by the corresponding BP are stored
(e.g. assignations involved by a potential type1-BP).
Fig.3 gives an example of a type2-BP. This BP (x, y) can be

TPG Module FC #Vect Type Area

TPG1 RC-Adder 100.0 15 Arith based -
TPG2 RC-Adder 100.0 15 LFSR based 10
TPG3 RC-Adder 100.0 17 LFSR based 20
TPG4 CS-Multiplier 100.0 214 LFSR based 15
TPG5 RandomLog1 95.2 1200 LFSR 5
TPG5 RandomLog1 90.4 255 LFSR 5

Fig. 1: TPG's Test Library sample

Add1

BP
z

+

t

z
Add1

t,... z,...

+
Add1

t y

z
Add1

t,... z,y,...
BP

 a: Obligatory type1-BP b: Potential type1-BP
Fig.2: Type-1 Behavioral patterns

Page 3 of 6

used for generating an LFSR-type TPG if a test function
(LF1) is added to complete the pattern (see right-hand side,
Fig.3). The area overhead of the test function comes from
the test library (col.6 in Fig.1). Note that any pair of
variables connected to the operator under consideration in
the original SDFG is a candidate type2-BP for this operator.
For instance the pairs (x,u), (t,u) and (t,y) are also candidate
BPs for the test of the adder.

Note that if several operators can be tested by the same
type2-BP, only one test generation function (e. g. LF1) is
introduced in the data path. All pairs of registers used to
store test patterns on concerned operator's inputs are
connected to this extra function (see Fig.4).

The first task to perform before TBD definition is to build
up a set of test solutions for each operator in the data path.
These solutions are BPs extracted from the SDFG.
3.2 TBD Definition
The problem to define a test scheme is threefold:
1/ We have to determine the type of test resource used for
each operator. This influences the area overhead and the
test time.
2/ Test resources have to be instantiated. The number of
implemented test resources influences the test time and the
area overhead too. For instance two CMPs of the same
type may be used to test two operators in parallel, while if
only one CMP is instantiated the two operators must be
tested in two distinct sessions.
3/ We have to determine the test sessions schedule to
respect the user given time limit TL.
The main problem while defining the TBD is to evaluate a
very large number of test scheme solutions in order to
select the best one. Test schemes need to be evaluated in
terms of test time and in terms of area overhead. Test time
has already been discussed in section 2. The constraint is
TT<TL. Area overhead evaluation is discussed in section a/
below.
In order to find the best solution in an acceptable amount of
time, the search process is based on a branch and bound

technique. Solutions are ordered before their evaluation in
order to speed up the convergence to the best solution and
to improve the pruning process. The procedure used to find
the best overall solution is detailed in section b/.
a/ Area overhead estimation
As already mentioned above, a large number of solutions
need to be evaluated, consequently area overhead must be
evaluated with low computational effort. It is thus estimated
as the sum of the area overhead introduced by test resources
and the area overhead introduced by extra registers.
Area overhead introduced by a given type of test resource is
taken from the test library.
Area overhead related to extra registers is the difference
between the number of registers needed to implement the
whole specification (IBD+TBD) and the number of
registers needed to implement the initial specification
(IBD). Let NReg be the number of registers required to
implement the IBD. NReg can be computed by performing a
first register assignation on the IBD. Let TestReg be the
minimal number of registers used during the test mode, it
can be computed from the number of the number of
registers required in every test session as follows. Let
{Opk}be the set of operators tested during a test session S,
TPG(Opk) and CMP(Opk) the test resources involved
during Opk testing, Reg(TPG(Opk)) resp. Reg(CMP(Opk))
be the number of registers necessary to implement
TPG(Opk) resp. CMP(Opk). TestReg is given by:







 += ∑

∈
∑∈ SkOp kOp

kkTSSReg OpCMPRegOpTPGRegTest))(())((max

Since the IBD and TBD lie in exclusive branches, the
lifetimes of their variables do not overlap. Thus their
variables can share the same registers. The number of
registers necessary to implement IBD+TBD is estimated as
max(TestReg, NReg). The number of extra test registers due
to BIST synthesis is taken as:

RegRegRegReg NNTestTest −=∆),max(

b/ Branch and bound
Best solution search process is detailed in Fig.5.
First pruning is performed on TPGs (�). Each operator,
Opk, can be tested with the help of several TPGs,
TPGs(Opk)={TPG(Opk)m, m =1,...} in the following.
TPGs(Opk) is ordered in such a way that TPGs that can be
shared by a maximum of operators are considered first.
Priority1(TPG(Opk)m) allows ordering TPGs(Opk):

∑
≠

∈
=













ki

imk
mk

OpOp otherwise
OpTPGs)TPG(Opif

)TPG(Opiority
0

)(1
)(1Pr

TPGSet represents a sufficient set of test generators for
testing all operators Opk. TPGSets are built up from all
combinations of the ordered sets TPGs(Opk).
The second pruning is performed with respect to the user-
given test time threshold TL (�). A scheduling solution,
SS, is build up incrementally. At each step, the test of a new
operator is added to the preceding partial schedule, partial-
SS. If the corresponding test time, Tt(partial-SS), go

+

x y

z x y

LF1Add1

Add1

BP

+

t u

v

Add1

Fig. 3: Type-2 Behavioral pattern

x y

LF1

Op1

z t

Op2

Fig. 4: Type-2 Behavioral pattern

Page 4 of 6

beyond TL, partial-SS is not further explored. Here again, a
priority function, Priority2(Opk), is used to order the
operators to schedule. The ones that need the largest
number of test patterns are considered first:

))
k

,TPG(Op
k

Time(Op)
k

OpPriority2(=

The last step is dedicated to the selection of CMPs (�). As
for TPG's selection, we have to evaluate several sets of
solutions, CMPSets. These sets are build up incrementally,
if Area(partial-CMPSet)>BestArea then the process stop for
the corresponding set of compactors and a new CMPSet is
built up.
At the end of the procedure, test sessions are scheduled and
TPGs/CMPs are assigned to operators. The TBD is build up
from this information. Extra area due to the BIST intrusion
is determined after synthesis of the new behavioral
description that includes both TBD and IBD.

4. Results
We applied this method to three classical HLS benchmarks:
elliptic wave filter EWFIL, auto-regressive filter ARFIL,
and differential equation solver DIFEQ. Each circuit has
been synthesized using various area constraints, expressed
as number of operators. In all experiments, the desired fault
coverage has been fixed to 100%.
The results are presented in the tables below divided into
horizontal blocks. Each block compares several BIST
strategies for the same area constraints. Column 2 gives the
user given test time limit on line 'Initial' (e.g. < 500) and the
actual test time for different strategies. Columns 3 to 7 give
the number of operators, registers and multiplexor inputs in
the designs. Columns 8 and 9 refer to the number of
EXOR-based feedback operators used to create LFSR and
MISR. The arithmetic TPGs/CMPs, which do not involve
area overhead, are not referred in the tables. Signatures are
propagated to observation points (primary output or
observable registers) via I-paths [16] when possible.
Otherwise a shift facility is added to the register storing the
signature, this is referred by ShiftReg column.

After BIST insertion, designs are expanded to
gate-level using a commercial tool and a 0.7
µ.m library. Areas are measured in terms of
number of cell units. Area overhead is given
in columns 11 to 14 for 4 datapath bit-widths.
A first set of experiment aims at proving the
interest of a high-level test synthesis
compared to a RTL technique [13]. A second
set of experiments highlights the interest of
hybrid test schemes including several types of
test resources.
4.1 Comparison with RT approach
In this section, we compare the results of the
presented methods (referred as BBIST for
behavioral BIST in the tables below) with
those obtained using a RT level BIST

insertion method (referred as RTBIST). We used our HLS
tool (MACH) to generate the RTL descriptions. The line
BMinArea refers to designs obtained through the method
presented in [14], i.e. a behavioral test synthesis technique
targeting minimal area overhead.
It can be seen on these tables that in some case BIST
insertion at RT level does not allow satisfying the test time
limit. The main reason is the fixed structure of the
interconnection network. It can also be seen that our
method always leads to the best designs whatever the
example and the test time limit. They are generally far
better than those obtained at RT level. That's mainly
because the RTBIST method must adapt/modify the
structure of the circuit in order to parallelize test sessions.
Conversely our method generates one (adapted)
architecture for each test time constraint.
Finally it can be observed that for a low increase over the
minimal area overhead (e.g. 6.37% to compare with 6,51%
i.e. an increase of 0.14% in first block in table 1), test time
decreases a lot (from 496 to 248).
4.2 Benefit of using various test resources types
Here we applied our method in restricting the set of usable
test resources to LFSR and MISR (line LFSR). Then the so
synthesized solutions are compared with synthesis solutions
where all kinds of TPGs/CMPs are accepted (line all).
Using various kinds of resources types always leads to
better results than using a single kind of TPGs and CMPs.
Area overheads vary by twice as much. One of the reasons
is that arithmetic CMP, which do not involve area
overhead, can be used instead of MISR. In a counterpart,
some designs can not be tested if TPGs/CMPs types are
restricted to arithmetic structures.

5 Conclusion
The proposed method is the first one to seek a minimal area
BIST solution while respecting a test time constraint.
Acting at behavioral level, it lets the high-level synthesis
process to care about the optimization of both the initial
behavioral description and the BIST behavioral description.

�For each TPGSeti
 If Area(TPGSeti)+Area(?TestReg)<BestArea
�For each schedule solution
 If TT<TL
� For each CMPSetj

 If Area(TPGSeti)+ Area(CMPSetj) +Area(?TestReg)<BestArea
 BestArea= Area(TPGSeti)+ Area(CMPSetj) +Area(?TestReg)
 Store TPGSeti,CMPSetj

 EndIf
 EndFor
 EndIf
 EndFor
 EndIf
EndFor

Fig. 5: Test resource selection under test time constraint

Page 5 of 6

Circuit Test
Time + - * Reg Mux LFSR MISR Shift

Reg
Area
8 bits

Area
16 bits

Area
32 bits

Area
64 bits

Initial <300 2 0 2 8 34 Initial Circuit
RTBIST 248 2 0 2 8 48 2 1 1 9.79% 5.45% 2.87% 1.52%
HLS Bist 248 2 0 2 8 44 1 0 1 6.51% 3.02% 1.70% 0.90%

BMinArea 496 2 0 2 8 42 1 1 0 6.37% 2.90% 1.60% 0.87%
Initial <300 2 0 3 8 41 Initial Circuit

RTBIST - 2 0 3 8 41 No solution at RTL
HLS Bist 248 2 0 3 8 51 1 1 0 6.64% 3.06% 1.52% 0.79%

Initial <500 2 0 3 8 41 Initial Circuit
RTBIST 462 2 0 3 8 55 2 2 1 9.22% 4.85% 2.35% 1.21%
HLS Bist 462 2 0 3 8 54 1 0 1 6.28% 2.85% 1.54% 0.80%

BMinArea 727 2 0 3 7 52 1 0 2 2.29% 0.86% 0.45% 0.23%
Initial <300 2 0 4 8 48 Initial Circuit

RTBIST - 2 0 4 8 48 No solution at RTL
HLS Bist 231 2 0 4 8 59 1 2 0 7.76% 3.26% 1.52% 0.78%

Initial <500 2 0 4 8 48 Initial Circuit
RTBIST 445 2 0 4 8 64 2 2 0 8.23% 4.16% 1.99% 1.02%
HLS Bist 445 2 0 4 8 59 1 1 0 5.79% 2.59% 1.26% 0.65%

BMinArea 958 2 0 4 8 62 1 0 1 4.78% 2.42% 1.28% 0.66%
Initial <300 2 0 5 8 51 Initial Circuit

RTBIST - 2 0 5 8 51 No solution at RTL
HLS Bist 231 2 0 5 8 64 1 4 0 10.61% 4.11% 1.81% 0.91%

Initial <500 2 0 5 8 51 Initial Circuit
RTBIST 462 2 0 5 8 75 4 4 0 11.92% 5.79% 2.66% 1.34%
HLS Bist 462 2 0 5 8 64 1 1 0 5.52% 2.43% 1.18% 0.60%

BMinArea 1189 2 0 5 7 62 1 0 2 3.28% 1.40% 0.73% 0.37%

Table 1: Comparison RTBIST / BBIST (trade-off time/area)ARFIL

Initial <300 1 1 2 5 19 Initial Circuit
RTBIST - 1 1 2 5 19 No solution at RTL
HLS Bist 253 1 1 2 5 27 1 1 0 11.19% 5.07% 2.50% 1.29%

BMinArea 270 1 1 2 5 25 1 1 0 8.58% 4.41% 2.15% 1.10%
Initial <300 1 1 3 6 18 Initial Circuit

RTBIST - 1 1 3 6 18 No solution at RTL
HLS Bist 236 1 1 3 6 35 1 2 0 13.89% 5.90% 2.80% 1.42%

Initial <500 1 1 3 6 18 Initial Circuit
RTBIST 467 1 1 3 6 40 4 1 1 13.54% 6.36% 3.13% 1.58%
HLS Bist 467 1 1 3 6 40 1 0 1 11.55% 5.20% 2.72% 1.39%

BMinArea 501 1 1 3 6 34 1 1 0 9.59% 4.74% 2.34% 1.19%

Table 2: Comparison RTBIST / BBIST (trade-off time/area)DIFEQ

Results show the interest of directly synthesizing circuits
adapted to the test time constraint rather than to work at
RT level.
This work is the first one in our knowledge to use
various kinds of test resource sin a single design. This
feature leads to minimize area overhead for a given test
parallelism. Moreover test time of individual MUTs can
be optimized by the choice of the TPG type. Presented
results show that area overheads are up to 50% less than
when BIST insertion is considered at RT level or when a
single test scheme is considered.
References
[1] A.P. Stroele, H.-J. Wunderlich, "Hardware-Optimal Test
Register Insertion", IEEE Trans. on CAD, pp 531-539, Vol7,
No. 6, June 1998.
[2] A. Krasniewski, A. Albicki, "Automatic Design of
Exhaustively Self-Testing Chips with BILBO Operators", ITC,
pp 362-371, 1985.
[3] C.L. Hudson, G.D. Peterson, "Parallel Self-Test with
Pseudo-Random Test Patterns, ITC, pp 954-963, 1987.

[4] P.R. Chalasani et al., "Design of Testable VLSI Circuits
with Minimum Area Overhead", IEEE Trans. on Computers,
Vol. 38, No.10, Oct. 1989.
[5] A. Basu, T.C. Wilson, D.K. Banerji, J.C. Majithia, "An
Approach to Minimize Testability Overhead for BILBO based
Buil-In Self-Test, Inter. Conf. on VLSI Design, pp 354-355,
1992.
[6] S-P Lin, C.A. Njinda, M. A. Breuer, "Generating a Family
of testable Designs Using the BILBO Methodology", Jetta,
N°4, pp 7189, 1993.
[7] D. Gizopoulos, A. Paschalis et Y. Zorian, "An effective
BIST scheme for Datapaths". ITC 1996, pp 76-85.
[8] I. Parulkar, S. K. Gupta et M. A. Breuer. "Introducing
Redundant Computations in a Behavior for Reducing BIST
Resources". DAC, pp. 548-553, 1998.
[9] L. Avra, "Allocation and Assignment in High-Level
Synthesis for Self-Testable Data Paths", ITC, pp.463-472,
1991.
[10] H. Harmanani, C. Papachristou, S. Chiu, M. Nourani,
"SYNTEST: An Environment for System-Level Design for
Test", EDAC, pp. 402-407, 1992.

Page 6 of 6

[11] I. Parulkar, S.K. Gupta, M.A. Breuer, "Allocation
Techniques for Reducing BIST Area Overhead of Data Paths",
Jetta, Vol. 13, pp 149-166, 1998
[12] I.G. Harris, A. Orailoglu, "Micro-architectural Synthesis
of VLSI Designs with High Test Concurrency", 31st DAC,
pp206-211, 1994.
[13] D. Berthelot, M.L. Flottes, B. Rouzeyre, "BISTing
Datapaths under heterogeneous Test Schemes", Jetta, n°14, pp
115-123, 1999.

[14] D. Berthelot, M.L. Flottes, B. Rouzeyre, "BISTing Data
Paths at Behavioral Level" Submitted to ITC 2000.
[15] C. A. Papachristou, M. Baklashov, K. Lai, "High Level
Test Synthesis for Behavioral and Structural Design", Jetta,
N°13, pp 167-188, 1998.
[16] M.S. Abadir, M.A. Breuer "Constructing optimal test
schedules for VLSI circuits having built-in test hardware", 15th
Intl Fault Tolerant Computing Conf., pp:165-170, 1985.

Circuit Test
Time + - * Reg Mux LFSR MISR Shift

Reg
Area
8 bits

Area
16 bits

Area
32 bits

Area
64 bits

Initial <300 1 0 2 8 18 Initial Circuit
RTBIST 231 1 0 2 8 34 2 1 1 12.64% 6.47% 3.33% 1.74%
HLS Bist 231 1 0 2 8 27 1 1 0 9.34% 4.17% 2.08% 1.08%

BMinArea 479 1 0 2 8 25 1 1 0 6.88% 3.53% 1.74% 0.90%
Initial <300 2 0 2 8 28 Initial Circuit

RTBIST 248 2 0 2 8 40 2 0 1 7.38% 3.77% 2.08% 1.10%
HLS Bist 248 2 0 2 8 38 1 0 1 7.03% 3.07% 1.71% 0.91%

BMinArea 496 2 0 2 8 37 1 0 2 7.03% 3.07% 1.71% 0.91%

Table 3: Comparison RTBIST / BBIST (trade-off time/area)EWFI

Circuit Test
Time + - * Reg Mux LFSR MISR Shift

Reg
Area
8 bits

Area
16 bits

Area
32 bits

Area
64 bits

Initial <300 2 0 2 8 34 Initial Circuit
LFSRs 231 2 0 2 8 45 1 2 0 12.03% 5.65% 2.81% 1.49%

All 248 2 0 2 8 44 1 0 1 6.51% 3.02% 1.70% 0.90%
Initial <300 2 0 3 8 41 Initial Circuit
LFSRs 231 2 0 3 8 50 1 3 0 11.06% 4.57% 2.07% 1.07%

All 248 2 0 3 8 51 1 1 0 6.64% 3.07% 1.53% 0.79%
Initial <500 2 0 3 8 41 Initial Circuit
LFSRs 445 2 0 3 8 51 1 2 0 9.05% 3.92% 1.86% 0.96%

All 462 2 0 3 8 54 1 0 1 6.28% 2.85% 1.55% 0.81%
Initial <300 2 0 4 8 48 Initial Circuit
LFSRs 231 2 0 4 8 56 1 4 0 10.74% 4.11% 1.77% 0.90%

All 231 2 0 4 8 59 1 2 0 7.76% 3.26% 1.52% 0.78%
Initial <500 2 0 4 8 48 Initial Circuit
LFSRs 445 2 0 4 8 58 1 2 0 7.44% 3.10% 1.43% 0.73%

All 445 2 0 4 8 59 1 1 0 5.79% 2.59% 1.27% 0.65%
Initial <800 2 0 4 8 48 Initial Circuit
LFSRs 445 2 0 4 8 58 1 2 0 7.44% 3.10% 1.43% 0.73%

All 676 2 0 4 8 63 1 0 1 5.81% 2.59% 1.37% 0.70%

Table 4: Comparison of two test libraries (ARFIL)

Circuit Test
Time

+ - * Reg Mux LFSR MISR Shift
Reg

Area
8 bits

Area
16 bits

Area
32 bits

Area
64 bits

Initial <300 1 1 2 5 16 Initial Circuit
LFSRs 236 1 1 2 5 28 1 2 0 15.63% 6.73% 3.20% 1.64%

All 253 1 1 2 5 27 1 1 0 11.19% 5.08% 2.51% 1.29%
Initial <300 1 1 3 6 18 Initial Circuit
LFSRs 236 1 1 3 6 34 1 3 0 16.26% 6.60% 3.03% 1.54%

All 236 1 1 3 6 35 1 2 0 13.89% 5.90% 2.81% 1.43%
Initial <500 1 1 3 6 18 Initial Circuit
LFSRs 467 1 1 3 6 39 1 2 9 15.73% 6.83% 3.30% 1.68%

All 467 1 1 3 6 40 1 0 1 11.55% 5.20% 2.72% 1.40%

Table 5: Comparison of two test libraries (DIFEQ)

Circuit Test
Time

+ - * Reg Mux LFSR MISR Shift
Reg

Area
8 bits

Area
16 bits

Area
32 bits

Area
64 bits

Initial <300 1 0 2 8 18 Initial Circuit
LFSRs 231 1 0 2 8 27 1 2 0 12.93% 5.42% 2.58% 1.34%

All 231 1 0 2 8 27 1 1 0 9.34% 4.17% 2.08% 1.09%
Initial <300 2 0 2 8 28 Initial Circuit
LFSRs 231 2 0 2 8 39 1 2 0 12.99% 5.75% 2.84% 1.50%

All 248 2 0 2 8 38 1 0 1 7.03% 3.07% 1.72% 0.91%

Table 6: Comparison of two test libraries (EWFIL)

View publication statsView publication stats

https://www.researchgate.net/publication/225930133

