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Abstract

We present a behavioral synthesis method aimed at generating testable datapaths. A non-scan

testing strategy is targeted. Given performance and area constraints, the system is aimed at seeking

among potential design alternatives the one presenting the least testabilit y problems. The backbone

of this methodology is a testabilit y analysis method that works at different abstraction levels of the

design description -from strictly behavioral domain to purely structural domain-. Considering a

partially mapped behavioral specification, the testabilit y analysis identifies the testabilit y problems

of the future structure. These problems are solved along the synthesis process, for example during

the register allocation/binding task as presented in this paper.

I Introduction

High Level Synthesis (HLS) systems generate a structural hardware implementation at Register

Transfer Level (RTL), given a behavioral description of design and user defined constraints li ke

area and performance. The behavioral description is first translated into an intermediate description

such as a Data Flow Graph (DFG) or a Control Flow Graph (CFG). Nodes and arcs in a DFG

correspond respectively to operations and variables in the behavioral description. In a CFG, arcs

represent sequencing and nodes define data transformations or control branching. Then, HLS

algorithms act on this intermediate description. They perform scheduling (partitioning the

description into time intervals called control steps), binding (assigning variables to storage

components and operations to functional units), as well as generating interconnect network and

control logic. The final output is an RTL structure composed of a datapath and of a controller. The

datapath contains the functional units (f.u.s), the storage components, and the interconnect network

connecting these various physical resources. The controller is a finite-state machine which drives

the control signals of datapath elements in order to achieve the intended behavior.

Progress in technology and CAD tools has allowed a constant increase of the VLSI circuits

performances, however the problems related to their testing have multiplied. Nowadays, it is

universally acknowledged that test has to be taken into account as soon as possible in the design

cycle in order to reduce its cost -and consequently the global electronic component production cost-

.

 The first Design For Testabilit y (DFT) issues were addressed in the early 1980's, while

presently, High Level Synthesis For Testabilit y (HLSFT) approaches are under consideration.

DFT tools are totally independent of synthesis. Working on structural representations at RTL or

at gate level, they are applied as post-processors and cannot modify the allocation/binding of

physical resources. The 'S-graph' model [1] is commonly used to represent the topology of a
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sequential circuit to be made testable. At gate level, each node in the S-graph represents a flip-flop

(FF) of the circuit. A directed edge from node-1 to node-2 means that the FF corresponding to

node-1 is connected to the FF corresponding to node-2 through combinational logic. The sequential

depth between two FFs is defined as the number of edges between the two corresponding nodes in

the S-graph. When several paths exist between two nodes, the sequential depth is determined by the

shortest.

It has been observed ([2], [3]) that the automatic sequential test pattern generation (SATPG)

complexity grows exponentially with the length of cycles in the S-graph and linearly with the

sequential depth between FFs directly connected to primary inputs and FFs directly connected to

primary outputs. Consequently, numerous DFT techniques use these measures to improve

testabilit y. For instance, scan FFs are inserted in order to break cycles longer than one and to

minimize the sequential depth between inputs and outputs.

Since the early 90's, HLSFT have been proposed for considering testabilit y earlier in the design

flow. Because different hardware solutions can meet area/performance constraints, HLSFT systems

use criteria associated with specified testabilit y requirements to drive synthesis towards a design

which also satisfies testabilit y constraints (see [4] for an overview of University HLSFT systems).

Such an approach may avoid the drawbacks inherent in gate-level DFT techniques where test

overhead may conflict with initial area and performance requirements.

HLSFT systems target BISTed structures ([5], [6], [7]), or non-scan ([8], [9], [10], [11], [12],

[13]) or partial scan designs ([14], [15], [16], [17], [18]). For non-scan and partial scan designs,

HLSFT systems attempt to generate structures which can be tested 'easily' by SATPGs. The

easiness of testing is evaluated in terms of fault coverage, test eff iciency, test sequence length or

test generation time. RTL structures are generally extended to gate level descriptions in order to use

state-of-the-art SATPGs. Note an exception for the Genesis system [8] where both RTL and gate

level descriptions are used to perform hierarchical testing.

Using a S-graph-like model to specify the structure of datapath logic, numerous HLSFT process

target the same goals as DFT techniques: break the cycles and minimize the sequential depth at low

cost. These systems are aimed at (i) avoiding the formation of cycles and/or restricting the number

of scan registers needed to break them ([9], [10], [11], [14], [15], [16], [17], [18]), then at (ii )

minimizing the sequential depth between registers directly connected to primary inputs/outputs (I/O

registers) ([10], [12], [15], [16], [17], [18]). In [11] and [12], it has also been proposed to reduce

the testabilit y overheads by producing designs including as few self-loops (cycles of length one) as

possible. But this new constraint may lead the HLSFT system to produce a larger number of cycles

longer than one thus lessening testabilit y ([11]). Another goal widely addressed in HLSFT is to

generate designs with a maximum number of I/O registers ([9], [10], [11], [15], [18]). Since such

registers are easily controlled and observed, they improve the accessibilit y of the datapath

components, and indirectly they entail sequential depth reduction.

Testabilit y constraints can be inserted at several levels of the HLS process. Formation of cycles

can be avoided by analyzing the alternatives offered during scheduling or allocation/binding tasks



3

([9], [11]). Nevertheless, datapath cycles may be either inherent in the behavioral description, or

created during the synthesis process (see [16] for an overview). If scan registers are used for

breaking remaining cycles in a datapath, their number can be minimized by analyzing the structural

implantation alternatives during scheduling and allocation/binding tasks ([17], [18]) or by

modifying the behavioral specification before synthesis process ([14]). Scheduling and

allocation/binding alternatives are also probed in order to minimize the sequential depth between

I/O registers ([12]), and to maximize the number of I/O registers ([10], [11], [12]).

A few comments can be made concerning datapath testabilit y evaluation by means of cycles and

sequential depth. First, problems related to cycles and sequential depth are generally less crucial in

datapaths than in state machines found in the control logic, due to a 'weaker' interconnect network.

Moreover, today commercial SATPGs deal more easily with cycles and sequential depth.

Sequential depth minimization can be considered as a second rate objective and cycles have to be

distinguished according to the diff iculties they involve. For instance in Figure 1.a, there is a path

through the adder allowing to control the register R to any particular value from primary inputs.

Consequently, in spite of the presence of the cycle, an SATPG can easily find a justification path

for a fault in R, in the subtracter, or in some downstream entities. On the contrary, no path allows

to control registers R1 and R2 from primary inputs in the cycle of Figure 1.b. This cycle, referred

to as 'strongly closed loops' in the rest of this article, can lead to the impossibilit y of setting

necessary test data into R1 or R2 and has to be considered as a testabilit y bottleneck.

Figure 1. Loops in datapaths

It's worth noting that the diff iculty of propagating test data through datapath components is

addressed only in few of the works referred above.

Test data propagation problems are addressed only partially and implicitly in HLSFT systems

attempting to maximize the number of I/O registers. Essentially, in an ideal binding solution, all

registers would be directly connected to primary inputs and outputs. Consequently, the registers and

other datapath components connected to them would be fully controllable and observable.

Unfortunately, the upper bound of the amount of input and output registers is fixed by the number

of DFG variables directly set from primary inputs and directly read through primary outputs. As a

consequence, when a maximum number of variables have been assigned to I/O registers, the

remainder are assigned into new registers blindly w.r.t. their controllabilit y/observabilit y.

Conversely, the two approaches presented in [8] and [13] are based on testabilit y analysis. In [8],

the possibilit y of transmitting test data to the DFG nodes through arithmetic units and gates are
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analyzed by a set of rules. For example, to set a test pattern on a multiplier output, an input will be

controlled to the value 'one' and the other to the desired test pattern value. Testabilit y analysis

results are used to drive the f.u.s/registers binding process. The goal is to generate a datapath

structure in such a way that every f.u. in the final structure can be controlled from primary inputs

and observed through primary outputs. Control/observation paths, extracted from the DFG paths,

form the test environment for the corresponding f.u.s. Test environments are used to propagate test

data computed at gate level on f.u.s boundaries. Nevertheless, one limitation of this method is that

the set of rules for the testabilit y analysis applies only to specific modules namely, the ones with a

neutral element.

In the approach proposed in [13], behavioral modifications for improving testabilit y are applied

to hard-to-test sections before HLS. Hard-to-test sections are identified by analyzing the CFG, then

variables are classified according to the results of the analysis. For instance, a variable is

'completely controllable' if there exists a sequence of executable paths in the CFG such that, after

the execution of these paths, the content of the variable can take any possible value by adjusting the

primary input values. A common drawback of both this approach and the one presented in [8] is

that the testabilit y analysis is limited to the set of paths already existing in the initial specification

namely, in the DFG [8] and in the CFG in [13]. These paths, exercised during the normal execution

flow of the circuit, represent only a subset of all the paths connecting datapath components, even

though the activation of other paths does not respect the initial sequencing. This point is examined

in detail i n section III .

Now let us describe the HLSFT system developed at LIRMM for generating datapaths in which

as many modules as possible (storage components, f.u.s,... but also muxes and wires) can be tested

using parallel test data propagated through primary input/output ports. This system is aimed at

exploring the design space to generate easily testable designs while respecting other design

constraints, without using partial scan insertion. Test patterns are actually obtained using a gate-

level SATPG.

For improving datapath testabilit y, binding/allocation possibiliti es are explored to enhance the

'accessibilit y' of all modules. The main features of the presented method are the following:

- It is based on a testabilit y analysis with no restrictive assumptions on the type of f .u.s usable

in the designs.

- Each RTL structural path, which exists in the final architecture and that can be derived during

the HLS flow, is considered for test data propagation.

- It supports behavioral specifications containing control constructs (with conditional

statements and/or cyclic CDFG).

- The strongly closed loops are within the scope of this method (other cycles are not considered

as testabilit y bottlenecks).

- Since it deals with datapaths, the sequential depth is considered as a second rate factor

allowing to choose between two binding solutions when they are equivalent in terms of other

test measures.
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- There is no assumption on the value of the test patterns during the HLS process.

II Overview of the system

The primary goal is to take advantage of synthesis possibiliti es -mainly during the binding

phase- in order to obtain a design in which as many modules as possible have their test paths. These

test paths being 1/ the controllabilit y paths allowing to apply test patterns on the module's inputs

from primary input ports and 2/ the propagation paths allowing to observe test responses through

circuit's outputs. Due to the excessive CPU time required by SATPG programs to find test patterns,

the secondary goal is to generate designs that are easily testable by SATPG.

The circuit architecture targeted by the synthesis system -depicted in Figure 2- is composed of a

datapath and a controller (a set of FSMs) driving the datapath command signals and sequencing the

given behavior. Only the testabilit y of the datapath is dealt with in this paper. The controller is

assumed to be made testable using a BIST ([19]) or a scan approach. Regarding datapath testabilit y,

we consider that any desired value can be set on the control signals, see Figure 2. Therefore, at least

two solutions are possible: either the control signals/flags are made fully controllable/observable by

using scan method -only to introduce FFs on control signals- or the desired datapath test plan is

incorporated within the control logic. Thus the sequencing of the datapath test is independent of the

normal mode of execution (contrary to the approaches [8] and [13] discussed in the introduction).

output
signals

input
signals

Data-Path

controller

control signals
flags

Figure 2. Target architecture
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 Description
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Figure 3. Synthesis of testable datapath

The synoptic of the system is shown in Figure 3. White and shadowed boxes are the usual tasks

performed during standard HLS of datapath: after the behavioral specification has been translated

into a DFG, the scheduling phase assigns operations to control steps. Then operations are bound to

f.u.s. Register binding determines the required memory elements (allocation) and binds variables to

the registers. Finally, the architectural structure is completed by allocating interconnect elements

(muxes, wires, busses) between f.u.s and registers for implementing the data transfers of the initial

specification.

To perform HLSFT, several tasks are added and some others modified (stripped and shadowed

boxes in Figure 3, respectively). Shaded boxes represent synthesis tasks aimed at improving

testabilit y. As shown on the figure, this synthesis for testabilit y method is based on a testabilit y

analysis used at different stages of the HLS process. Its results are required for driving register

binding and generating interconnections.

Considering the influence of testabilit y improvement on design performance, it is worth noting

that:

- the number of control steps stays unchanged since testabilit y is considered after the

scheduling phase,

- the clock period may be shortened or lengthened: since from the timing point of view,

testabilit y improvement tasks change exclusively the multiplexing resources, delays only

through the interconnect network are affected. These multiplexing modifications may change

the sum of gates on the criti cal path. Consequently, the clock period (fixed by the criti cal

path) may be increased or decreased. depending on the sum of gate delays, which is only a

rough estimation of the actual delays.

III Behavioral testability analysis

This section deals exclusively with the testabilit y analysis method used before register binding,

other invocations of the testabilit y analysis being very alike.
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At this point of the synthesis process, circuit's behavior is expressed as a DFG in which

operations are bound to f.u.s. Thus, the nodes of the DFG are f.u.s and edges denote data transfers

with or without memorization (a variable being associated to each transfer with memorization).

Testabilit y criteria analyzed by our system are essentially the existence of 1/ paths allowing to

justify test patterns and 2/ paths allowing to observe test responses. Since testabilit y applies to the

structural domain, the question is to know whether such paths will exist in the future structure,

given the set of data transfers described at the algorithmic level. These paths are to be built from

the data transfers regardless of both their grouping into statements and their schedule in the normal

flow of execution (contrary to the analysis method presented in [8] and [13]). For instance, if the

specification contains a statement like a := b + c, the three transfers a -> +, b -> + and + -> c are

considered independently. The future structure will contain a physical path from the registers

implementing a and b to the f.u implementing the addition, and from this f.u to the register

implementing c. Data transfers are then reorganized in order to create, when possible, justification

paths from primary input(s) and propagation paths to primary output(s).

Without loss of generality, we shall assume in the remainder of the text that all the f.u.s have

two inputs ports I1 and I2 and one output port O. F.u(x,y)=z means that z is the output value

obtained on O if values x and y are the inputs applied on I1 and I2. The term module is used

indifferently for f.u.s, variables, registers, muxes. The intrinsic transparency properties of the f.u.s

allow to establish test paths. Controllabilit y and observabilit y paths (named C-paths and O-paths)

are established for every variable and f.u input/output using the definitions below.

Definition 1: A f.u is C-transparent iff ∀ z, the value of O, ∃ (x,y) respective values of (I1,I2) such

that f.u(x,y)=z. Coders are counter-examples of C-transparent modules. In other words a module is

C-transparent if any value can be obtained on its output and thus can serve to propagate any test

pattern to other modules. Other modules like muxes and registers (variables) are C-transparent.

Definition 2: A f.u is O-transparent for its input port I1 iff ∀ (x,x'), x≠x', two values on I1, ∃ yx,x',

a value on I2, such that f.u(x,yx,x')=z, f.u(x',yx,x')=z' with z≠z'. Usual arithmetic operators are O-

transparent if their whole bitwidth is used, while shifters for instance are not. A module is O-

transparent if it can differentiate any vector pair, in particular a correct test response and a faulty

one. Such a module can be used to propagate test responses to the outputs. Muxes, registers and

variables are O-transparent.

Definition 3: A C-path of a module's port p is a lattice of data transfers rooted on primary inputs

and ending at p such that 1/ in every transfer a->b belonging to this C-path, a and b are either

variables or ports of C-transparent modules 2/ it does not contain reconvergences, for instance a

variable does not feed both inputs of a f.u. A variable or a register with a C-path is said to be

controllable, it can be set to any value. In the same way a f.u is controllable if there exist two

distinct controllable variables linked to its inputs (second above condition).

Definition 4: A O-path of a module's port p is an ordered set of data transfers starting at p and

ending on a primary output, such that for every transfer a->b belonging to the O-path, a and b are
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either variables, or an input port I1 of a f.u O-transparent for I1, or an output port of O-transparent

f.u or a primary output.

Definition 5: To validate a propagation through a O-transparent f.u from I1 to O, a particular value

must be justified on I2. Consequently, the propagation is possible if there exist a transfer v->I2 such

that v posses a C-path. Such a C-path is called a lateral C-path. Thus, any fault on p can be

observed (p is said to be observable) if: 1/ x has an O-path, 2/ there exist a complete set of lateral

C-paths not containing x. The second condition is set in order to avoid fault masking problems. It is

not a necessary condition but the knowledge of gate-level information would be required for its

removal. In the remainder of the text, O-path stands for the union of an O-path and its lateral C-

paths.

Definition 6: A module is testable iff it is controllable and observable.

The extension of the above definitions to actual test patterns is straightforward if a hierarchical

testing methodology is envisaged. C-paths and O-paths are a generalization of I-paths and S-paths

defined in [20] and [21].

It is important to note that no assumptions are made on test patterns, mainly because this level of

design is far from the structural level (registers, muxes, wires have not yet been determined). Thus,

this definition of 'testable' is pessimistic. For example, a module may happen to be found as non-

controllable by the proposed testabilit y analysis while the actual test patterns can be justified.

On the other hand, due to these very conservative assumptions, a SATPG can very easily find test

patterns for a module in case it is found testable. Conversely, if the module is determined to be non-

testable SATPG may have diff iculties either to find test patterns or to prove this module to be

actually non-testable.

The testabilit y analysis process returns classification of variables depending on their respective

controllabilit y/observabilit y. Moreover, when a variable is found either controllable or observable,

corresponding C-paths or O-paths are generated, respectively. The sequential depth of a

controllable variable is defined as the minimum number of clock cycles required to set a test pattern

in this variable. For example, the sequential depth of the controllable variables b, c, d, e and i,

shown on the DFG of Figure 4, is equal to 1, while the controllable variable k has a sequential

depth equal to 2.

This paragraph describes the classification of non-controllable variables (non-observable

variables can be classified using a similar approach). The example of Figure 4 will serve as a

support for ill ustrating this classification. Non-controllable variables are iteratively clustered into

three classes. These classes are successively built up starting from (1) the class of non-controllable

variables because they are only fed by not C-transparent f.u.s (e.g. variables h, a), continuing by (2)

the class of variables that would become controllable if some of the variables of the previous class

were made controllable (e.g. variables g, j), and ending by (3) the class of remaining variables. This

last class contains first, (3.1) the variables belonging to strongly closed loops (e.g. variable f) and

second, (3.2) the variables that would become controllable if some of the variables of (3.1) were

made controllable (e.g. variable l). This allows the set of strongly closed loops to be limited to the
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those containing only transparent f.u.s. The variables belonging to strongly closed loops containing

non-transparent f.u.s are included in the first two classes (e.g. variables a, g) since even if such

loops were open the concerned variables would still remain non-controllable.

Let us recall that the cycles considered as testabilit y bottlenecks are only the strongly closed

ones. For example, the cycle involving the variable a in the DFG shown in Figure 5 is not of the

'strongly closed loop' one. This variable can be set from primary inputs through functional unit f.u.1

which implements both +1 and +2 operations and is considered as a controllable variable.

e

i

PI1

j

f

PI2 PI3 PI5

PI4

a db c

g h

a k l f

f

d

f.u. non C-transparent

f.u. C-transparent

Figure 4. DFG with strongly closed loop

a

d

PI1

a

b

+1
(f.u.1)

+2
(f.u.1)

PI2

a

c

Figure 5. DFG without strongly closed loop

C-paths and O-paths are actually determined iteratively by scanning the list of elementary data

transfers and checking the transparency of the involved f.u.s. Concerning C-paths, initially the

variables linked to primary inputs are controllable, their C-path containing only one transfer. Let us

assume that after several iterations, the data transfer from a C-transparent f.u. F to a variable V is

under consideration. If both F inputs have been found controllable during previous iterations, and if

their respective C-paths end on different variables (see Def3 about reconvergence), then V is

controllable and its C-path is the union of the two C-paths plus the transfers F->V. This C-path is

added to the list of C-path for V. The process is iterated until no change occurs. The interested

reader can refer to [22] for more details on the testabilit y analysis algorithm.

Figure 6 shows the scheduled DFG obtained for the 'differential equation' high level synthesis

benchmark [23]. Operations have been bound to two multipliers MULT1 and MULT2, one adder

ADD and one subtracter SUB. The DFG is cyclic, feedback edges are not represented on the figure.

Variables x, y and u are loaded from primary inputs in the first iteration, then loaded from the f.u.s
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in the following iterations. For ill ustration purposes, we assumed that all f.u.s are C-transparent and

O-transparent except the subtracter which actually is transparent.

add

mult1

PO

u

addmult2

mult2 mult1

mult1 sub mult2

sub

u

u

u

g

dx dxC1

C1

dx dx

x

y

y

y

y

y

x

d c x

x

x

f b

h e

k

y

u

m

PI PI PI

Figure 6. Scheduled DFG

sub
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y

y

m

u

g

y

k

PO

PI

PI

Figure 7. Propagation path for a fault in SUB

Figure 7 represents a propagation path for a fault occurring in SUB. It is built up using  the

transfer from SUB's output port to the observable variable m, and the O-path of this variable. This

O-path has been established using the elementary transfers ill ustrated by thick lines in Figure 6. The

lateral C-paths are PI->y->mult1 and PI->y->add.

Table 1 shows the results of the testabilit y analysis on this example. Rows 2 and 3 respectively

assess the controllabilit y/observabilit y of the variables. Rows 2 and 3 in Table 2 give the number of

possible justification paths for each input of the f.u.s. Row 4 (Table2) gives the number of

propagation paths for each f.u.

Table 1 : Testabilit y characteristics of variables

var. y x u b d k e f c h m g

cont. yes yes yes yes yes yes yes yes yes no no yes

obs. yes yes yes no no yes no no no no yes yes

Table 2 : Testabilit y characteristics of functional units

Mult1 Mult2 Add Sub

input 1 (just. paths) 1 1 2 1

input 2 (just. paths) 1 1 1 4

output (prop. paths) 1 0 1 1
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IV Synthesis algorithms

According to analysis results, testabilit y is considered during the synthesis steps represented by

shadowed boxes in Figure 3 namely, the register binding phase and the generation of the

interconnect network (insertion of busses, muxes and wires necessary to interconnect registers and

f.u.s). Allocation and binding choices are sought in order to improve testabilit y. Only register

allocation for testabilit y improvement is detailed here, the principle being the same as for

generating the interconnect network.

a- Register allocation:

Let us first recall the basic principle of register allocation: variables can share the same register

if their li fe times do not overlap. The merging possibiliti es of variables are extracted by performing

a li fe time analysis and a compatibilit y graph is built up. In this graph, nodes and edges stand for

variables and merging possibiliti es, respectively. Every clique of the graph represents a set of

variables which can be assigned to the same register.

In standard HLS, a solution for minimizing the area expressed by a cost function fa (# registers,

# multiplexer inputs,...) is reached by seeking an adequate clique partitioning in the compatibilit y
graph. Generally, the search is guided by weighting the graph edges by the area gain Dfa -i.e. the

area gained by merging the two involved variables-. In the algorithm used in our standard HLS

system [24], the pair of variables (registers) joined by the edge of maximal weight is merged. After

each coupling, all weights and compatibilit y edges are updated. The process is iterated until no

further coupling is possible.

The principle underlying testabilit y improvement is to assign the same register to non-

controllable (non-observable) variables and to controllable (observable) ones rather than assign

only non-controllable variables to the register. In the first case, the resulting register is controllable

while in the second case it is not. Registers inherit the testabilit y properties of variables assigned to

them, e.g. the C-path (O-path) of a controllable (observable) variable becomes the C-path (O-path)

of the register. Figure 8 ill ustrates the principle underlying register allocation for testabilit y

improvement.

C

C NC

C

C NC

C

C NC

1 controllable register
1 non-controllable register

2 controllable registerscompatibility graph

Figure 8. Register allocation for testabilit y : principle

Figure 9 shows how register allocation affects not only the testabilit y of the registers but also of

f.u.s, muxes and wires (only controllabilit y is ill ustrated). A partially hardware mapped algorithmic

specification is given in a). Assuming that F.U.1 is not C-transparent, all variables except a and b



12

are non-controllable. Two different register allocations are given in b) and c) together with the

resulting architectures. A point-to-point style of interconnection has been used to interconnect the

modules. The number of non-controllable modules (black boxes) and connections (bold lines) is

drastically reduced in solution c) compared to b). The right input of F.U.2 is fed only by registers

fed in turn by F.U.2 in b) making this loop non-controllable. In c), the C-path "input->R2->R5"

allows to load this f.u input with any test pattern. The association of variable b with f, instead of g,

breaks the loop of case b). This kind of possibilit y is exploited during register allocation for

testabilit y. In both designs, register R3 is non-controllable because it is only fed by F.U.1.

R1 : a,e
R2 : b,f
R3 : c
R4 : d,g
R5 : h

R1 : a,e
R2 : b,g
R3 : c
R4 : d,f
R5 : h

Controllable

Non Controllable

Non C-Transparent

input

output
R4

F.U.1 F.U.3

R1 R2

R5

R3

F.U.2

output

input

F.U.1

F.U.2

F.U.3

R3

R2R1

R4

R5

a := Input;

b := Input;

c:= a F.U.1 b;

d:= a F.U.1 b;

e:= c F.U.2 d;

f:= e F.U.2 h;

h:= f;

g:= e F.U.3 h;

Output :=g;

HYP : F.U.1 not C-transparent

a, b :   controllable

c, d, e, f, g, h : non-controllable

a) Specification

b) Allocation1 c) Allocation 2

Figure 9. Standard register allocation vs register allocation for controllabilit y improvement

The proposed method does not differ from other related works in the general principle but in the

objectives targeted to improve testabilit y. As in many other HLSFT systems, the rule is to assign

non-testable behavioral components together with testable ones -since structural components

resulting from the assignations inherit testabilit y properties-.

Concerning the objectives, the problem to solve is how to bind variables onto registers in such a

way that as many structural components as possible would possess C-path and O-path.

Consequently, breaking cycles (except strongly closed loops) is not targeted, and the sequential

depth is only a second rate factor allowing to choose among different assignations of li ke interest

w.r.t. C-paths and O-paths establishment.

To take into account testabilit y as well as area, Dfa is replaced by aDfa /Dfamax +b(Dfc/Dfcmax
+ Dfo/Dfomax) where Dfc (resp. Dfo) is the controllabilit y (resp. observabilit y) gain, Dfamax,

Dfcmax and Dfomax are normalization factors. a and b are user defined tuning factors allowing

tradeoffs between area and testabilit y. The controllabilit y gain is intended to measure the effect of a
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merge on the controllabilit y of the whole circuit. As mentioned earlier, merging a non-controllable

variable with a controllable one into a register makes this register and the downstream f.u input port

connected to it by a transfer both controllable. Therefore, controllabilit y gain is expressed as a

linear combination of:

- the number of f .u.s that this merge would make controllable,

- the number of f .u.s' inputs made controllable while the f.u remains non-controllable,

- the number of registers made controllable,

- the difference of sequential depth between these two registers,

- a priority factor taking into account the controllabilit y nature of the two registers. For

instance , a high coeff icient is given if this coupling breaks a sequential loop.

Observabilit y gain is computed in a similar way. The interested reader can refer to [25] for

details on gain computation.

Table 3 gives the results of register allocation for the Differential Equation example after an

allocation taking no account of testabilit y (i.e. b=0) and an allocation including testabilit y (a=b=1)

using the above algorithm.

Table 3 : Comparison of registers controllabilit y/observabilit y

Without testabilit y  With testabilit y

var.  Reg. cont. obs. var.  Reg. cont. obs.

u Reg1 yes yes u Reg1 yes yes

x Reg2 yes yes x Reg2 yes yes

y Reg3 yes yes y Reg3 yes yes

b,k Reg4 yes yes b,m Reg4 yes yes

d,g Reg5 yes yes d,h Reg5 yes yes

e,c Reg6 yes yes k,f Reg6 yes yes

f,m Reg7 yes yes e,c Reg7 yes yes

h Reg8 no no g Reg8 yes yes

In the first case, register Reg8, assigned only to variable h, is neither controllable nor

observable. In the second case, each register is controllable and observable. Consequently any test

pattern can be justified on primary inputs and any test response can be observed on the primary

outputs, from each f.u and register ports. The pseudo-code describing the possible transfer sequence

for testing the MULT1 f.u (its C-Path and O-Path) is given below:

Reg1:=PI(TP1);        /*TP1, TP2: test patterns pre-computed by a combinational ATPG to test a fault in MULT1*/

Reg3:=PI(TP2);

Reg5:=MULT1(Reg1,Reg3);                                                      /*Reg5 memorizes MULT1's test response (TR)* /

Reg2:=PI(1);                              /*control of the lateral input of the O-transparent f.u MULT2 with the value 1*/

Reg6:=MULT2(Reg5,Reg2);                                                                           /*TR propagation through MULT2*/

Reg3:=Reg6;

PO(TR):=Reg3;                                                                                             /*TR observation on primary output* /

It must be underlined that register allocation can only enhance -but not guarantee- the testabilit y

of the circuit since it is constrained by the register sharing possibiliti es.

b- Interconnect network generation:
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If a wiring model allowing to share interconnections is chosen (e.g. a bus based model),

hardware sharing possibiliti es can also be sought either to enhance or to guarantee testabilit y. In the

first case, an interconnect network maximizing the number of testable points is generated while

keeping the number of connections to a minimum. In the second case, all the points are made

testable while adding as few extra connections as possible. Arguments and method are similar to

those used for register allocation.

V Results

This test/synthesis method has been applied to four behavioral synthesis benchmarks. Their

characteristics before register allocation are given in Table 4. Tseng's example is borrowed from

[26], the differential equation example from [23], the AR filter from [27] and the elli ptical filter

(EW) from [28]. Columns 2 to 7 show respectively the number of control steps, f.u.s, variables,

constants and primary inputs outputs. Columns 8 and 9 give the number of controllable and

observable variables.

Table 4: Benchmarks characteristics

Example # steps # f.u. # var # constants # Primary
Inputs

# Primary
Outputs

# c. var. # o. var.

tseng 13 2+,2- 11 0 2 1 5 3

differential 9 1+,1-,2* 12 2 3 1 10 6

ar filter 21 1+,2* 20 2 4 2 4 6

ew filter 19 2+,1* 39 3 1 1 2 1

All the designs have a constant bitwidth. Unfortunately, in the first two HLS examples, the

operations are only additions, subtractions and multiplications which do not demonstrate our

purposes as they are implemented by transparent f.u.s. For ill ustration purposes on transparency, we

replaced the subtracters by modules which are neither C-transparent nor O-transparent -actually we

replaced the "subtracters" by "multipliers" where only the n/2 most significant bits are used-. In the

two filters, multipliers are used for implementing multiplications by constants. As a consequence,

and according to the assumption on controllabilit y, there is no way to make their outputs and

downstream registers controllable. Thus, some of the f.u.s of these examples present transparency

bottlenecks at behavioral level and at gate-level as well .

The examples were synthesized with point-to-point style interconnections. A one level of

multiplexers network was used to connect the modules. In this model, no connection sharing

possibiliti es can be used to enhance testabilit y. The improvement is only due to register allocation.

Area comparisons are reported in Table 5 while testabilit y results are given in Table 6 where the

two lines associated to each benchmark correspond respectively to a synthesis style without

testabilit y constraint (w/o test) and with testabilit y constraint (with test). Columns 3 to 7 in Table 5

show respectively the number of registers, multiplexers, multiplexers' inputs, wires and point-to-

point wires. It must be noticed that areas are roughly the same.
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Table 5: Area comparison

Design synthesis
style

# reg # mux # mux in. # wires # wire fanout

tseng w/o test 5 7 17 18 67

with test 5 10 24 21 81

differential w/o test 5 9 23 23 79

with test 5 11 30 25 93

ar filter w/o test 9 9 27 27 97

with test 8 12 36 29 112

ewf f ilter w/o test 12 8 36 25 122

with test 11 11 54 27 155

In Table 6, columns 3, 5, 7 and 9 give respectively the number of non controllable (NC)

registers, f.u.s, wires and mux. inputs. Columns 4, 6, 8, 10 give the number of non observable (NO)

registers, f.u.s, wires and mux. outputs. The last two columns give respectively the ratio of testable

registers and f.u.s.

Table 6: Designs testabilit y (RT level)

Design synthesis
style

NC reg. NO
reg.

NC f.u NO f.u NC
wires

NO wire
fanouts

NC mux
inputs

NO mux
outputs

Testable
registers

Testable
f.u.s

tseng w/o test 2 1 2 0 14 25 18 6 3 / 5 2 / 4

with test 1 1 0 0 6 27 12 8 4 / 5 4 / 4

differential w/o test 0 1 0 1 6 23 12 4 4 / 5 3 / 4

with test 0 0 0 0 6 8 14 2 5 / 5 4 / 4

ar filter w/o test 5 5 3 1 28 59 38 12 0 / 9 0 / 3

with test 0 0 2 0 12 24 12 4 8 / 8 1 / 3

ewf f ilter w/o test 1 11 1 2 6 115 6 16 0 / 12 0 / 3

with test 0 0 1 0 4 14 12 2 11 / 11 2 / 3

In order to improve the evaluation of the designs produced by our behavioral synthesis system

and to compare actual testabilit y criteria with ours, we expanded our RT-designs into gate-level

designs and used the commercial SATPG tool Sunrise[29]. Table 7 gives SCOAP based testabilit y

results at gate-level. Column 4 gives the number of nodes with SCOAP testabilit y measure between

0 and 10, column 5 gives the number of nodes with SCOAP testabilit y measure between 10 and 50,

etc. ATPG results are reported on the right hand side columns. The results clearly show a good

correlation between the metrics we used to orient behavioral synthesis and the actual testabilit y of

the designs and the reduction of the number of non testable faults.

Table 7 : Designs testabilit y (gate-level)

Testabilit y measures Sequential ATPG results

Design Synthesis
style

# Nodes 10 50 100 500 ∞ fault coverage for
100% eff iciency

ATPG CPU time
(in sec.)

tseng w/o test 437 0 349 49 0 39 95.18 11,69

with test 501 0 446 26 0 29 96.98 11,66

differential w/o test 558 0 322 107 41 88 85.35 41.68

with test 638 0 330 248 11 49 94.29 34.23

ar filter w/o test 792 0 407 15 0 370 56.87 4.68

with test 849 0 526 62 0 261 66.99 12.68
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ewf f ilter w/o test 1041 0 245 29 0 767 25.68 27.80

with test 607 0 340 217 2 48 87.44 22.53

In the previous experiments, the examples present relatively few design alternatives.

Furthermore, a 100% eff iciency is easily obtained due to their small size. In order to demonstrate

the sensitivity of our test/synthesis algorithms to user defined constraints (ratio b /a), we have

generated larger designs with a higher sequential depth. Therefore, on the same benchmarks, we

used registers made with latches instead of f lip-flops which lead to larger designs since the

compatibilit y graph is less dense. We kept the same set of f .u.s as before except for the ewf f ilter,

which had three adders instead of two and three multipliers instead of one. The designs were

synthesized for various ( b / a ) values. Results are reported in Table 8. For each example,

"Original" denotes the synthesized circuit without testabilit y considerations (b=0), while "Testsyn"

et "Testsyn1" represent versions in which the ratio testabilit y/area (b /a) was respectively set to

100 and 1.

Table 8 : Area and testabilit y estimations of designs at RT level

Area Testabilit y

Design reg mux mux
inputs

wires wire
fanout

NC
reg.

NO
reg.

NC
f.u.s

NO
f.u.s

NC
wires

NO wire
fanouts

NC mux
inputs

NO mux
outputs

tseng Original 7 10 22 23 38 2 4 2 1 5 26 7 7

Testsyn 7 11 24 24 40 2 0 1 0 4 9 7 2

differential Original 8 13 29 30 46 1 1 0 0 4 7 7 2

Testsyn 8 14 32 31 49 0 0 0 0 3 6 7 2

ar filter Original 10 9 28 28 46 6 6 3 1 10 31 14 7

Testsyn1 10 11 32 30 50 0 2 2 0 4 11 4 2

Testsyn 9 11 31 29 48 0 1 2 0 4 9 4 2

ewf f ilter Original 19 13 52 42 84 4 18 3 5 9 81 8 13

Testsyn1 18 14 60 42 91 3 0 3 0 8 10 7 2

Testsyn 17 21 81 48 111 1 0 3 0 6 9 5 2

It's well worth noting that the testsyn designs' testabilit y was drastically improved while the area

was kept roughly the same moreover, testabilit y evolved in the same direction as the ratio b / a as

was expected.

 We expanded four of these designs to gate-level and ran sequential ATPG on them. The results

are reported in Tables 9 and 10. The second column indicates the maximum allowed CPU time per

fault. The number of aborted faults is computed on the reduced fault li st (i.e. after fault equivalence

checking).

Table 9: ATPG results: EW filter (Total faults: Original = 3768, TestSyn = 3552)

Design CPU limit
per fault

Detected
faults

Potentially
detected

Aborted
faults

"Untestable"
faults

Testable Faults
 Coverage

Test
Eff iciency

CPU (s)

Original 1 sec 3213 28 63 489 97.98 98.24 462

TestSyn 1 sec 3166 35 37 349 98.84 98.95 116

Original 100 sec 3228 6 25 511 99.1 99.23 10573

TestSyn 100 sec 3171 0 0 381 100 100 726

Original 200 sec 3197 3 14 514 99.5 99.57 19691

TestSyn 200 sec 3171 0 0 381 100 100 726
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Table 10: ATPG results: Differential equation (Total faults: Original = 1926 , TestSyn = 2022)

Design CPU per
fault

Detected
faults

Potentially
detected

Aborted
faults

"Untestable"
faults

%Testable Faults
Coverage

Eff iciency CPU (s)

Original 1 sec 1252 0 328 177 71.58 74.19 478.8

TestSyn 1 sec 1650 0 114 181 89.62 90.55 402.3

Original 100 sec 1739 0 6 181 99.65 99.68 3372

TestSyn 100 sec 1819 0 6 185 99.02 99.1 1614

Original 300 sec 1740 0 4 182 99.77 99.79 5003

TestSyn 300 sec 1835 0 1 186 99.94 99.95 2237

This experiment demonstrates that the designs obtained by taking testabilit y into account are far

more easy to test than those without testabilit y. This table shows that the CPU time, to obtain the

same ATPG eff iciency, is considerably shortened for the testsyn designs.

Finally we compared this HLSFT method with a classical DFT method (namely partial scan).

On a collection of examples, we used the automatic partial scan chain extraction tool from the

Sunrise suite [29]. This tool is ATPG driven. We used this tool on "original" designs and

constrained it to achieve the same fault coverage as in the testsyn designs.

Firstly, the area overhead (as estimated with the Synopsys [30] on 1.0. micron technology) ) is

on average 5% for testsyn designs versus 9% for partial scan designs (for information, the full scan

versions of original designs present an average area overhead of 19.5%).

Secondly, considering test application time, the average ratio (time for partial scan design / time

for testsyn design) is 24.93 with a maximum of 58.41. Nevertheless, on one example, test

application time is a littl e bit shorter for the partial scan design than for the testsyn one (ratio 0.9).

Finally, concerning CPU time, the scan chain extraction requires several additional CPU hours

(or even days) due to the necessity of SATPG runs, while HLSFT needs just a few seconds more

than standard HLS.

VI Conclusion and directions for future research

The methods presented here demonstrate how the design testabilit y can be questioned and

improved during behavioral synthesis. Such an approach may avoid or at least simpli fy the

prevalent approach where testabilit y issues are considered at gate level as it is based on a testabilit y

analysis method working at different abstraction levels of the circuit specification. Two synthesis

tasks (register binding and interconnect generation) have been explored for taking into account

testabilit y criteria. Results show a drastic improvement both on the testabilit y of the final circuit

and on the effectiveness of SATPG.

Experiments show that this HLSFT method is a valuable alternative to classical gate-level DFT

techniques. From the present version of the system, a number of improvements and extensions are

possible.

 Presently, the coeff icients used during register allocation -area and test weights as well as

coeff icients used in the linear function of controllabilit y and observabilit y gain- are static. In a

future version, these coeff icients will be dynamically tuned depending on the remaining testabilit y
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problems, for instance it may be misleading to give a non null coeff icient to controllabilit y gain

while the remaining problems concern observabilit y.

Functional units allocation and binding as well as scheduling will also be questioned since they

affect the number and nature of data transfers from which testabilit y is predicted.

As long as a point is identified to be testable by the testabilit y analysis method (in which case

justification and propagation paths are given), there is no need to use a SATPG to find test patterns

and to generate a test plan. Future research will be devoted to the study of the quality of such a

generated test plan and its implementation within the controller.

Finally, the extension of this method to partial scan is currently under development which will

imply new modifications of the allocation/binding algorithms.
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