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Abstract: This article introduces a novel approach for a functional electrical stimulation (FES)
controller intended for FES-induced cycling based on inertial measurement units (IMUs). This study
aims at simplifying the design of electrical stimulation timing patterns while providing a method that
can be adapted to different users and devices. In most of studies and commercial devices, the crank
angle is used as an input to trigger stimulation onset. We propose instead to use thigh inclination as
the reference information to build stimulation timing patterns. The tilting angles of both thighs are
estimated from one inertial sensor located above each knee. An IF–THEN rule algorithm detects,
online and automatically, the thigh peak angles in order to start and stop the stimulation of quadriceps
muscles, depending on these events. One participant with complete paraplegia was included and
was able to propel a recumbent trike using the proposed approach after a very short setting time.
This new modality opens the way for a simpler and user-friendly method to automatically design
FES-induced cycling stimulation patterns, adapted to clinical use, for multiple bike geometries and
user morphologies.

Keywords: FES cycling; inertial sensors; neurorehabilitation

1. Introduction

Functional electrical stimulation (FES) refers to the activation of muscle contractions by the
application of short electrical pulses. In some conditions, the FES technique can be used in paralyzed
muscles to provide functional or therapeutic benefits. In individuals with spinal cord injury (SCI),
a clinical use of FES to activate lower limb muscles has proven to reduce risk factors for cardiovascular
disease and decrease other risks related to a prolonged sitting posture (e.g., pressure sores, atrophy)
by maintaining muscular activity [1,2]. FES-assisted cycling and rowing have been demonstrated to be
particularly efficient in preventing psychological and physical function deterioration by stimulating
thigh and glutei muscles to propel a cycling or rowing machine [3]. While increasing self-esteem and
wellness [1], FES-induced cycling and rowing exercises also positively affect the cardiopulmonary
system [4,5], bone mineral density [6] and muscle strength [7,8]. Literature on FES cycling is particularly
abundant and reflects a growing interest over the past thirty years [9].

In most of these studies, FES cycling is achieved while the user is installed in a fixed ergocycle
at a rehabilitation center. However, multiple studies have demonstrated that adding a recreational
dimension to this physical exercise could improve the attractiveness of FES-assisted training and
increase the psychological wellness of the user [2]. This can be achieved by using an instrumented
mobile tricycle, designed for outdoor use, and some of these devices are commercially available. In most
of them, the stimulation relies on a preset pattern, alternatively sending stimulation to quadriceps,
hamstrings, and glutei muscles, depending on the crank angle, estimated by an encoder. However,
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adaptation to different users requires manual tuning of the stimulation patterns. An individual
tuning has to be performed for each user, depending on his/her seating position and anthropometry,
the number of muscles being stimulated, and the bike geometry. Various studies have investigated
the possibility of using different sensors inputs (Electromyography [10], inertial sensors [11,12],
oxygen measurement [13], pedal forces [14]) to automatically design and optimize cycling stimulation
patterns and to enhance device usability. Other studies have investigated novel control strategies
(neural network [15], fuzzy logic [16]) to improve cycling performances: Maximum covered distance
or force and complex FES controllers have been proposed but have not provided significant improvement
of the functional results compared to more simple ones [17]. Other works have tried to improve
the performance by changing the stimulation frequency [18], the recruited muscles [19], cadence or
the mechanical design [20,21].

Using inertial measurement units (IMUs) to analyze gait and posture, as well as to control
electrical stimulation delivery, has been deeply investigated in prior studies led by the authors [22–26].
While inertial sensors have been previously considered in a large number of applications [27,28] they
have only recently been applied in FES-cycling [12,29].

In the work by Wiesener et al. [11], the authors used a two-dimensional geometric model
for the lower limbs, the knee and hip absolute angles were estimated from four IMUs located
on the thighs and shanks, and then transformed into a normalized range [0;1]. Instead of using
the crank-angle-based stimulation pattern, a cycling percentage (CP) was used to define the stimulation
pattern for each leg. CP defines two ranges that are easily identifiable from the knee angles: Flexion and
extension. Depending on these two phases, different muscles contributions were activated to produce
a positive torque. However, the method proposed in that work relied on a geometric model of the lower
limbs and a crank sensor to estimate the real pedal position. Several solutions have been investigated
by Wiesener et al. to counteract the effects of sliding in seat position and IMU placement on method
robustness [29]. This approach was successfully used during the Cybathlon competition in 2016 [11].
Due to the cycling and FES devices’ independence, the same setting and stimulation pattern can be
used for different cycling equipment, used by the same pilot.

Most of the existing solutions are globally complex and time consuming. They highlight
the inherent difficulties in designing a stimulation pattern able to produce active cycling. On the other
hand, it is essential to keep in mind that most of these applications are intended for clinical or personal
use. The final users are either medical practitioners or the pilots themselves, and providing intuitive
interfaces to adapt the stimulation patterns in a simple and quick manner would probably be valuable
in FES-cycling practice. Based on the arguments of Wiesener et al., and on our personal experience
in FES cycling [30–32], we present here a pilot study focused on the further simplification of the control
of stimulation delivery while ensuring a maximum ease of use, adaptability and tailored solution
for the user using two inertial sensors only and no a priori information on cycling device geometry,
nor pilot anthropometric data.

2. Materials and Methods

2.1. Subject

One participant (male; 48 y), the so-called pilot, with complete spinal cord lesion (20-years old
spinal cord lesion T3 ASIA motor score 50) was included in this protocol. The study was approved by
the French national ethics committee (Comité de Protection des Personnes) and the participant gave
his written informed consent. Prior to joining the study, the pilot got acquainted with the stimulation
by taking part in a 2-year training FES-cycling protocol [32].

2.2. Material

Installed on a tricycle (ICE Adventure©, Falmouth, UK) with a fixed-gear rear wheel, the pilot was
equipped with two inertial measurement units (IMU, Bosch© BNO055, Gerlingen, Germany) located
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on each thigh (Figure 1). IMUs were wired to a Raspberry Pi3© (i.e., the controller). Each IMU was
embedded with a high-speed ARM Cortex-M0 based processor and a Kalman filter directly providing
the quaternion estimation needed to compute angles at a 100 Hz sampling rate. The controller was
also connected to an electrical stimulator (BerkelBike©, Sint-Michielsgestel, Netherlands) located on
the bike. The controller sent the start/stop command messages to the stimulator. Two stimulation
channels were active and sent current pulses to both quadriceps by means of two pairs of skin electrodes.
An instrumented home trainer, specifically designed to record weak power (<200 W) while ensuring
a minimum accuracy of 0.5% (rotating torque meter Scaime© TSR 2300, Juvigny, France), was set on
the rear wheel to monitor power output during the experiment.

Figure 1. Experimental setup designed to validate the proposed approach. The pilot was equipped with
2 IMUs located on each thigh. IMUs were wired to a Raspberry Pi3© (the controller) communicating
with an electrical stimulator. An instrumented home trainer was set on the rear wheel to monitor power
output during the experiment.

2.3. Algorithm

IMU data were processed online to detect the ‘Peak Thigh Flexion’ (PTF) and ‘Peak Thigh
Extension’ (PTE) chosen as the start and stop events of the quadriceps stimulation. Thigh tilting angles
(θ) relative to the horizontal were computed for each new sample (n) using the method detailed in [33],
by combining the embedded sensor fusion algorithm with trigonometric transformations to obtain
the thigh tilting angle as a Euler angle.

As illustrated in Figure 2, a simple IF–THEN rules algorithm combining gradient detection
with preset thresholds was designed to reliably detect PTF and PTE. For each new sample, a test is
first performed to check if the difference between two consecutive computed angles is higher than
a minimum threshold (set to 2◦), which aimed to get rid of false positive in the case of small motions,
such as tremors. A second test is then performed to monitor the gradient sign and update a state
variable, T_State; if negative, the motion is considered as a flexion and if positive the motion is
considered as an extension. Two tests are then computed: (1) if the state variable changes from flexion
to extension and (2) if the actual thigh tilting angle is above a minimum range of motion (set to 20◦)
relative to the last PTE, then a PTF event is detected. A full passive cycle rotation was needed to identify
two initial PKT and PKE events for each leg before starting the detection and automatically triggering
the stimulation. For each quadriceps, stimulation started at PTF until the detection of PTE. A parameter
enables to adjust the stimulation onset a few degrees before or after PTF.
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Figure 2. Flowchart illustrating the real-time detection algorithm of the ‘Peak Thigh Flexion’ (PTF) and
‘Peak Thigh Extension’ (PTE) events, corresponding to the maximum and minimum tilting of the thigh
during one crank cycle. The thigh tilting angles [θ] are computed for each new sample [n]. The actual
state of the thigh (T_state (K)) is updated depending on a flexion or extension is detected, in relation
to the last known state (K−1). By combining gradients and IF–THEN rules with preset thresholds,
events are robustly detected.

2.4. Protocol

The stimulation electrodes were positioned over quadriceps (vastus medialis and rectus femori)
and the two inertial sensors were fixed on the thigh with rubber bands. After this, the participant was
transferred from his wheelchair to the bike, with minimum assistance in order to guarantee his safety
regarding sharp metallic elements. Feet were stabilized using calf supports.

During the first part of the experiment, the tricycle was installed on the home trainer support
(Figure 3) adjusted with a negligible rolling resistance. After a first passive cycle where the experimenter
moved the pedals manually, the onset of the stimulation in the different channels was automatically
triggered by the previously-described algorithm. The participant could adjust the stimulation intensity
by pressing buttons directly on the stimulator until the cycling movements was totally induced by
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muscle contraction and the experimenter could stop accompanying the movement. A warm-up
stimulation session using a crank-angle-based stimulation pattern at 20 Hz was performed before
testing the algorithm. For the rest of the protocol, the frequency was set to 30 Hz. The electrical
stimulator was pre-programmed to deliver charge-balanced biphasic pulses, with a pulse width
of 400 µS per phase. The stimulation intensity was limited to a maximum of 150 mA and gradually
increased from 20 mA by the participant in order to obtain an active cycling movement. Based on
the state-of-the-art, the most efficient cycling cadence in these experimental conditions has been
proven to be around 47 rpm, which corresponds to a velocity of 5.6 km/h. The participant could
adjust the stimulation intensity by pressing ‘plus’ and ‘minus’ buttons on the stimulator box in order
to maintain this speed.

Figure 3. Home trainer cycling. The participant was installed on a recumbent trike and was equipped
with 2 IMUs (a) connected to the controller and 2 pairs of surface electrodes (b) connected to the electrical
stimulator. An instrumented home trainer enabled to measure the power produced.

For the second part of the experiment, the bike was removed from the home trainer and installed
in a 40-meter corridor.

3. Results

The algorithm presented previously was tested successfully. The participant was able to cycle on
the recumbent trike in stationary conditions (i.e., installed on the home trainer, Figure 3), as well as
to propel the trike in mobile conditions (i.e., rolling on a flat surface in a corridor, Figure 4).

The parameter enabling an offset before stimulation onset had to be adjusted to optimize
the pedaling. After testing multiple values, the best efficiency was obtained with a value of 15◦ before
PTF. In order to quantify the detection accuracy and compare it to the crank angle (i.e., the usual
stimulator input), several data-points were monitored over crank cycles: Crank angle distribution,
thigh angles evolution, power developed on the rear wheel and stimulation onset for both legs (Figure 5).
The estimated average cycling velocity for the trial presented in this figure was of 5 km/h based on home
trainer data, with a current intensity manually set by the participant of 112.5 mA. By observing power
distributions over the crank cycles, we could validate the stimulation onset was adequate regarding
the power produced. The positive power recorded by the torquemeter corresponded to the actual
power produced by the participant, while the negative power corresponded to inertia. The average
power was low because, in this session, the pilot was mainly entertaining the cycling movement by
taking advantage of inertia and producing power to counteract the losses due to friction.
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Figure 4. Overground cycling. The participant was able to propel the recumbent trike over a
40-meter corridor.

Figure 5. Data sample illustrating the results over four pedaling cycles in home trainer conditions.
(Top) Left (green) and right (red) thigh tilting angles; (middle) crank angle; (bottom) developed power.
The two stimulation channels activation are highlighted.

The cyclic behavior can be appreciated by plotting the angular velocity as a function of the angular
position (Figure 6).

The exact same set of parameters was used for over-ground and stationary cycling. In stationary
conditions the thigh angles range was [−50◦, −10◦] and angular velocity range [−60◦, 56◦].
In over-ground conditions the thigh angles range was [−60◦, −20◦] and angular velocity range
[−40◦, 40◦]. The thigh angle was relative to the horizontal, which explains the shift in values due
to different trike inclinations on the home-trainer and flat surface, despite the same 40◦ range of motion.
The cycling velocity was lower in over-ground conditions compared to stationary, as the resistive forces
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were higher. Furthermore, the trial was performed at the end of the session and some muscular fatigue
was already influencing the performance.

Figure 6. Representation of the left thigh angular velocity as a function of angular position. (Left) 27
cycles in stationary condition. (Right) 25 cycles in over-ground condition.

4. Discussion and Conclusions

This study aimed at investigating and developing a new method to simplify the design
of stimulation patterns in FES-induced cycling, without requiring any sensor installation on
the recumbent trike used. The goal was to demonstrate the feasibility of further simplifying existing
approaches for setting any tricycle as an FES-cycling device for an individual with complete SCI,
without any prior stimulation timing pattern tuning, nor adaptation due to the bike geometry or the size
and position of the pilot, using only two inertial sensors. The present case-study experiment intends
to be a proof of concept of this new control modality.

In our experience of FES-cycling, adjusting the stimulation timing of the different muscles to be
activated using crank angle is time consuming and the optimization regarding power consumption
may be complex. The pattern needs to be adapted for different situations: Sitting position, leg length,
bike geometry, etc. We believe it is more intuitive and generalizable to define triggering events
relative to the pilot instead of the bike. Setting a stimulation onset at a predefined crank angle
cannot be translated to multiple bikes or pilots. When tuning a crank-angle-based stimulation pattern,
it is necessary to manually correlate each crank value to the pilot oneself; the users take into account
the seat height compared to the crank, the lower limb lengths and possible asymmetry, the seat
tilting, the length of the boom, and the length of the crank handles. If the position of the pilot varies,
the stimulation pattern needs to be entirely defined again.

Detecting peak knee angles was initially intended as a stimulation event. Meanwhile, depending
on each individual, when the peak knee flexion is reached over the crank cycle, the hip flexion
could modify the starting event regarding the seat height compared to the crank, it also requires
more sensors. We have observed that the time when the pedal crank reached few degrees before its
vertical position corresponds to the time when the thigh reaches its maximum tilting angle. This event
detection was supposed to be the same no matter the leg length or bike geometry while enabling
to start the stimulation a few degrees before the pedal was vertical, in order to obtain the best muscle
mechanical response at the optimal timing. Therefore, the hypothesis was made of detecting this event
as the simplest and universal stimulation onset event. Furthermore, this can be done using only two
inertial sensors.

The result obtained here in one participant confirmed the feasibility of this very simple approach
compared to the state-of-the-art, i.e., crank-angle-based stimulation patterns. Further work is needed
to validate the approach with other participants.

More refined control laws may be considered to optimize cycling performances and robustness [25],
but the proposed controller has the great advantage of being simple with no a priori calibration phase.

In this study, only the quadriceps were stimulated. A more efficient pedaling could be achieved
by adding hamstrings and glutei stimulation, but could require the need to define other detectable
stimulation events.
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Using the instrumented home trainer, we observed that the effective mechanical response
of the quadriceps stimulation associated to the pushing phase was less than a 200-ms duration
at 47 rpm (cadency used for our participation to the Cybathlon competition [32]). This observation
highlights the need for a more accurate method able to monitor the actual power produced and
adapt the corresponding stimulation timing event relatively to the PTF. This would need to accurately
measure the weak power developed using dedicated force pedals during over-ground cycling.

Automatically adjusting the stimulation parameters to counteract muscle fatigue or ground
surface changes remains an open problem.

A video of the experiment is available online here: https://youtu.be/gbgGxbBD-VM.
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