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Abstract

We present a behavioral synthesis method aimed at generating testable datapaths. A non-scan
testing strategy is targeted. Given performance and area onstraints, the system is aimed at seeking
among pdential design alternatives the one presenting the least testability problems. The badkbore
of this methoddogy is a testability analysis method that works at different abstradion levels of the
design description -from strictly behavioral domain to puely structural domain-. Considering a
partially mapped behavioral spedfication, the testability analysis identifies the testability problems
of the future structure. These problems are solved along the synthesis process for example during
the register al ocation/binding task as presented in this paper.
| Introduction

High Level Synthesis (HLS) systems generate astructural hardware implementation at Register
Transfer Level (RTL), given a behavioral description o design and user defined constraints like
area ad performance The behaviora descriptionisfirst trandated into an intermediate description
such as a Data Flow Graph (DFG) or a Control Flow Graph (CFG). Nodes and arcs in a DFG
correspond respedively to operations and variables in the behavioral description. In a CFG, arcs
represent sequencing and nodks define data transformations or control branching. Then, HLS
agorithms ad on this intermediate description. They perform scheduling (partitioning the
description into time intervals cdled control steps), binding (assgning variables to storage
comporents and operations to functional units), as well as generating interconred network and
control logic. The final output isan RTL structure mmpaosed of a datapath and o a controller. The
datapath contains the functional units (f.u.s), the storage mwmporents, and the interconred network
conreding these various physicd resources. The wntroller is a finite-state maciine which drives
the control signals of datapath elementsin arder to achieve the intended behavior.

Progress in techndogy and CAD toadls has alowed a @nstant increase of the VLSI circuits
performances, however the problems related to their testing have multiplied. Nowadays, it is
universally adknowledged that test has to be taken into acount as on as posshle in the design
cyclein arder to reduceits cost -and consequently the global eledronic componrent production cost-

The first Design For Testability (DFT) issues were aldresed in the ealy 19805 while
presently, High Level Synthesis For Testability (HLSFT) approades are under consideration.

DFT tods are totally independent of synthesis. Working onstructura representations at RTL or
a gate level, they are gplied as post-procesors and canna modify the dlocaionbinding o
physicd resources. The 'S-graph’ model [1] is commonly used to represent the topdogy o a
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sequentia circuit to be made testable. At gate level, eat nock in the S-graph represents a flip-flop
(FF) of the drcuit. A direded edge from node-1 to node-2 means that the FF correspondng to
node-1 is conreded to the FF correspondng to node-2 throughcombinational logic. The sequential
depth between two FFsis defined as the number of edges between the two correspondng nodes in
the S-graph. When severa paths exist between two nocks, the sequentia depth is determined by the
shortest.

It has been olserved ([2], [3]) that the aitomatic sequential test pattern generation (SATPG)
complexity grows exporentially with the length of cycles in the S-graph and linealy with the
sequentia depth between FFs diredly conreded to primary inpus and FFs diredly conreded to
primary ouputs. Consequently, numerous DFT tedhniques use these measures to improve
testability. For instance, scan FFs are inserted in order to bre&k cycles longer than ore and to
minimizethe sequential depth between inpus and ouputs.

Sincethe ealy 905, HLSFT have been propased for considering testability ealier in the design
flow. Because diff erent hardware solutions can med aredperformance onstraints, HLSFT systems
use aiteria ssciated with spedfied testability requirements to drive synthesis towards a design
which aso satisfies testability constraints (see[4] for an overview of University HLSFT systems).
Such an approach may avoid the drawbadks inherent in gate-level DFT tedhniques where test
overhead may conflict with initial area ad performance requirements.

HLSFT systems target BISTed structures ([5], [6], [7]), or nonscan ([8], [9], [10], [1]], [12],
[13]) or partial scan designs ([14], [15], [16], [17], [18]). For nonscan and pertial scan designs,
HLSFT systems attempt to generate structures which can be tested ‘easily’ by SATPGs. The
easinessof testing is evaluated in terms of fault coverage, test efficiency, test sequence length o
test generationtime. RTL structures are generally extended to gate level descriptionsin arder to use
state-of-the-art SATPGs. Note an exception for the Genesis g/stem [8] where both RTL and cgte
level descriptions are used to perform hierarchicd testing.

Using a S-graph-like model to spedfy the structure of datapath logic, numerous HLSFT process
target the same goals as DFT tedchniques. bre&k the g/cles and minimize the sequential depth at low
cost. These systems are amed at (i) avoiding the formation d cycles and/or restricting the number
of scan registers needed to break them ([9], [10], [11], [14], [159], [16], [17], [18]), then at (ii)
minimizing the sequential depth between registers diredly conreded to primary inpus/outputs (1/0
registers) ([10], [12], [15], [16], [17], [18]). In [1]1] and [12], it has aso been proposed to reduce
the testability overheals by producing designs including as few self-loops (cycles of length ore) as
possble. But this new constraint may lead the HLSFT system to produce alarger number of cycles
longer than ore thus lesening testability ([11]). Another goal widely addressed in HLSFT is to
generate designs with a maximum number of 1/0O registers ([9], [10], [11], [15], [18]). Since such
registers are eaily controlled and olserved, they improve the acceshility of the datapath
comporents, and indiredly they entail sequentia depth reduction.

Testability constraints can be inserted at severa levels of the HLS process Formation d cycles
can be avoided by analyzing the dternatives offered duing scheduling a all ocaion/binding tasks



([9], [11]). Nevertheless datapath cycles may be ather inherent in the behavioral description, or
creded duing the synthesis process (see [16] for an owerview). If scan registers are used for
bre&king remaining cycles in a datapath, their number can be minimized by analyzing the structural
implantation alternatives during scheduling and allocaion/binding tasks ([17], [18]) or by
modifying the behavioral spedficaion kefore synthesis process ([14]). Scheduling and
alocaion/binding alternatives are dso probed in order to minimize the sequential depth between
I/O registers ([12]), and to maximizethe number of 1/0 registers ([10], [11], [12]).

A few comments can be made concerning dcatapath testability evaluation by means of cycles and
sequential depth. First, problems related to cycles and sequential depth are generally lesscrucial in
datapaths than in state madines foundin the control logic, due to a 'wedker' interconned network.
Moreover, today commercid SATPGs ded more ealy with cycles and sequential depth.
Sequential depth minimization can be cnsidered as a seoond rate objedive and cycles have to be
distingushed acwording to the difficulties they invalve. For instance in Figure 1.a, there is a path
throughthe adder allowing to control the register R to any particular value from primary inpus.
Consequently, in spite of the presence of the gycle, an SATPG can easly find a justificaion path
for afault in R, in the subtrader, or in some downstrean entities. On the @ntrary, no path alows
to control registers R1 and R2 from primary inpus in the gycle of Figure 1.b. This cycle, referred
to as 'strondy closed loops in the rest of this article, can leal to the imposshility of setting
necessary test datainto R1 or R2 and hasto be considered as a testability battlenedk.

Pl PI'

multiplexer @

R1
R2

o

a) cycle b) Strongly closed loop

Figure 1. Loops in datapaths

It's worth nding that the difficulty of propagating test data through ditapath comporents is
addressed only in few of the works referred above.

Test data propagation problems are aldressed only partialy and implicitly in HLSFT systems
attempting to maximize the number of 1/O registers. Essentialy, in an ided binding solution, all
registerswould be diredly conneded to primary inpus and ouputs. Consequently, the registers and
other datapath comporents conneded to them would be fully controllable and olservable.
Unfortunately, the upper bound @ the anourt of inpu and ouput registersis fixed by the number
of DFG variables diredly set from primary inpus and dredly read through pimary outputs. As a
consequence, when a maximum number of variables have been assgned to 1/O registers, the
remainder are assgned into new registers blindly w.r.t. their controll abilit y/observabilit y.

Conversaly, the two approacdhes presented in [8] and [13] are based ontestability analysis. In [§],
the posshility of transmitting test data to the DFG nodes through arithmetic units and ggtes are
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analyzed by aset of rules. For example, to set atest pattern ona multiplier output, an inpu will be
controlled to the value 'one’ and the other to the desired test pattern value. Testability analysis
results are used to drive the f.u.gregisters binding pocess The goal is to generate a datapath
structure in such away that every f.u. in the final structure can be controlled from primary inpus
and olserved through pimary outputs. Control/observation peths, extraded from the DFG paths,
form the test environment for the correspondng f.u.s. Test environments are used to propagate test
data coomputed at gate level on f.u.s boundries. Nevertheless one limitation d this methodis that
the set of rules for the testability analysis applies only to spedfic modues namely, the ones with a
neutral element.

In the goproach propased in [13], behaviora modificaions for improving testability are gplied
to hard-to-test sedions before HLS. Hard-to-test sedions are identified by anayzing the CFG, then
variables are dassfied acording to the results of the analysis. For instance a variable is
‘completely controllable' if there exists a sequence of exeautable paths in the CFG such that, after
the exeaution d these paths, the content of the variable can take any possble value by adjusting the
primary inpu values. A common dawbad of bath this approadch and the one presented in [8] is
that the testability analysisis limited to the set of paths aready existing in the initial spedficaion
namely, in the DFG [8] and in the CFG in [13]. These paths, exercised duing the normal exeaition
flow of the drcuit, represent only a subset of al the paths conreding dcatapath comporents, even
thoughthe adivation d other paths does nat resped the initial sequencing. This point is examined
in detail insedionlll.

Now let us describe the HLSFT system developed at LIRMM for generating datapaths in which
as many modues as possble (storage cmmporents, f.u.s,... but also muxes and wires) can be tested
using parallel test data propagated through pimary inpu/output ports. This g/stem is aimed at
exploring the design space to generate eaily testable designs while respeding aher design
congtraints, without using pertial scan insertion. Test patterns are adually obtained using a gate-
level SATPG.

For improving chtapath testability, binding/alocation pcsbiliti es are explored to enhance the
‘accessbility' of all modues. The main feaures of the presented method are the foll owing:

- It isbased onategtability analysis with norestrictive assumptions on the type of f.u.s usable
in the designs.

- Eadh RTL structural path, which existsin the final architedure and that can be derived during
the HLS flow, is considered for test data propagation.

- It suppats behavioral spedficaions containing control constructs (with condtiona
statements and/or cyclic CDFG).

- Thestrongy closed loops are within the scope of this method (other cycles are nat considered
as testability battlenedks).

- Since it deds with datapaths, the sequential depth is considered as a seaond rate fador
allowing to chocse between two hinding solutions when they are equivalent in terms of other
test measures.



- Thereisnoasumption onthe value of the test patterns during the HL S process

Il Overview of the system

The primary godl is to take alvantage of synthesis possbilities -mainly during the binding
phase- in order to oltain a designin which as many modues as passble have their test paths. These
test paths being 1 the controllability paths alowing to apply test patterns on the modue's inpus
from primary inpu ports and 2 the propagation paths alowing to olserve test resporses through
circuit's outputs. Due to the excessve CPU time required by SATPG programs to find test patterns,
the seandary gaal isto generate designsthat are eaily testable by SATPG.

The drcuit architedure targeted by the synthesis g/stem -depicted in Figure 2- is composed of a
datapath and a controller (a set of FSMs) driving the datapath command signals and sequencing the
given behavior. Only the testability of the datapath is dedt with in this paper. The ntroller is
asumed to be made testable usinga BIST ([19]) or a scan approadh. Regarding datapath testabilit y,
we mnsder that any desired value can be set onthe @ntrol signals, seeFigure 2. Therefore, at least
two solutions are possble: either the wntrol signals/flags are made fully controll able/observable by
using scan method -only to introduce FFs on control signals- or the desired datapath test plan is
incorporated within the control logic. Thus the sequencing d the datapath test is independent of the
normal mode of exeaution (contrary to the goproaches[8] and [13] discussed in the introduction).

. — [

Input output
signals O controller % singl)aIs
0— —0

flags ‘\J

control signals

Ty 0
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Figure 2. Target architedure
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Figure 3. Synthesis of testable datapath

The synogtic of the system is siown in Figure 3. White and shadowed boxes are the usual tasks
performed duing standard HLS of datapath: after the behavioral spedficaion has been trand ated
into a DFG, the scheduling phase asggns operations to control steps. Then operations are boundto
f.u.s. Register binding determines the required memory elements (all ocation) and kinds variables to
the registers. Finaly, the achitedura structure is completed by allocaing interconred elements
(muxes, wires, busses) between f.u.s and registers for implementing the data transfers of the initial
spedficdion.

To perform HLSFT, several tasks are alded and some others modified (stripped and shadowed
boxes in Figure 3, respedively). Shaded boxes represent synthesis tasks aimed at improving
testability. As $rown onthe figure, this g/nthesis for testability method is based on a testability
analysis used at different stages of the HLS process Its results are required for driving register
binding and generating interconredions.

Considering the influence of testability improvement on design performance, it is worth nding

that:

- the number of control steps gays unchanged since testability is considered after the
scheduling phese,

- the dock period may be shortened o lengthened: since from the timing pant of view,
testability improvement tasks change exclusively the multiplexing resources, delays only
throughthe interconred network are dfeded. These multi plexing modifications may change
the sum of gates on the aiticd path. Consequently, the dock period (fixed by the aiticd
path) may be incressed or deaeased. depending onthe sum of gate delays, which is only a
roughestimation d the acual delays.

[11 Behavioral testability analysis

This ®dion deds exclusively with the testability analysis method wsed before register binding,
other invocations of the testability analysis being \ery dike.



At this point of the synthesis process circuit's behavior is expressed as a DFG in which
operations are boundto f.u.s. Thus, the nodes of the DFG are f.u.s and edges denote data transfers
with or withou memorizaion (a variable being asociated to ead transfer with memorizaion).
Testability criteria anadyzed by ou system are esentially the existence of 1/ paths allowing to
justify test patterns and 2 paths allowing to olserve test resporses. Since testability applies to the
structural domain, the question is to knov whether such paths will exist in the future structure,
given the set of data transfers described at the dgorithmic level. These paths are to be built from
the data transfers regardliessof both their groupng into statements and their schedule in the normal
flow of exeaution (contrary to the analysis method presented in [8] and [13]). For instance if the
spedficaion contains a statement likea := b + ¢, thethreetransfersa -> +, b -> + and + -> c are
considered independently. The future structure will contain a physicd path from the registers
implementing a and b to the f.u implementing the aldition, and from this f.u to the register
implementing c. Data transfers are then reorganized in order to crede, when passble, justificaion
paths from primary inpu(s) and propagation pathsto primary output(s).

Withou lossof generdlity, we shall assume in the remainder of the text that al the f.u.s have
two inpus ports 11 and 12 and ore output port O. F.u(x,y)=z means that z is the output value
obtained on O if values x and y are the inpus applied on 11 and 12. The term modue is used
indifferently for f.u.s, variables, registers, muxes. The intrinsic transparency properties of the f.u.s
allow to establish test paths. Controll ability and olservability paths (named C-paths and O-paths)
are established for every variable and f.u input/output using the definiti ons below.

Definition 1 A f.uis C-transparent iff [ z, the value of O, [1(x,y) respedive vaues of (11,12) such
that f.u(x,y)=z. Coders are murter-examples of C-transparent modues. In ather words a modueis
C-trangparent if any value can be obtained onits output and thus can serve to propagate any test
pattern to ather modues. Other modues like muxes and registers (variables) are C-transparent.

Definition 2 A f.uis O-transparent for itsinput port 11 iff [J (x,x’), x#X', two valueson 11, Uyy xt,
avalue on 12, such that f.u(x,yx x)=z, f.u(x',yx x)=2 with z#z'. Usua arithmetic operators are O-

transparent if their whae bitwidth is used, while shifters for instance ae not. A modue is O-
transparent if it can differentiate any vedor pair, in particular a crred test resporse and a faulty
one. Such a modue can be used to propagate test resporses to the outputs. Muxes, registers and
variables are O-transparent.

Definition 3 A C-path of a modue's port p is a lattice of data transfers rooted on pimary inpus
and ending at p such that 1/ in every transfer a>b belongng to this C-path, a and b are ather
variables or ports of C-transparent modues 2/ it does not contain recmnvergences, for instance a
variable does not feed bah inpus of a f.u. A variable or a register with a C-path is sid to be
controllable, it can be set to any value. In the same way a f.u is controllable if there exist two
distinct controll able variables linked to itsinpus (secnd above cndtion).

Definition 4 A O-path of a modue's port p is an ardered set of data transfers darting at p and
ending ona primary output, such that for every transfer a>b belongng to the O-path, a and bare



either variables, or an inpu port 11 of af.u O-transparent for 11, or an ouput port of O-transparent
f.u or aprimary ouput.

Definition 5 To validate apropagation througha O-transparent f.u from 11 to O, a particular value
must be justified onl2. Consequently, the propagationis possbleif there exist atransfer v->12 such
that v posses a C-path. Such a C-path is cdled a lateral C-path. Thus, any fault on p can be
observed (p is sid to be observable) if: 1/ x has an O-path, 2/ there eist a complete set of lateral
C-paths not containing x The seandcondtionis st in order to avoid fault masking poblems. It is
not a necessary condtion bu the knowledge of gate-level information would be required for its
removal. In the remainder of the text, O-path stands for the union d an O-path and its lateral C-
paths.

Definition 6 A modueistestableiff it is controllable and olservable.

The extension d the a&owe definitions to adual test patterns is graightforward if a hierarchica
testing methoddogy is envisaged. C-paths and O-paths are agenerdlizaion d I-paths and S-paths
defined in [20] and [21].

It isimportant to nae that no assuumptions are made on test patterns, mainly because this level of
designisfar from the structural level (registers, muxes, wires have nat yet been determined). Thus,
this definition d ‘testable’ is pessmistic. For example, a modue may happen to be foundas non
controllable by the propcsed testability analysis while the adua test patterns can be justified.
On the other hand, due to these very conservative asaumptions, a SATPG can very easly find test
patternsfor amodue in caseit isfoundtestable. Conversaly, if the modue is determined to be non
testable SATPG may have difficulties either to find test patterns or to prove this modue to be
adually nontestable.

The testability analysis processreturns classficaion d variables depending ontheir respedive
controll abilit y/observability. Moreover, when a variable is foundeither controllable or observable,
correspondng C-paths or O-paths are generated, respedively. The sequential depth of a
controllable variable is defined as the minimum number of clock cycles required to set atest pattern
in this variable. For example, the sequential depth of the wntrollable variables b, ¢, d, e and i,
shown onthe DFG of Figure 4, is equal to 1, while the controllable variable k has a sequential
depth equal to 2

This paragraph describes the dasgficaion d noncontrollable variables (non-observable
variables can be dassfied using a smilar approach). The example of Figure 4 will serve & a
suppat for illustrating this classfication. Non-controllable variables are iteratively clustered into
three dasses. These dasss are successvely bult up starting from (1) the dassof non-controllable
variables because they are only fed by nd C-transparent f.u.s (e.g. variables h, @), continuing by (2)
the dassof variables that would become antrollable if some of the variables of the previous class
were made controllable (e.g. variables g, j), and ending by (3) the dassof remaining variables. This
last classcontains first, (3.1) the variables belongng to strondy closed loops (e.g. variable f) and
seond (3.2) the variables that would become ntrollable if some of the variables of (3.1) were
made wntrollable (e.g. variablel). This all ows the set of strondy closed loops to be limited to the
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those mntaining orly transparent f.u.s. The variables belongng to strondy closed loops containing
nontransparent f.u.s are included in the first two classs (e.g. variables a, g) since even if such
loops were open the wncerned variables would still remain norrcontroll able.

Let us recdl that the g/cles considered as testability bdtleneds are only the strondgy closed
ones. For example, the gycle invaving the variable ain the DFG shown in Figure 5 is naot of the
'strongdy closed loop' ore. Thisvariable can be set from primary inpus throughfunctional unit f.u.1
which implements both +1 and +2 operations and is considered as a @ntroll able variable.

. f.u. nonC-transparent

Q f.u. C-transparent

Figure 4. DFG with strondy closed loop

Figure 5. DFG without strondy closed loop

C-paths and O-paths are adually determined iteratively by scanning the list of elementary data
transfers and chedking the transparency of the invaved f.u.s. Concerning C-paths, initially the
variables linked to primary inpus are cntrollable, their C-path containing orly ore transfer. Let us
asume that after severa iterations, the data transfer from a C-transparent f.u. F to a variable V is
under consideration. If both F inputs have been foundcontroll able during previous iterations, and if
their respedive C-paths end on dfferent variables (see Def3 abou remnvergence), then V is
controllable and its C-path is the union d the two C-paths plus the transfers F->V. This C-path is
added to the list of C-path for V. The processis iterated urtil no change occurs. The interested
reader can refer to [22] for more detail s on the testability analysis algorithm.

Figure 6 shows the scheduled DFG oltained for the 'differential equation’ high level synthesis
benchmark [23]. Operations have been boundto two multipliers MULT1 and MULT2, one alder
ADD and ore subtrader SUB. The DFG is cyclic, feedbad edges are nat represented onthe figure.
Variables x, y and uare loaded from primary inpusin the first iteration, then loaded from the f.u.s



in the following iterations. For ill ustration puposes, we aumed that all f.u.s are C-transparent and

O-transparent except the subtrader which adually is transparent.
PI X Pl Py

Figure 6. Scheduled DFG

g
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Figure 7. Propagation peth for afault in SUB

<

Figure 7 represents a propagation path for a fault occurring in SUB. It is built up wsing the
transfer from SUB's output port to the observable variable m, and the O-path o this variable. This
O-path has been established using the dementary transfersill ustrated bythick linesin Figure 6. The
lateral C-paths are PI->y->mult1 and PI->y->add.

Table 1 shows the results of the testability analysis on this example. Rows 2 and 3respedively
assessthe ntroll abilit y/observability of the variables. Rows 2 and 3in Table 2 gve the number of
possble judtificaion paths for ead inpu of the f.u.s. Row 4 (Table2) gives the number of
propagation paths for ead f.u.

Table 1 : Testability charaderistics of variables

var. y X u b d k e f c h m g
cont. yes yes yes yes yes yes yes Yyes yes no no s
obs. yeS yes yes N0 N0 ¥ N0 NO N0 NO ¢S VYes

Table 2 : Testability charaderistics of functional units
Multl Mult2 Add Sub

input 1 (just. paths) 1 1 2 1
input 2 (just. paths) 1 1 1
output (prop. paths) 1 0 1 1
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IV Synthesisalgorithms

Acoording to analysis results, testability is considered duing the synthesis geps represented by
shadowed boxes in Figure 3 namely, the register binding plese and the generation d the
interconred network (insertion d busses, muxes and wires necessary to interconred registers and
f.u.s). Allocaion and hkinding choices are sough in order to improve testability. Only register
alocaion for testability improvement is detailed here, the principle being the same a for
generating the interconred network.

a- Register allocation:

Let usfirst recdl the basic principle of register allocaion: variables can share the same register
if their life times do nd overlap. The merging pashiliti es of variables are extraded by performing
alife time anaysis and a compatibility graph is built up. In this graph, nodes and edges gand for
variables and merging pashiliti es, respedively. Every clique of the graph represents a set of
variables which can be assgned to the same register.

In standard HLS, a solution for minimizing the aea expressed by a st function f5 (# registers,
# multiplexer inpus,...) is reated by seeking an adequate dique partitioning in the compatibility
graph. Generally, the search is guided by weighting the graph edges by the aeagain Df -i.e. the
areagained by merging the two involved variables-. In the dgorithm used in ou standard HLS
system [24], the pair of variables (registers) joined by the alge of maximal weight is merged. After
eat coufing, al weights and compatibility edges are updated. The processis iterated urtil no
further coudingispossble.

The principle underlying testability improvement is to assgn the same register to non
controllable (nonobservable) variables and to controllable (observable) ones rather than assgn
only noncontroll able variables to the register. In the first case, the resulting register is controllable
while in the seoond case it is nat. Registers inherit the testability properties of variables assgned to
them, e.g. the C-path (O-path) of a @ntrollable (observable) variable becomes the C-path (O-path)
of the register. Figure 8 illustrates the principle underlying register allocaion for testability

improvement.
7 1 controllable register
1 non-controllable register
) / @
C L_ﬂ NC

compatibility graph 2 controllable registers

Figure 8. Register all ocaionfor testahility : principle

Figure 9 shows how register al ocaion affeds not only the testability of the registers but also of
f.u.s, muxes and wires (only controll ability isill ustrated). A partially hardware mapped algorithmic
spedficaion is given in @. Assuming that F.U.1 is not C-transparent, al variables except a and b
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are non-controllable. Two dfferent register alocations are given in b) and c) together with the
resulting architedures. A point-to-point style of interconredion has been used to interconred the
modues. The number of non-controllable modues (black boxes) and conredions (bald lines) is
drasticdly reduced in solution ¢) compared to b). The right input of F.U.2 isfed orly by registers
fed in turn by F.U.2 in b) making this loop noncontrollable. In c), the C-path "inpu->R2->R5"
allowsto load this f.u input with any test pattern. The association d variable b with f, instead of g,
bre&ks the loop d case b). This kind d paosshility is exploited duing register allocaion for
testability. In bah designs, register R3 is non-controll able because it isonly fed by F.U.1.

I:l Non C-Transparent
input D |:| Controllable

- Non Controllable
a = Input; a2 .L':L ? input
b := Input; Rl rRe ] ' 3 Y

c=aF.U.lb; [

d=aF.Ul1lb; o output
e=cF.U.2d; F.U.2 [
f.=eF.U2h;

h:=f;
g=eF.U3h;
Output :=g;

a) Specification

HYP : F.U.1 not C-transparent b) Allocation1 E; e c) Allocation 2 E; e
‘b,g :b,
a, b: controllable R3:c R3:c
> R4 : df R4:dg
c, d, e, f, g, h : non-controllable R5:h R5:h

Figure 9. Standard register all ocaion vsregister allocaion for controll abilit y improvement

The proposed method dees not differ from other related works in the general principle but in the
objedives targeted to improve testability. Asin many ather HLSFT systems, the rule is to assgn
nontestable behaviora comporents together with testable ones -since structural comporents
resulting from the assgnations inherit testability properties-.

Concerning the objedives, the problem to solve is how to bind variables onto registersin such a
way that as many dtructural comporents as possble would possess C-path and O-path.
Consequently, breging cycles (except strondgy closed loops) is not targeted, and the sequential
depth is only a second rate fador allowing to choose anong dff erent assgnations of like interest
w.r.t. C-paths and O-paths establi shment.

To take into acourt testability as well as area Df 5 isreplaceal by aDf 5 /Df gmax +0( Df o Df cax
+ Dfo/Dfgmax) Where Dfc (resp. Dfg) is the antrollability (resp. observability) gain, Df gmax.
Df cmax @nd Dfgmax  are normalization fadors. a and b are user defined tuning fadors allowing

tradeoff s between area and testability. The antrollability gain isintended to measure the dfed of a
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merge on the antrollability of the whole drcuit. As mentioned ealier, merging a non-controll able
variable with a @ntroll able one into aregister makes this register and the downstream f.u inpu port
conreded to it by a transfer both controllable. Therefore, controllability gain is expresed as a
linear combination d:

the number of f.u.sthat this merge would make cntroll able,

the number of f.u.s inpus made antroll able whil e the f.u remains non-controll able,

the number of registers made wntroll able,

the diff erence of sequential depth between these two registers,

a priority fador taking into acournt the controllability nature of the two registers. For
instance, ahigh coefficient is given if this couding lre&s a sequentia loop.

Observahility gain is computed in a similar way. The interested realer can refer to [25] for
detail son gain computation.

Table 3 gves the results of register allocaion for the Differentia Equation example dter an
alocaion taking noacourt of testability (i.e. b=0) and an alocaion including testability (a=b=1)
using the @owve dgorithm.

Table 3: Comparison d registers controll abilit y/observabilit y

Withou testability With testability
var. Reg. cont. obs. var. Reg. cont. obs.
u Regl yes yes u Regl yes yes
X Reg2 yes yes X Reg2 yes yes
y Reg3 yes yes y Reg3 yes yes
b,k Reg4 yes yes b,m Reg4 yes yes
d,g Reg5 yes yes d,h Reg5 yes yes
ec Reg6 yes yes k,f Reg6 yes yes
f,m Reg7 yes yes ec Reg7 yes yes
h Reg8 no no g Reg8 yes yes

In the first case, register Reg8, assgned orly to variable h, is neither controllable nor
observable. In the seond case, ead register is controllable and olservable. Consequently any test
pattern can be justified on pimary inpus and any test resporse can be observed on the primary
outputs, from ead f.u and register ports. The pseudo-code describing the possble transfer sequence
for testing the MULT 1 f.u (its C-Path and O-Path) is given below:

Regl:=PI(TP1); FTP1, TP2: test patterns pre-computed by a combinational ATPG to test afault in MULT1*/

Reg3:=PI(TP2);

Reg5:=MULT 1(Reg1,Reg3); /*Reg5 memorizes MULT1's test resporse (TR)*/
Reg2:=PI(1); [*control of the lateral inpu of the O-transparent f.u MULT 2 with the value 1*/
Reg6:=MULT 2(Reg5,Reg2); [*TR propagation throughMULT 2*/
Reg3:=Reg6,

PO(TR):=Reg3; *TR dbservation on pimary output*/

It must be underlined that register allocation can oy enhance -but nat guarantee the testability
of the drcuit sinceit is constrained by the register sharing passhiliti es.

b- Interconnect network generation:
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If a wiring model alowing to share interconredions is chosen (e.g. a bus based moddl),
hardware sharing passbiliti es can also be sought either to enhance or to guaranteetestability. In the
first case, an interconned network maximizing the number of testable points is generated while
kegoing the number of conredions to a minimum. In the second case, al the points are made
testable while alding as few extra mnnedions as posshle. Arguments and method are smilar to
those used for register all ocation.

V Reaults

This test/synthesis method has been applied to four behavioral synthesis benchmarks. Their
charaderistics before register alocation are given in Table 4. Tseng's example is borrowed from
[26], the differential equation example from [23], the AR filter from [27] and the dlipticd filter
(EW) from [28]. Columns 2 to 7 show respedively the number of control steps, f.u.s, variables,
constants and primary inpus outputs. Columns 8 and 9 gve the number of controllable and
observable variables.

Table 4;: Benchmarks charaderistics

Example # steps #f.u. # var #constants  #Primary  # Primary #c.var. # 0. var.
Inpus Outputs
tseng 13 22- 11 0 2 1 5 3
differential 9 1+,1-,2* 12 2 3 1 10 6
ar filter 21 1+2% 20 2 4 2 4 6
ew filter 19 2+,1* 39 3 1 1 2 1

All the designs have a onstant bitwidth. Unfortunately, in the first two HLS examples, the
operations are only additions, subtradions and multiplicaions which do na demonstrate our
purposes as they are implemented by transparent f.u.s. For ill ustration pupases on transparency, we
replacal the subtraders by modues which are neither C-transparent nor O-transparent -adually we
replacal the "subtraders' by "multipliers’ where only the n/2 most significant bits are used-. In the
two filters, multipliers are used for implementing multi pli caions by constants. As a nsequence,
and acording to the assumption on controll ability, there is no way to make their outputs and
downstream registers controll able. Thus, some of the f.u.s of these examples present transparency
bottlenedks at behavioral level and at gate-level aswell.

The examples were synthesized with pant-to-point style interconredions. A one level of
multi plexers network was used to conred the modues. In this model, no conredion sharing
posshiliti es can be used to enhance testability. The improvement is only due to register all ocation.
Area omparisons are reported in Table 5 while testability results are given in Table 6 where the
two lines associated to ead benchmark correspond respedively to a synthesis gyle withou
testability constraint (w/o test) and with testability constraint (with test). Columns 3 to 7in Table 5
show respedively the number of registers, multiplexers, multiplexers inpus, wires and pant-to-
point wires. It must be naticed that areas are rougHy the same.
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Table 5: Area @mparison

Design synthesis #reg # mux #muxin. #wires  #wirefanou
style
tseng w/o test 5 7 17 18 67
with test 5 10 24 21 81
differential w/o test 5 9 23 23 79
with test 5 11 30 25 93
ar filter w/o test 9 9 27 27 97
with test 8 12 36 29 112
ewf filter w/o test 12 8 36 25 122
with test 11 11 54 27 155

In Table 6, columns 3, 5, 7 and 9 gve respedively the number of non controllable (NC)
registers, f.u.s, wires and mux. inpus. Columns 4, 6, 8, 10 gve the number of non olservable (NO)
registers, f.u.s, wires and mux. outputs. The last two columns give respedively the ratio of testable
registersandf.u.s.

Table 6: Designs testability (RT level)

Design synthesis NCreg. NO NCfu NOfu NC NO wire  NC mux NO mux Testable Testable
style reg. wires fanous inpus outputs registers f.us
tseng w/o test 2 1 2 0 14 25 18 6 3/5 2/4
with test 1 1 0 0 6 27 12 8 4/5 4/4
differential w/o test 0 1 0 1 6 23 12 4 4/5 3/4
with test 0 0 0 0 8 14 2 5/5 4/4
ar filter w/o test 5 5 3 1 28 59 38 12 0/9 0/3
with test 0 0 2 0 12 24 12 4 8/8 1/3
ewf filter w/o test 1 11 1 2 115 6 16 0/12 0/3
with test 0 0 1 0 4 14 12 2 11/11 2/3

In order to improve the evaluation d the designs produced by ou behavioral synthesis g/stem
and to compare acdual testability criteria with ous, we expanded ou RT-designs into gate-level
designs and used the commercial SATPG tod Sunrisg[29]. Table 7 gves SCOAP based testability
results at gate-level. Column 4 gvesthe number of nodes with SCOAP testability measure between
0 and 1Q column 5 gves the number of nodes with SCOAP testability measure between 10and 5Q
etc. ATPG results are reported onthe right hand side wlumns. The results clealy show a good
correlation between the metrics we used to arient behavioral synthesis and the adual testability of
the designs and the reduction d the number of nontestable faults.

Table 7 : Designstestability (gate-level)

Testability measures Sequential ATPG results
Design Synthesis # Nodes 10 50 100 500 00 fault coveragefor ~ ATPG CPU time
style 100% efficiency (insec)

tseng w/o test 437 0 349 49 0 39 958 1169
with test 501 0 446 26 0 29 968 1166
differential w/o test 558 0 322 107 41 88 835 4168
with test 638 0 330 248 11 49 929 3423
ar filter w/o test 792 0 407 15 0 370 587 468
with test 849 0 526 62 0 261 689 1268
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ewf filter w/o test 1041 0 245 29 0 767 268 2780
with test 607 0 340 217 2 48 844 2253

In the previous experiments, the examples present relatively few design alternatives.
Furthermore, a 100% efficiency is easily obtained due to their small size In order to demonstrate
the sengitivity of our test/synthesis algorithms to user defined constraints (ratio b /a), we have
generated larger designs with a higher sequential depth. Therefore, on the same benchmarks, we
used registers made with latches instead o flip-flops which lead to larger designs snce the
compatibility graph is lessdense. We kept the same set of f.u.s as before except for the enf filter,
which hed three alders instead of two and three multipliers instead of one. The designs were
synthesized for various ( b / a ) vaues. Results are reported in Table 8. For eadh example,
"Origina" denotes the synthesized circuit withou testability considerations (b=0), while "Testsyn"
et "Testsynl" represent versions in which the ratio testability/area(b /a) was respedively set to
100and 1

Table 8 : Area ad testability estimations of designs at RT level

Area Testability
Design reg mux —mux wires wire NC NO NC NO NC NOwire NCmux NOmux
inpus fanou | reg. reg. fus fus wires fanous inpus  outputs
tseng Original 7 10 22 23 38 2 4 2 1 5 26 7 7
Testsyn 7 11 24 24 40 2 0 1 0 4 9 7 2
differential Original 8 13 29 30 46 1 1 0 0 4 7 7 2
Testsyn 8 14 32 31 49 0 0 0 0 3 6 7 2
ar filter Original 10 9 28 28 46 6 6 3 1 10 31 14 7
Testsynl 10 11 32 30 50 0 2 2 0 4 11 4 2
Testsyn 9 11 31 29 48 0 1 2 0 4 9 4 2
ewf filter Original 19 13 52 42 84 4 18 3 5 9 81 8 13
Testsynl 18 14 60 42 91 3 0 3 0 8 10 7 2
Testsyn 17 21 81 48 111 1 0 3 0 6 9 5 2

It'swell worth nding that the testsyn designs' testability was drasticdly improved while the aea
was kept rougHy the same moreover, testability evolved in the same diredion astheratiob / a as
was expeded.

We expanded four of these designsto gate-level and ran sequential ATPG on them. The results
arereported in Tables 9 and 1Q The second column indicaes the maximum al owed CPU time per
fault. The number of aborted faultsis computed onthe reduced fault list (i.e. after fault equivalence
cheding).

Table 9: ATPG results: EW filter (Total faults: Original = 3768 TestSyn = 3552

Design CPU limit Deteded Potentially Aborted "Untestable" Testable Faults Test CPU (9)
per fault faults deteced faults faults Coverage Efficiency
Original lsec 3213 28 63 489 998 9824 462
TestSyn lsec 3166 35 37 349 984 9895 116
Original 100sec 3228 6 25 511 99 9923 10573
TestSyn 100sec 3171 0 0 381 100 100 726
Original 200sec 3197 3 14 514 9% 9957 19691
TestSyn 200sec 3171 0 0 381 100 100 726
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Table 10: ATPG results: Differential equation (Total faults: Original = 1926, TestSyn = 2022

Design CPU per Deteded Potentially Aborted "Untestable" %Testable Faults Efficiency CPU (9)
fault faults deteced faults faults Coverage
Original lsec 1252 0 328 177 758 7419 4788
TestSyn lsec 1650 0 114 181 882 9055 4023
Original 100sec 1739 0 6 181 985 9968 3372
TestSyn 100sec 1819 0 6 185 992 991 1614
Original 300sec 1740 0 4 182 997 9979 5003
TestSyn 300sec 1835 0 1 186 994 9995 2237

This experiment demonstrates that the designs obtained by taking testability into accournt are far
more eay to test than those withou testability. This table shows that the CPU time, to oltain the
same ATPG efficiency, is considerably shortened for the testsyn designs.

Finaly we cmmpared this HLSFT method with a dasscd DFT method (namely partial scan).
On a olledion o examples, we used the automatic partial scan chain extradion tool from the
Sunrise suite [29]. This tod is ATPG driven. We used this tod on "original" designs and
constrained it to achieve the same fault coverage ain the testsyn designs.

Firstly, the aeaoverhea (as estimated with the Synopsys [30] on 10. micron techndogy) ) is
on average 5% for testsyn designs versus 9% for partial scan designs (for information, the full scan
versions of original designs present an average aeaoverhead o 19.5%).

Seoondy, considering test applicaion time, the average ratio (time for partial scan design/ time
for testsyn design) is 24.93 with a maximum of 5841 Nevertheless on ore example, test
applicationtime is alittl e bit shorter for the partial scan design than for the testsyn ore (ratio 0.9).

Finaly, concerning CPU time, the scan chain extradion requires sveral additional CPU hous
(or even days) due to the necessty of SATPG runs, while HLSFT neels just a few seands more
than standard HLS.

VI Conclusion and directions for futureresearch

The methods presented here demonstrate how the design testability can be questioned and
improved duing bkehavioral synthesis. Such an approach may avoid o at least smplify the
prevaent approadch where testability issues are considered at gate level asit is based ona testability
analysis method working at diff erent abstradion levels of the drcuit spedficaion. Two synthesis
tasks (register binding and interconred generation) have been explored for taking into acourt
testability criteria. Results siow a drastic improvement bath on the testability of the final circuit
and onthe dfedivenessof SATPG.

Experiments show that this HLSFT methodis a valuable dternative to classcd gate-level DFT
tedhniques. From the present version d the system, a number of improvements and extensions are
posshle.

Presently, the wefficients used duing register alocdion -area ad test weights as well as
coefficients used in the linea function d controllability and olservability gain- are static. In a
future version, these efficients will be dynamicdly tuned depending onthe remaining testability
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problems, for instance it may be midealing to gve anon nudl coefficient to controllability gain
whil e the remaining problems concern observability.

Functional units all ocaion and kinding as well as sheduling will also be questioned since they
aff ed the number and reture of data transfers from which testability is predicted.

Aslongas a paint is identified to be testable by the testability analysis method (in which case
justificaiion and propagation peths are given), thereisno reed to use aSATPG to find test patterns
and to generate atest plan. Future reseach will be devoted to the study o the quality of such a
generated test plan and its implementation within the controller.

Findly, the extenson d this method to partial scan is currently under development which will
imply new modifications of the dl ocaior/binding algorithms.
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