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Breathing detection from tracheal sounds in both temporal and
frequency domains in the context of phrenic nerve stimulation

Xinyue LU'2, David GUIRAUD!, Serge RENAUX?, Thomas SIMILOWSKI?, Christine AZEVEDO!

Abstract—Electrical stimulation of the phrenic nerves via
implanted devices allows to counteract some disadvantages
of mechanical ventilation in patients with high tetraplegia or
Ondine’s syndrome. Existing devices do not allow to monitor
breathing or to adapt the electroventilation to patients’ actual
needs. A reliable breathing monitor with an inbuilt alarm
function would improve patient safety. In our study, a real-
time acoustic breathing detection method is proposed as a
possible solution to improve implanted phrenic stimulation. A
new algorithm to process tracheal sounds has been developed. It
combines breathing detection in both temporal and frequency
domains. The algorithm has been applied on recordings from
18 healthy participants. The obtained average sensitivity, speci-
ficity and accuracy of the detection are: 99.31%, 96.84% and
98.02%, respectively. These preliminary results show a first
positive proof of the interest of such an approach. Additional
experiments are needed, including longer recordings from
individuals with tetraplegia or Ondine Syndrome in various
environments to go further in the validation.

I. INTRODUCTION

Individuals with a central respiratory paralysis, are es-
sentially supplied by mechanical ventilation. In France,
around 44 new high tetraplegia per year induce a ventilatory
dependence. There are also about 60 congenital central
alveolar hypoventilation in which 10%-15% patients have
a ventilatory dependence [1].

However, severe drawbacks of mechanical ventilation are
reported: (1) the induced positive pressure disturbs the ve-
nous return [2], (2) ventilators are noisy and limit mobility
which reduces the quality of life, (3) tracheotomy may cause
respiratory infections, loss of olfaction and impossibility to
speak [3]. In the case where phrenic nerves and diaphragm
remain functional, the mechanical ventilation can be replaced
by an implanted phrenic stimulation device which could
cancel some of the disadvantages mentioned above. Further-
more, phrenic stimulation induces a more natural respiration
and reduces health care costs [2][3].

The main disadvantage of implanted phrenic stimulation is
that it stimulates at a fixed frequency and intensity preset into
the external controller unit. Therefore, the stimulation does
not adapt to patients’ respiratory state. For example, high
tetraplegia requires more respiratory volume while sitting
than in lying position [4]; patients with Ondine syndrome do
not need a permanent stimulation all day long. Indeed, they
still have some remaining spontaneous respiratory cycles.
Finally, the absence of a reliable respiratory monitoring
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system makes most of patients switching to mechanical
ventilator during nighttime.

The gold standard for apnea/hypoventilation evaluation
is the polygraph, which includes an pulse oximeter and
at least one respiratory flow sensor [5]. In a clinical use,
flow sensors could be nasal cannula, pneumotachograph,
thermistor or plethysmograph. But these sensors need to be
placed over the face or are sensitive to patient’s movements.
They are therefore not compatible with an implanted phrenic
stimulation system which is portable and for a daily living
use. With this in mind, we investigated an acoustic method.
The proposed tracheal sounds recording requires only one
tiny microphone fixed on the neck, which is the only physical
contact with the patient. Another advantage of the absence of
electrical contact with the user guarantees that the detection
method will not influence the stimulation system.

For a better quality of signal, the best place for tracheal
sounds recording is at suprasternal notch [6]. Many previous
studies have shown some positive results on respiration
analysis from tracheal sounds in sleep apnea, especially for
obstructive sleep apnea. Their detection algorithms are either
based on the envelope of sounds signals (in time domain)
[6][71[81[9][10], or based on sounds spectral power (in
frequency domain) [11][12][13][14][15][16]. Some groups
also use statistical methods for respiratory phase detection
and classification [17], and even for air flow estimation
[18][19][20][21] associated with sounds entropy or the log of
the sounds variance. But only few methods are developed for
real-time applications (processing delay within seconds) with
robustness requirements, indeed, all these studies have been
carried out in quiet and controlled acoustic environments
with stable sources of noises, and with limited movements
of the subjects (during sleep).

The present study aims at a real-time and continuous
breath detection (day and night), even during wakefulness in
noisy environments. We proposed a new algorithm to detect
respiration phases, by combining the signal processing both
in the temporal and the frequency domains. We assessed the
performances of the algorithm in emulated noisy environ-
ments.

II. MATERIAL AND METHODS
A. Equipment

Tracheal sounds are recorded by an omni-directional mi-
crophone (pro-signal, ABM-705-RC), which is inserted into
a 3D printed bell-shape support [6]. This support is fixed at
the suprasternal notch by using a medical rubber bandage



(fig. 1). The microphone signal is amplified (x230) and fil-
tered (100Hz-1200Hz, Band-pass second order Butterworth,
custom made) in order to keep only the frequencies which are
relevant for detecting airflow sounds [12]. The signal is then
digitized at 4.6 kHz, 16 bits, using a NUCLEO-F429ZI card.
Data are transferred to a PC and processed using Matlab™
software.

Fig. 1: position of microphone

B. Protocol

In this study, 18 healthy subjects (4 women and 14 men
aged from 20 to 60 years old) participated. Signals were
recorded in a sitting position. All recordings are performed
in the same room and with a similar quiet environment.

Each recording lasted 30s. The procedure consisted in 3
succeeding phases: (1) breathing normally during the first
10s, (2) expiring and then holding respiration for 10s, (3)
breathing normally again for the last 10s.

IIT. DETECTION ALGORITHM

For each processing cycle, 3 segments of 1024 samples
(s(n)) are treated with an overlapping of one segment. The
length of overlapping corresponds the processing delay, here
is 1024/ fs =~ 0.22s. This delay is within the acceptable
alarm delay for stimulation system, which is around 3s.

As the detection flow diagram in Fig. 2 shown, s(n) is
first filtered by a 6! order high-pass Butterworth filter at 300
Hz to remove cardiac noises. The filtered respiratory signal
r(n) is processed both in temporal and frequency domains
and the obtained results are then combined to get the final
detection d(n). Three parameters (in red) ratio T, ratio_F
and ratio_adapt are patient-dependent and are presented
below.

A. Temporal domain

A 2"? order low pass Butterworth filter is used on the
energy of the temporal signal, i.e. 2%7(n)2, to get its envelope
e(n). The cut-off frequency is around 1 Hz (corresponding to
cut-off pulsation w,, = 0.01 rd.s~1). During holding breath,
information from environment noises are used to set patient-
specific thresholds as it is considered as an apnea period. The
minimum temporal threshold S_T is obtained by multiplying
the ratio T with the mean of the envelope amplitude during
apnea (12s-19s). For each detected respiratory event (inspira-

tion, expiration and pause/apnea), its’ begging (Ttb:,%;"m"g )

. s(n)
Overlapping N ‘ |<-’—|1024newsamp|es

one block
Filter 6 order high-pass at 300Hz
. . rn; .
Time domain -‘ ) Frequency domain
|
2oy el [ ]|
Filter 20 order low-pass w,=0.01 FFT
Raeglk)

(72 00RseelkIA/ 1024

Threshold detection

S_T=ratio_T*mean{envelop(apnea)}

PSD(m)| Threshold detection
S_F=ratio_F*mean{PSD(apnea)}
S_adapt=ratio_adapt*mean{PSD(m-1,m,m+1)}

Duration > 0.4s
center

center _ pcenter
ITéame —Tfreq | <15

]

v
beginning rending
Tfrea +Tfrea

Fig. 2: Diagram of the detection algorithm

and ending points (TSZ,‘Z"Q ) are noted to calculate its center

time Ttﬁ%”. Furthermore, one detected respiratory event is

rejected if it lasts less than 0.4s.

B. Frequency domain

In the frequency domain, the filtered signal is divided into
3 segments of 1024 samples (rs.4(k)). FFT is applied on
each segment with Hanning window (Rs.4(k)). Depending
on the recording device, the main respiratory frequency band
could be different [22]. In this study, as shown in Fig. 3,
normal respiration frequency contents are centered between
300 Hz and 900 Hz. The best discrimination was obtained
with the power spectral density PSD(m) of each segment
computed between 300 Hz and 600 Hz:

600
PSD = (3" Rucg(k)?)/1024 (1)
k=300

The minimum threshold is obtained by multiplying the
ratio_F with the mean PSD during apnea (12s-19s). In
addition, a moving threshold is also applied to adapt different
density levels; for example, stronger breathing occurs after
apnea. This adaptive threshold is obtained by multiplying
the ratio_adapt with the mean PSD(m) over 3 segments:
the previous, the actual and the next segments. As in tem-
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Fig. 3: Spectrum of one original recording (before filtering)



C. Combination

For the same respiratory event, detection result may have
a little time lag in different domains. This time lag can’t
exceed the minimum duration for one normal inspiration or
expiration, which is around one second. So the respiratory
event will be finally validated if the time lag |TE<nter —

temp

Tgeae"| is less than 1 s. Then, the result d(n) depends

beginning ending
on Ttemp and T.,,, "~ because detection in temporal

domain is more accurate if S_T is well defined.

IV. RESULTS AND EVALUATION OF THE
DETECTION ALGORITHM

An example of one breathing detection result is shown in
Fig. 4. Three detection signals are illustrated in this figure:
the temporal detection is in orange, the frequency detection
is in green and the combined detection is in yellow. All
detection signals have two states, indicating if there is a
respiratory event (high) or not (low). In this example, all
respiratory events are successfully detected.
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Fig. 4: Detection result obtained with one recording of one
subject.

The algorithm is evaluated on its specificity, sensitivity
and accuracy, which are defined as follows:

e TN
Speczfzczty = m (2)
. TP
Sensitivity = TP+ FN (3)
TP+TN
= 4
Accuracy = N T FP+ FN )

where TN, FP, TP and FN are the number of true
negative, false positive, true positive and false negative,
respectively.

The scores for these 3 indexes have been computed for all
18 subjects and are plotted in figure 5. With a mean value of
99.31%, 96.84% and 98.02% for specificity, sensitivity and
accuracy, respectively.

V. DISCUSSION/CONCLUSION

Temporal detection can help eliminating short intermittent
noises by analyzing the duration of the detected event. An
example is shown in figure 4, the short noise at 24! second
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Fig. 5: Detection results evaluation

is eliminated by the temporal detection even though it is
considered as a respiratory event in the frequency domain.
Frequency detection is useful for discriminating sounds
without specific peaks or amplitudes in the time domain, such
as breathing and snoring [16]. Some noises appear during
apnea shown in Fig. 6. They are detected in temporal domain,
but are rejected by the frequency detection because their
main frequency bands are different to the one of respiration.
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Fig. 6: Frequency detection helps in eliminating long noises

The reason why temporal detection has better event timing
accuracy is that it reacts on each sample, whereas frequency
detection can only detect on segments of 1024 samples. For
the same reason, frequency detection may detect twice the
same event, just like the detection at 27" second in Fig. 4.
But thanks to the combination method by checking detected
events distance, these repeated detected events are avoided.

In the case of phrenic stimulation, the first aim is to
determine when the patient stops breathing. We should avoid
false positive detection of respiration so a high specificity.
Even if the timing of each respiratory event is not accurate,
the result will not lead to a dangerous situation for patients.
The definition of apnea is an absence of respiratory air flow
for more than 10s [5]. It means that the lowest acceptable
condition is when missing maximum 10s respiration per
minute, which corresponds to specificity and accuracy of
82.86% and 90.48%, respectively. The proposed algorithm
gives 99.31% of specificity and 98.02% of accuracy, this
result is far more than the minimum values mentioned above.
We have also tested the developed algorithm on a 60s
recording for one subject, with 6 phases of 10s corresponding
to: (1) normal respiration, (2) apnea, (3) normal respiration,
(4) speech, (5) normal respiration, (6) normal respiration with



a played video at background. The corresponding detection
result is showed in figure 7. The specificity, sensitivity and
accuracy are 100%, 97.22%, 98.59%, respectively. This re-
sult meets also the minimum requirements mentioned before.
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Fig. 7: Detection result with speech and background noises

The proposed algorithm has a better detection result com-
pared to a similar continuous breathing detection study done
by Kalkbrenner et al. [16] which showed a detection rate of
21%-80% for respiratory detection. But their study detects
also heartbeats and movements which gives a more complete
monitoring. A more recent study of the same group [9]
advance in result with a sensitivity of 92.8% and a specificity
of 99.7%. But this algorithm, based on temporal domain
with 3 envelopes, needs to scan the entire recording, so it
cannot be applied in real-time, and is not adapted to phrenic
stimulation system monitoring.

The downside of our study is that the proposed algorithm
is only applied on 18 recordings from 18 subjects, and that
each recording lasts only 30s that is much shorter than those
of other studies. More recordings are needed from target
patients. This method depends on several subject individual
parameters. With the proposed adaptive threshold detection
in frequency domain, we obtained accurate results in these
short recordings. The threshold decision method still needs
to be improved to be used in real-time. The sensitivity of
the detection performances to these parameters will also be
precisely evaluated in the future. Furthermore, the presence
of respiratory events is only verified by hearing and observ-
ing recordings which may cause a miss of precision. Future
recordings synchronized and compared with other reference
signal, such as pneumotachography, plethysmography, etc.
are needed.

On the other hand, the analysis based on sounds is sensi-
tive to noise, a noise reduction algorithm may be useful. Even
respiratory features vary a little bit between each subject,
but the recorded signal is still repetitive. In this case, a
detection based on Al in tracheal sounds may be more
efficient. To adapt to most of daytime environments and to
have more robust detection, it could combine more various
detection methods, such as seismograph (pulse oximeter),
phonocardiogram (cardiac sounds), etc.

ACKNOWLEDGMENT

We would like to thank Dr. Gerhard Baer, founder of
AtroStim, for reading our Manuscript.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

HAS, “COMMISSION D’EVALUATION DES PRODUITS ET
PRESTATIONS - ATROSTIM,” Tech. Rep., 2009. [Online].
Available:  https://www.has-sante.fr/portail/upload/docs/application/
pdf/2009-05/cepp-2056_atrostim.pdf

T. Similowski and J.-p. Derenne, “Stimulation phrénique implantée,”
Médecine thérapeutique, vol. 7, pp. 457-469, 2001.

F. Le Pimpec-Barthes, J. Gonzalez-Bermejo, J. P. Hubsch, A. Duguet,
C. Morélot-Panzini, M. Riquet, and T. Similowski, “Intrathoracic
phrenic pacing: A 10-year experience in France,” Journal of Thoracic
and Cardiovascular Surgery, vol. 142, no. 2, pp. 378-383, 2011.

A. F. DiMarco, “Diaphragm Pacing,” Clinics in Chest Medicine,
vol. 39, no. 2, pp. 459-471, 6 2018.

M.AKkkari, PFranco, and F.Chalueau, “Enregistrements du sommeil
chez l’enfant,” in Syndrome d’apnées-hypopnées obstructives du
sommeil de I’enfant, 2016, pp. 50-60.

P. Corbishley and E. Rodriguez-Villegas, “Breathing detection: To-
wards a miniaturized, wearable, battery-operated monitoring system,”
IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp. 196-204, 2008.

A. Kulkas, E. Huupponen, J. Virkkala, M. Tenhunen, A. Saastamoinen,
E. Rauhala, and S.-L. Himanen, “Intelligent methods for identifying
respiratory cycle phases from tracheal sound signal during sleep,”
Computers in Biology and Medicine, vol. 39, no. 11, pp. 1000-1005,
11 2009.

Y. Nam, B. A. Reyes, and K. H. Chon, “Estimation of Respiratory
Rates Using the Built-in Microphone of a Smartphone or Headset,”
IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 6,
pp. 1493-1501, 2016.

C. Kalkbrenner, M. Eichenlaub, S. Riidiger, C. Kropf-Sanchen,
W. Rottbauer, and R. Brucher, “Apnea and heart rate detection from
tracheal body sounds for the diagnosis of sleep-related breathing dis-
orders,” Medical and Biological Engineering and Computing, vol. 56,
no. 4, pp. 671-681, 2017.

A. Martin and J. Voix, “In-Ear Audio Wearable: Measurement of Heart
and Breathing Rates for Health and Safety Monitoring,” IEEE Trans.
Biomed. Eng., vol. 65, no. 6, pp. 1256-1263, 6 2018.

J. S. Chuah and Z. K. Moussavi, “Automated Respiratory Phase
Detection by Acoustical Means,” IEEE EMBC 1998, no. March, pp.
21-24, 1998.

P. Hult, T. Fjallbrant, S. Dahle, P. Danielsson, and P. Ask, “A method
for respiration monitoring by the use of a bioacoustic signal,” in
First International Conference on Advances in Medical Signal and
Information Processing, vol. 2000. Bristol, UK,: IET, 2000, pp. 22—
25.

P. Hult, T. Fjallbrant, B. Wranne, O. Engdahl, and P. Ask, “An
improved bioacoustic method for monitoring of respiration,” Technol
Health Care, vol. 12, no. 4, pp. 323-332, 2004.

A. Kulkas, E. Huupponen, J. Virkkala, M. Tenhunen, A. Saastamoinen,
E. Rauhala, and S. L. Himanen, “New tracheal sound feature for
apnoea analysis,” Medical and Biological Engineering and Computing,
vol. 47, no. 4, pp. 405-412, 2009.

A. Yadollahi and Z. Moussavi, “Automatic breath and snore sounds
classification from tracheal and ambient sounds recordings,” Medical
Engineering and Physics, vol. 32, no. 9, pp. 985-990, 2010.

C. Kalkbrenner, P. Stark, G. Kouemou, M. E. Algorri, and R. Brucher,
“Sleep monitoring using body sounds and motion tracking,” IEEE
EMBC 2014, vol. 6000, pp. 6941-6944, 2014.

S. Le Cam, C. Collet, and F. Salzenstein, “Acoustical respiratory signal
analysis and phase detection,” in IEEE ICASSP 2008, vol. 1. IEEE,
3 2008, pp. 3629-3632.

A. Yadollahi and Z. M. Moussavi, “A robust method for estimating
respiratory flow using tracheal sounds entropy,” IEEE Trans. Biomed.
Eng., vol. 53, no. 4, pp. 662-668, 2006.

A. Yadollahi and Z. Moussavi, “Acoustic obstructive sleep apnea
detection,” in IEEE EMBC 2009, vol. 4, no. 2. IEEE, 9 2009, pp.
7110-7113.

A. Yadollahi, E. Giannouli, and Z. Moussavi, “Sleep apnea monitoring
and diagnosis based on pulse oximetery and tracheal sound signals,”
Medical and Biological Engineering and Computing, vol. 48, no. 11,
pp. 1087-1097, 2010.

S. Huq and Z. Moussavi, “Acoustic breath-phase detection using
tracheal breath sounds,” Medical and Biological Engineering and
Computing, vol. 50, no. 3, pp. 297-308, 2012.

T. Penzel and A. K. Sabil, “The use of tracheal sounds for the diagnosis
of sleep apnoea,” Breathe, vol. 13, no. 2, pp. e37—e45, 2017.




