
Stream vs Block ciphers for scan encryption

Emanuele Valea, Mathieu Da Silva, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre

LIRMM (Université Montpellier - CNRS), Montpellier, France

{mdasilva,valea,flottes,dinatale,rouzeyre}@lirmm.fr

Abstract—Security in the Integrated Circuits (IC) domain is

an important challenge, especially with regard to the side

channel offered by test infrastructures. Test interfaces provide

access to the internal states of the IC by means of the scan chains

for testing and debugging purposes. In terms of security,

however, scan chains are a potential source of leakage that can

be exploited by attackers. A countermeasure against such

attacks is to encrypt the data flowing through the scan chains.

Two types of ciphers can be employed: stream ciphers or block

ciphers. Both have pros and cons in terms of performance

(footprint, impact on test activity) and security. In this paper,

we present two solutions: one exploiting stream ciphers fulfilling

security requirements, and another exploiting block ciphers. We

draw a comparison between these two scan encryption

countermeasures taking into account design cost functions and

security properties.

Keywords—Test and Security; Stream Cipher; Block Cipher;

Scan Attacks Countermeasure; Scan Encryption

I. INTRODUCTION

The most common Design-for-Testability (DfT) technique
is the use of scan chains. It consists in replacing original flip-
flops (FFs) by so-called scan FFs organized in shift registers
during the test phase. The internal state of the circuit can thus
be controlled at the serial input of the scan chain, called Scan-
In (SI), and it can be observed at the serial output of the scan
chain, called Scan-Out (SO). In addition to the scan chains,
several standards at system level have been proposed to
facilitate the testing of chips. The standard for board testing is
the IEEE 1149.1 [1], also known as JTAG, the IEEE 1500 [2]
standard has then been proposed to deal with System-on-
Chips (SoC), more recently the standard IEEE 1687 [3], also
known as IJTAG, facilitates the access to test embedded
instruments by defining a Reconfigurable Scan Network
(RSN). The testing infrastructure of a chip forms a scan
network, based on these DfT solutions.

The scan network provides full observation and control on
the internal states of a device, ensuring its testability. On the
other hand, the security is compromised by these control and
observation facilities. An attacker can indeed exploit the scan
network to steal secret information. For instance, scanning out
the scan chain content of a crypto-processor after one-round
execution in functional mode permits to retrieve part of the
used secret key. Several attacks ([4], [5], [6] and [7]) on the
Advanced Encryption Standard (AES) [8], called differential
scan attacks, have been proposed in the literature.

Another threat coming from the test standards (JTAG,
IEEE 1500 and IJTAG) concerns the Intellectual Property (IP)
theft. The scan network has a direct access to the internal
registers of an IP, giving information on the logic structure of
the circuit. An attacker can exploit this information to reveal
the IP design.

A threat within the device is also presented in [9], which
consists in studying the case of a malicious device inserted in

the JTAG daisy-chain. If a malicious device is implemented
within the system, this one can capture sensitive data of other
devices connected to the same daisy-chain, such as secret
keys, configuration files or firmware sent through the JTAG
interface.

Several countermeasures have been proposed to cope with
these attacks. An industrial practice involves blowing fuses to
disconnect the scan chains after manufacturing test. Another
countermeasure is based on the Built-In Self-Test (BIST) [10].
This DfT approach limits the external control and observation
on the scan chains, preventing scan attacks. The application of
this technique is interesting on crypto-processors because they
are generally easily testable with pseudo-random data
[11][12]. However, these solutions compromise diagnostics,
debugging or maintenance in the field.

Other countermeasures are based on test locking
mechanisms. The so-called secure test wrappers guarantee
that only authorized users can unlock the test access with a
password [13] or through a secure protocol [14][15]. In
addition to the area and test time overhead introduced with
these solutions, a key management is required to share the test
session keys with authorized users. These countermeasures
rely on secure test interface to prevent any attack through IC
ports but do not target malicious devices in the system.

Other architectures have been explored to hide the scan
chain architecture by means of combinational or sequential
functions. In [16], the scan chain is dynamically obfuscated
with a Linear Feedback Shift Register (LFSR) and XOR gates
inserted within the scan chains. The tester has to know the
specific test procedure in order to scan-in the desired test data
and observe readable scanned-out data. This solution impacts
the design flow since the scan chains have to be replaced by
the obfuscated ones at core level. In addition, this
countermeasure is based on obfuscation, thus it relies on the
assumption that the attacker has no way to get information on
the scan chain implementation. Obfuscation is not considered
as strong as encryption according to the Kerckhoff’s doctrine.

A last family of protections relies on test communication
encryption, which ensures the confidentiality of the
exchanged messages between the circuit and the tester. The
encryption provides protection against unauthorized users
who want to communicate with the protected circuit, and
attackers trying to intercept the communication. The
encryption can be performed either with block ciphers or with
stream ciphers. The choice must be driven by performance and
security trade-offs. The preferred mechanism in the literature
([9], [17]–[19]) for encrypting the scan network is stream
ciphering, because block ciphers present a larger area and
have to be adapted to cope with the serial nature of the
exchanged data with the ATE (Automatic Test Equipment).
Nevertheless, as shown in Section IV, stream ciphers may
introduce vulnerabilities. For this reason, the implementation
of dedicated countermeasure introduce a larger costs.

In this paper, the main contribution is the evaluation of the
two solutions: Scan Encryption based on Stream Cipher
(SESC) not exposed to the state-of-the-art vulnerability, and
Scan Encryption based on Block Cipher (SEBC). Security,
implementation costs and impact on testability are presented
and discussed.

The remainder of this paper is organized as follows.
Section II presents the threat model that the countermeasures
are intended to prevent. Section III gives a brief presentation
of block ciphers and stream ciphers. Section IV summarizes
the state-of-the-art protection based on encryption. Section V
presents the vulnerabilities of both ciphers, and shows how to
exploit them on the scan attack countermeasures. Section VI
presents the two secure countermeasures: one based on stream
ciphers, the other based on block ciphers. Section VII
evaluates and compares both solutions in terms of security,
implementation costs, test procedures and integration in SoC
designs. Finally, Section VIII concludes the paper.

II. THREAT MODELS

This section describes the various testing structures that
can be exploited to carry out attacks. The threat model is not
limited to attacks targeting internal scan chains. The focus of
this paper covers general scan structures where data can be
written and read through a scan network, along the IC supply
chain.

A. Testing structures

Scan chains are inserted within circuits in order to control
and observe the internal states via the Scan-In (SI) and Scan-
Out (SO) pins. Manufacturing test relies on probe-based
testing, using dedicated test pads on the silicon die to access
the scan chains. Increasing the number of internal scan chains
enables parallel processing of test data. Hence, it produces
significant test time savings.

Chip packaging moves away the external test pins
accessible during manufacturing. The IEEE Std. 1149.1 [1],
called JTAG, allows the tester to access chips on a board and
directly communicate with them in a serial way, in order to
run debug functions or to program reconfigurable hardware.
Instead of probing, the board-level JTAG allows an external
tester to access the scan chains via a four-signal Test Access
Port (TAP).

In SoC design, cores are manufactured at the same time
on a unique piece of silicon. Therefore, all cores must be
scan-tested after the integration of the whole system. In order
to save test time, parallel scan chains are preferred. The IEEE
Std. 1500 [2] provides a very similar architecture to JTAG,
with the same TAP. One of the main differences with respect
to JTAG is that the test infrastructure may include optional
parallel test pins to access multiple scan chains of the internal
cores. As a consequence, test time is drastically reduced.

Fig. 1 shows a SoC with two cores, equipped with IEEE
1500 test wrappers, namely Core 1 and Core 2. A 5-bit test
bus enables parallel testing of these two cores with parallel
access to their test I/Os (three-pin interface in Core 1 and
two-pin interface in Core 2). Note that Core 2 is further
equipped with decompressor/compressor devices enabling
the delivery and the collection of test data to/from its three
internal scan chains through only two pins.

In addition to JTAG and IEEE 1500, a recent standard has
been set up to deal with the important number of embedded
instruments. These instruments are used to control different
pieces of hardware within a chip, such as temperature
monitors (used to set a temperature sensor), or a memory
BIST engine (used to control the self-testing of a memory).
The IEEE Std. 1687 [3], called IJTAG, provides access to
these instruments through a Reconfigurable Scan Network
(RSN). It defines the Segment Insertion Bit (SIB) that
dynamically configures the IJTAG RSN. Selecting one SIB
activates an RSN segment. As a consequence, the
instrument(s) on that specific segment of the scan path is
activated. Conversely, de-selecting the SIB deactivates that
portion of the RSN and renders the instruments on that
segment inaccessible. In Fig. 1, one SIB is used to
activate/deactivate a segment composed of two instruments
(Instrument 1 and Instrument 2).

We use the generic test infrastructure depicted in Fig. 1 to
further define the threat model. This test structure combines
on-core scan chains, a JTAG interface, IEEE 1500 wrappers
and an IJTAG SIB. Everything is integrated inside the same
SoC. An external tester can access the test structures of the
cores via the JTAG interface. All the cores and instruments
are connected together through a test daisy-chain. The scan
chains of Core 1 and Core 2 are accessible through the IEEE
1500 test wrappers. The two instruments are accessible
through the IJTAG RSN. The scan chains of the AES IP and
of Core 3 are directly accessible via the test daisy-chain.

B. Possible attacks through the scan network

The controllability and the observability offered by the
scan network can be exploited to steal critical information or
to disturb the system operations. For instance, an external
attacker can discover the secret key of a crypto-processor (e.g.
the AES IP in Fig. 1), or steal information on an IP design (e.g.
Core 1 in Fig. 1). The only requirement to perform such
attacks is the free access to the test interface. Another threat
can come from internal components. For instance, cores
provided by untrusted third-parties, inserted in the system and
connected to the test daisy-chain (e.g. Core 3 in Fig. 1) can
represent a threat.

1) Scan attacks
The first scan attack on an AES co-processor has been

described in [4]. Its objective is to retrieve the encryption
secret key. AES executes several rounds of operations (e.g.
substitutions and permutations) resulting on confusion and
diffusion of the plaintext data on the ciphertext. The scan
attack targets the result of the first round, when data stored

Fig. 1 Test infrastructure in a SoC: Core 1-2 with IEEE 1500 wrappers,

an IJTAG SIB for including/excluding instruments 1-2, TAP

controllers for system and core management.

into the round register are partially encrypted. The attack
procedure consists at first in switching the circuit to test mode
after the first round. After that, the partially encrypted result,
stored in the round register, is scanned out. The attacker
carries out the differential scan attack by applying plaintext
pairs on the AES inputs, and then calculating the Hamming
distance between the two results. According to the Hamming
distance value, the attacker can identify with certainty one key
byte. The attack strategy is thus to try different plaintext pairs
until the difference between two intermediate results permits
the attacker to determine a key byte. The attacker repeats these
steps for every key byte, in order to retrieve the whole key. In
average, 512 plaintexts allow the attacker to retrieve the 128-
bit AES key.

The described scan attack deals with a single scan chain.
However, the use of advanced DfT structures, such as multiple
scan chains, on-chip test data decompression, scan response
compaction, X-masking and partial scan, has been widely
adopted. When advanced DfT approaches are adopted, the
entire round register of the crypto-processor is not necessarily
directly observable at scan output. This makes the execution
of the scan attack, as presented in [4], very difficult. Improved
scan attacks have thus been proposed in [5] and [6] that deal
with this issue.

 In [7], a test-mode-only attack has been proposed in order
to cope with the chosen plaintext strategy described in [4]. In
this attack, plaintexts are applied by scanned-in bit streams.
The major challenge in this attack is to figure out which scan
flip-flop corresponds to which input bit of the AES. Once the
attacker has this knowledge, he or she proceeds, as in [5] and
[6], without switching from test mode to normal mode. This
permits to circumvent simple countermeasures, such as
resetting the round register when the circuit switches from
normal mode to test mode. However, this attack assumes that
the key used for encryption in test mode is the same as in
normal mode.

2) Design analysis using scan side channel
The scan network can also be used to obtain some

information on the sequential and combinational functions of
a design. In the studied threat model, let us consider that Core
1 in Fig. 1 is an IP core that holds secret information about its
design. The direct access to the internal registers of the IP core
allows an attacker to analyse the logic structures of the design.
He or she can shift desired data in the scan network in order
to analyse the resulting outputs. Therefore, the exploitation of
the scan network provides information on the design, which
helps to reverse engineer the IP cores.

3) Malicious IP inserted in the test daisy-chain
In the two previously presented threats, the attacker is

external to the chip and gets benefit from the controllability
and the observability offered by the test infrastructure.
Another potential threat is the introduction of a malicious
element in the integrated system or in the board. The malicious
IP core may be able to spy and modify the test communication.
This threat is further described in [9], where the depicted
scenario involves several devices connected to the same JTAG
network. This threat can be directly extended to scan chains
and other test standard networks.

Let us consider a malicious IP core inserted in a test daisy-
chain, for instance Core 3 in Fig. 1. This core may steal
confidential data sent by the user through the test interface.
For example, when the device is configured, the malicious IP
core can intercept the critical configuration data (e.g. the
firmware of a microprocessor). The malicious core may also
modify the data exchanged between a target core and the
tester, in order to force the device into an illegal behavior, or
to send fake test responses to the tester. This can prevent the
tester from detecting possible malfunctions in the circuit,
leading to an unexpected system failure.

C. Threats throughout the IC supply chain

Mentioned threats can be present at every stage of the IC
supply chain. Fig. 2 presents the actors of the semiconductor
supply chain and the threats they represent, based on the
testing procedures that are performed at each stage.

The first actor is the IC designer who is in charge of the
DfT (i.e. scan chains definition, test standard interfaces, test
pattern generation). At this level, the circuit is not yet
fabricated, therefore no threat is considered. During the
generation of the IC layout, several third-parties IP cores can
be inserted into the design, representing a potential target for
attackers.

After the definition of the circuit layout, the design is sent
to a foundry in order to produce several IC samples. Before
wafer slicing, all dies are independently tested, in series or in
parallel, depending on the available ATE. No threat is
considered at this stage. The foundry is regarded as
trustworthy and the potential malicious cores are not able to
carry out attacks from this stage. Scan attacks on crypto-cores
would be useless at this stage, because the attacker could only
steal the key used during manufacturing test. The key used in
mission mode is configured at a later stage.

In the assembly stage the circuit is packaged. When the
SoC is mounted on the board, the considered threats concern

Fig. 2 IC supply chain with threats of the different actors using the test facilities

the IP cores (e.g. Core 1 in Fig.1, susceptible target of reverse
engineering), and internal malicious cores (e.g. Core 3 in
Fig.1) inserted in the scan network at system level.
Concerning scan attacks, the key of the crypto-core is still the
test key, which does not represent a meaningful secret to steal.

The next stage consists in mounting the IC on the board by
the Original Equipment Manufacturer (OEM). The OEM
performs the test of the IC and sets its configuration. The
configuration goes through loading the bootloader and the
firmware in the memory, configuring the crypto-processor
with the key used in mission mode and configuring the
microprocessors. The threats at this stage are the same as
during the assembly stage. The secret key of the crypto-core
is configured by the OEM, therefore scan attacks do not
represent a threat at this stage.

The final stage sees the device owned by the final user.
The test interface of the device can be used to debug the
system or to perform in-field maintenance. All the studied
attacks represent a threat at this stage. A malicious user can
exploit the scan chains to steal the secret key configured by
the OEM.

III. CRYPTOGRAPHIC PRIMITIVES FOR ENCRYPTION

For the sake of completeness, we provide in this section a
brief reminder about the cryptographic primitives, called
ciphers, which underlie the encryption techniques discussed
in the paper. We focus on symmetric ciphers since their
operations (same key used for decryption/encryption) fit with
the encryption of the test communication. Moreover,
symmetric ciphers propose a lower cost in terms of area and
computation time than asymmetric ciphers.

 First, we recap the rationale of symmetric data
encryption. We then provide a brief introduction on block and
stream ciphers in order to set the terminology and highlight
the key features that are needed to appreciate the
vulnerabilities explained in Section V.

In general, a cipher allows the sender to transform an
input message m (plaintext) in a ciphered version c using a
secret key k. The receiver needs to be able to rebuild m from
c upon knowledge of the same k (or derived from k).

A cipher is composed of two functions: E, called
encryption function, and D, called decryption function, such
that:
- The encryption algorithm takes as input the message m and

the secret key k, and outputs a ciphertext c, so that
𝐸(𝑘, 𝑚) = 𝑐.

- The decryption algorithm takes as input the ciphertext c and
the secret key k, and outputs the plaintext m, so that
𝐷(𝑘, 𝑐) = 𝑚.

The encryption of a message followed by the decryption
of the correspondent ciphertext must result in the initial

message, i.e. 𝐷(𝑘, 𝐸(𝑘, 𝑚)) = 𝑚. Ciphers that are used for

providing confidentiality in the test infrastructures are stream
ciphers and block ciphers.

The main difference between stream and block ciphers
relies on the size of the data that are processed in each
encryption. Stream ciphers encrypt one bit at a time from a
bitstream; this results in the encrypted message having a bit-
to-bit correspondence with the plaintext message.
Differently, block ciphers take as input an n-bit block of the

plaintext, which is encrypted in an n-bit block ciphertext; in
this case, the properties of the plaintext are dispersed on the
whole n bits of the ciphertext.

A. Stream ciphers

Stream ciphers are based on a theoretical cipher, called
One Time Pad (OTP). In the OTP, the secret key must be as
long as the message m. The encryption function is defined as
𝐸(𝑘, 𝑚) = 𝑚⨁𝑘, and the decryption function as 𝐷(𝑘, 𝑐) =
𝑐⨁𝑘. If k is perfectly random (i.e. according to the uniform
distribution), the OTP has perfect secrecy. This means that
the produced ciphertext is indistinguishable from a random
sequence (this is due to the properties of the XOR operator).
In this case, it is impossible for an attacker that intercepts the
ciphertext to derive any information neither on the message
nor on the key. However, from a practical point of view, the
OTP is not implementable because of the key length.

Stream ciphers are an implementation of the OTP. Instead
of XORing a random key 𝑘 as long as the plaintext, a Pseudo-
Random Generator (PRG) generates a pseudo-random
sequence of bits called keystream. The PRG takes as input a
value 𝑘, called seed of the stream cipher, and outputs the
keystream 𝑆(𝑘). The encryption and decryption functions are
thus defined as 𝐸(𝑘, 𝑚) = 𝑚⨁𝑆(𝑘) and 𝐷(𝑘, 𝑐) = 𝑐⨁𝑆(𝑘).

As far as the PRG produces a keystream that is
unpredictable, the resulting stream cipher is considered to be
secure. As shown in Section V, it is also important that a
given keystream is not used twice.

Because of its low cost implementation, the TRIVIUM
[20] stream cipher is widely used in the context of scan chain
protection. It is based on a Non-Linear Feedback Shift
Register (NLFSR) used as PRG. The seed of the TRIVIUM
PRG is made by an 80-bit secret key K, and an 80-bit
Initialization Value (IV), which is publicly known. The
generated keystream is denoted as 𝑆(𝐾, 𝐼𝑉).

B. Block ciphers

Block ciphers are based on mathematical objects called
Pseudo Random Permutations (PRP). They are invertible
functions that take as input an n-bit value m and a secret key
k, and output an n-bit value c. A PRP is considered secure if,
fixed with a key k, the resulting function is indistinguishable
from a random bijective function on n-bit values.

Block ciphers implement a secure PRP. They are made of
an encryption function that is able to encrypt a plaintext block
into a ciphertext block using a secret key; and a decryption
function that performs the inverse operation and retrieve the
plaintext block from the ciphertext.

The most used block cipher is the AES. Other algorithms
have been proposed to be more lightweight, i.e. with a lower
cost in terms of area and power consumption, such as
PRESENT [21] or SKINNY [22].

IV. STATE-OF-THE-ART COUNTERMEASURES BASED ON

TEST COMMUNICATION ENCRYPTION

Many solutions have been proposed in order to guarantee
the confidentiality of communications within test
infrastructures. Solutions proposed so far rely on a modified
interface of the test infrastructure that combines both test data
transmission and encryption. Fig. 3 presents the core scheme
of countermeasures based on test communication encryption.

Test data is first encrypted off-chip and stored into the test
equipment. At test time, encrypted test vectors are sent to the
target device, which decrypts them on-chip using the
encryption key, and performs test operations. Before
scanning out a test response, the data is encrypted on-chip by
the device under test. The tester collects encrypted responses
and decrypts them off-chip using the encryption key for
further comparison with the expected data. Test data, vectors
and responses, are thus kept confidential during the testing
process. Without knowing the key, there is neither a
possibility to control the device to a specific state nor the
opportunities to observe the device state. Encrypted test data
can thus flow safely through the entire system containing the
device under test without risking to be read or written by an
unauthorized third party.

Since data in test infrastructures is transmitted serially,
most of the proposed test data encryption schemes are based
on stream ciphers. In [9], the authors propose the use of the
TRIVIUM stream cipher in order to encrypt the content of the
JTAG communication. The TRIVIUM stream cipher is
seeded with an IV and a secret key. The IV is hardwired in the
device with fuses that are programmed at manufacturing time.
The secret key is derived from a challenge sent by the user;
the challenge is hashed inside the device exploiting the
initialization of the TRIVIUM cipher itself; the response of
this hashing procedure is the secret key used for the
encryption. An authorized user knows the response to any
challenge while an unauthorized user, without the knowledge
of the challenge/response pairs, cannot have the secret key
used for test data encryption.

To improve the integrity, the solution presented in [9] also
proposes to use a HMAC signature appended to the test
messages. While the TRIVIUM-based encryption prevents
unauthorized user to write a chosen plaintext in the scan chain,
the HMAC signature prevents any write operation missing the
correct signature.

The SESC technique proposed in [17] addresses the threat
posed by untrustworthy cores in SoCs. It eliminates the risk of
a malicious core sniffing test data. The countermeasure
consists in encrypting test vectors using the TRIVIUM stream
cipher. For that purpose, the tester generates a random key for
the TRIVIUM cipher and shifts it to the core under test via a
dedicated scan chain, non-visible from the other cores. The IV
setup methodology is not described by the authors.

Stream ciphers are also used on IJTAG reconfigurable
scan networks (RSN) in [18]. A TRIVIUM cipher encrypts
and decrypts the data shifted in and out of the RSN. The goal
is to protect items under test against malicious embedded
instruments sniffing the communication, and against external
attackers who want to illegally use the embedded instruments.
The authors deal with key and IV management by proposing a
unique set of keys and IV for each device. The proposed
implementation is either with fuses or Physical Unclonable

Functions (PUFs). The authors do not further discuss the
usage of key or IV values between two encryption sessions.

All the SESC techniques that have been presented share a
vulnerability that is based on the incorrect management of the
stream cipher seed (the IV and the secret key). In the next
section, we expose the foundation of this vulnerability, and we
explain how to exploit it to attack the aforementioned
solutions.

V. CIPHERS LIMITATIONS AND VULNERABILITIES

A. Stream cipher limitations

Stream cipher security relies on the implementation of the
PRG. Stream ciphers are secure as far as the PRG produces a
keystream that is unpredictable. However, they have intrinsic
weaknesses that facilitate attacks when they are used
incorrectly.

An important requirement for the security of the stream
cipher is that the seed 𝑘 must be used only once. In the
opposite case, a simple attack can be performed, which is
called two-time pad. When the same seed k is used to encrypt
two different messages m1 and m2, the two bitstreams are
equal. Thus: 𝑐1 = 𝐸(𝑘, 𝑚1) = 𝑆(𝑘)⨁𝑚1 and 𝑐2 =
𝐸(𝑘, 𝑚2) = 𝑆(𝑘)⨁𝑚2. This leads to:

𝑐1⨁𝑐2 = (𝑆(𝑘)⨁𝑚1)⨁(𝑆(𝑘)⨁𝑚2) = 𝑚1⨁𝑚2

The attacker can exploit the XOR of two messages for a
differential attack that consists in obtaining confidential
information from the difference between messages.

The two-time pad vulnerability can be exploited in the
protections based on stream cipher presented in the literature
so far. Let us consider a protection on an AES IP, such as the
one implemented in the SoC in Fig. 1. The protection is based
on the encryption of the test communication with a stream
cipher whose secret key is unknown from the attacker. The
responses of the AES core are thus encrypted with a stream
cipher. We carry out the differential scan attack on the
protected AES IP.

The structure of the encryption with stream cipher is
shown in Fig. 4. The stream cipher produces the keystream
𝑆(𝐾, 𝐼𝑉) from a key 𝐾 and an initial value 𝐼𝑉, and encrypts
the data XORing them with the keystream. Let us perform a
differential scan attack and let 𝑅1 and 𝑅2 be the two
responses. For response 𝑅1 , the stream cipher generates a
keystream 𝑆(𝐾, 𝐼𝑉) from the key 𝐾 and the initial value 𝐼𝑉.
Then, after a reset of the circuit, the second response 𝑅2 is
encrypted with the same keystream 𝑆(𝐾, 𝐼𝑉). By applying the
differential scan attack between the two encrypted responses,
we obtain [𝑅1⨁𝑆(𝐾, 𝐼𝑉)]⨁[𝑅2⨁𝑆(𝐾, 𝐼𝑉)] = 𝑅1⨁𝑅2 ,
removing the stream cipher encryption. Therefore, an attacker
can carry out the differential scan attack, even if the test
responses are encrypted.

Fig. 4 Two-time pad exploited for the differential scan attack

Fig. 3 Basic scheme of the test communication encryption

The countermeasures presented in [9], [17] and [18] are all
exposed to this vulnerability because the IV and the key are
not managed properly (i.e. they do not change between two
encryptions). In [9], the IV is hard-coded with fuses,
consequently being the same for each generated keystream.
The key is the response to a challenge sent by the user. An
attacker needs to send the same challenge in order to generate
the same keystream to encrypt different test data. Concerning
the solution proposed in [17], the key is set by the user.
Therefore, an attacker can send the same key to the circuit in
order to generate the same keystream for different
encryptions. In [18], the authors evoke the use of a unique set
of keys and IVs for each protected instrument in the IJTAG
network. However, the re-use of the same sets of keys and IVs
to encrypt test data shifted through a protected instrument
leads to the presented vulnerability.

The same seed must not be used more than once to avoid
the generation of the same keystream for several encryptions.
In order to protect against differential scan attacks, the stream
cipher encryption needs to have different IVs and/or keys for
each generated keystream.

B. Block cipher limitations

Block ciphers are stronger primitives than stream ciphers.
Differently from stream ciphers, they allow to perform
encryptions of different plaintexts with the same secret key,
without lacking of security. Depending on the
implementation mode, an attacker may have the ability to
identify that identical plaintexts have been processed, or to
provide correct ciphertexts for a given (potentially unknown)
plaintext, without knowledge of the key.

Several modes of implementation exist for the block
ciphers in order to prevent replay attacks. The simplest one is
the electronic codebook (ECB) mode, in which data are
divided into blocks, which are then encrypted separately with
the same key. Another mode is the cipher block chaining
(CBC), in which the encryption of a plaintext block depends
on both the key and all the ciphertext blocks that have been
processed up to that point.

The ECB implementation presents the limitation related
to the identification by an attacker of identical ciphered
blocks corresponding to the same plaintext block.
Conversely, CBC mode does not allow an attacker to identify
repeated data blocks in the encrypted communication since
each encrypted block of data depends on the previous
encryptions.

Applied to the encryption of the test communication,
differential scan attacks are ineffective no matter which block
cipher encryption mode is employed. However, ECB mode
gives the possibility for an attacker to identify bits of interest
in the encrypted test data. Let assume that data scanned out
from the device includes round-register bits of a crypto-
processor under test. Using two different plaintexts to
exercise the crypto-processor will result in two different
round-register values while other data stored in the scan chain
will remain the same. After the encryption of the scanned out
data in ECB mode, the data that did not change were
encrypted in the same way (i.e. resulting in the same
ciphertext). On the other hand, round register data, which
differ due to the application of two different plaintexts, result
in two different encrypted blocks, revealing the bits of
interest in the scan chain.

Consequently, the application on a crypto-processor of
two different plaintexts could allow an attacker to identify the
encrypted segments in the scan chain containing at least one
bit of the round register of a crypto-processor under attack. In
the case where such information could allow the attacker to
carry out a new attack, CBC mode is a more secure
implementation.

VI. SCAN ENCRYPTION COUNTERMEASURES

In this section, we first present a SESC [19]
implementation that does not present the vulnerability of the
state-of-the-art solutions discussed so far (see Section V.A).
After that, we describe a SEBC [23] implementation using
lightweight block ciphers.

Fig. 5(a) details the basic scheme of both
countermeasures. Two encryption schemes are implemented
at the scan pins. The input scan ciphering process is in charge
of processing the on-chip decryption of the test patterns, the
output scan cipher is in charge of processing the on-chip
encryption of the test responses before scan-out.

Since the scan attack countermeasure relies on test data
encryption, the process must also provide a scheme for test-
key management, i.e. a way to securely share the secret key
between the test equipment and the device under test.
Therefore, it requires the integration of a Secret Key
Management Unit (SKMU) mechanism within the chip, in
addition to the ciphers.

 Assuming that a device must be protected from scan
attacks because of embedded crypto-processors, we propose
to re-use the secure storage containing all the secret keys and
a SKMU, in order not to introduce issues about key
management. The key is securely stored in the secure storage
of the crypto-core, and managed with the SKMU in order to
share the secret only with authorized users. The SKMU also
performs the operations of key generation, activation and
revocation during the life cycle of the scan encryption key.

A. Stream-based scan encryption

The present SESC countermeasure has been proposed in
[19]. Compared to previous solutions, the IV value is
randomly generated by a True Random Number Generator
(TRNG) at every circuit reset, thus preventing two-time pad
attacks. The use of a TRNG guarantees to not re-use the same
IV for the keystream generation. Moreover, the TRNG
guarantees the generation of a different IV across circuit

Fig. 5 (a) Global architecture of the scan encryption countermeasures.

(b) SESC implementation. (c) SEBC implementation.

resets. This requirement precludes the possibility to employ
other memory-based techniques (e.g. counters), which would
impose to keep track of the already-used IVs.

The on-chip generated random value IV has to be known
by the external tester/debugger, in order to allow a correct
communication between the tester and the device. To make
the random IV value accessible, an extra test data register is
used to store its value. A custom instruction, GETIV, is added
to the JTAG instruction set in order to read the content of this
register. The on-chip generated IV is then accessible to the
external world. It is important to note that the security of the
stream cipher is not jeopardized by making the IV public,
since its key is still kept secret.

The implementation is illustrated in Fig. 5(b). The stream
cipher generates two keystreams: (i) 𝑆𝑖𝑛 for decrypting the
test data shifted in the scan-in port; (ii) 𝑆𝑜𝑢𝑡 for encrypting
the test data shifted out through the scan-out port. A single
stream cipher does not generate the same keystream for both
input decryption and output encryption in order to avoid any
temporal correlation in the generated output bitstream. The
generation of independent keystreams can be done in an
efficient way for some standard stream ciphers. For instance,
the TRIVIUM requires very few additional logic gates (i.e.,
3 AND gates and 11 XOR gates) to generate 2 streams at the
same time compared to its standard implementation with a
unique stream.

The SESC operates in two phases: the initialization phase,
followed by the encryption phase. In the initialization phase,
the TRNG is firstly initialized in order to reach a sufficient
entropy for generating a random value. Once the TRNG is
initialized, the random bitstream is generated and stored in a
shift register. The shift register content is then used as IV for
the stream cipher. Finally, the stream cipher has a setup phase
before becoming operational. During the whole initialization
process, the scan chain is not accessible for an external user,
since the TAP controller remains set on bypass mode. The
initialization process is completed when the stream cipher
setup ends. The stream cipher then generates the keystreams
while the TAP controller is in the shift state.

Beforehand, the external user has to execute the custom
instruction GETIV. The execution of this instruction involves
copying the content of the shift register into the specific test
data register IV, and connecting the test data register to the
TDI/TDO ports. This way, the user can shift out the IV value
that has been produced by the TRNG. Once the user knows
both the secret key and the IV, it is possible for him or her to
encrypt off-chip the test patterns sent to the circuit, and to
decrypt off-chip the test responses obtained from the circuit.

B. Block-based scan encryption

The present SEBC technique has been proposed in [23].
It relies on the test communication encryption with
lightweight block ciphers. As shown in Fig. 5(c), two block
ciphers are implemented, one for the decryption performed at
scan input, another for the encryption performed at scan
output. Each of these two ciphers have two round registers
(R1 and R2) with two operating modes, parallel load and
serial shift. The parallel load is used to perform the
encryption/decryption operations, while the serial shift is
used to acquire the data shifted through the scan chain. The
two operating modes are performed in parallel in order not to
waste test time.

In this paper, differently from [23], we have implemented
the block ciphers in CBC mode in order to propose a more
secure implementation, as explained in Section V.B,
regarding the possible identification of repeated test blocks in
the test sequence.

Test data are acquired serially by the scan chain. The use
of block ciphers implies thus padding test data into the block
size. The scan chain is filled/flushed segment by segment,
each segment consisting of the block size on N bits. When the
scan chain length is not a multiple of the block size, the
solution still works, but each test pattern is padded with extra
data. The tester has thus to complete the shift operations
employing additional clock cycles, resulting in a test time
overhead on each test pattern.

Formally, by considering a circuit having 𝐹 = 𝑆𝑁 + 𝑅
flip-flops, where F is the total number of flip-flops in the
original circuit, S is the number of N-bit segments, and 𝑅 =
𝐹 𝑚𝑜𝑑 𝑁, the test time overhead 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 introduced by the
SEBC on K test patterns is equal to:

𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = {
2 ∙ 2𝑁 𝑖𝑓 𝑅 = 0

2 ∙ 2𝑁 + (𝑁 − 𝑅)(𝐾 + 1) 𝑖𝑓 𝑅 > 0
 (1)

This test time overhead is evaluated in Section VII
considering several circuits. The authors in [23] propose a
solution not to waste the additional clock cycles used to
synchronize the scan chain encryption scheme with constant
segment length N. These 𝑁 − 𝑅 extra clock cycles are
actually exploited for testability improvement without
requiring any additional test time. Indeed, by adding 𝑁 − 𝑅
dummy scan flip-flops to the original scan chain, these extra
flip-flops can be used as observation points to the circuit
logic. The observation points permit to improve the
propagation of test responses to the scan flip-flops, without
any impact on the test time. The goal of the observation point
insertion is to reduce the test sequence length, i.e., reducing
the number 𝐾 of test patterns for the same fault coverage. We
present the results of the optimisation in Section VII showing
that the additional flip-flops, used as observation points, can
compensate the additional shift operations required by the
SEBC.

VII. EVALUATION AND COMPARISON

In this section, we evaluate the scan encryption
countermeasures in terms of security, implementation costs
and integration in a SoC design. Moreover, we compare both
SESC and SEBC implementations.

A. Security analysis

The scan encryption countermeasures are evaluated
regarding the threat model described in Section II. Both
solutions, SESC and SEBC, are considered.

An attacker cannot carry out scan attacks, reverse
engineer an IP using scan side channel, or exploit a malicious
core inside the device, since the scan network is encrypted.
The decryption performed on scanning-in test data prevents
the setup of desired values in the scan chain without knowing
the secret key. The encryption performed on the scanning-out
test responses prevents the observation of the internal states
of the circuit under test without firstly performing the
decryption. The controller of the scan encryption enables the
stream cipher as soon as a scan operation is required to
prevent any clear bitstream from being inserted or observed.

The SESC technique proposed in [19] does not present
the same vulnerability as the previous countermeasures in [9],
[17] and [18] concerning the differential scan attacks. The
seed used to initialize the stream cipher is randomly
generated, consequently encrypting with a different
keystream at each reset of the circuit. Therefore, differential
scan attacks are not possible. Concerning SEBC, it does not
present the vulnerabilities of state-of-the-art SESC
techniques, since the countermeasure is based on block
ciphers, consequently being a more secure solution.

Both SEBC and SESC prevent the exploitation of the scan
chain that would help to reverse engineer an IP. In FPGA, the
protection of the critical information on IP design contained
in the bitstream is achieved through data encryption [24]. In
the same manner as the proposed countermeasure, the
decryption at scan input does not allow to analyse the IP
behaviour after the scan-in of desired data. The encryption at
scan output prevents scanning out critical data related to the
IP design.

In terms of security, SESC and SEBC both protect against
the considered threat model.

B. Implementation costs

First, we compare the solutions evaluating the protection
of some benchmarks, namely a triple-DES, a Pipelined 128-
bit AES, a Pipelined 256-bit AES, a 1024-bit RSA and a
LEON3 processor. In these first experiments, all the circuits
are equipped with a single scan chain.

These benchmarks have been synthesized using a 65nm
technology library, as well as the ciphers. We have
implemented the SESC with the TRIVIUM stream cipher,
and two block ciphers in counter mode (CTR): PRESENT
[21] and AES [8]. Block ciphers in CTR mode operate like
stream ciphers. For SEBC, we have used the PRESENT and
the SKINNY [22] block ciphers in CBC mode.

Concerning the SESC, we do not consider in the
experimental results the cost of the TRNG. In the case where
a TRNG is already implemented for the functional mode of
the original circuit, the proposed countermeasure can exploit
this TRNG during the test mode, implying no overhead for

the random number generation. If a TRNG has to be
implemented, the related area cost is evaluated to be 15,000
GE from the Synopsys DesignWare IP library [25]. This
values is equivalent to 31,200µm² on the 65nm technology
library adopted for the experiments.

1) Area and test time overheads
Area overheads are reported in Tab. 1 for both SEBC and

SESC solutions. It must be noted that the SEBC requires the
implementation of two ciphers, one for decrypting input test
patterns, the other one for encrypting test responses. The
SESC requires the implementation of only one cipher to
deliver two keystreams. The overhead is to be compared with
the original circuit under test. As it can be seen, both solutions
are expensive in terms of area, making these solutions
suitable to large designs only. Furthermore, in our
experiments, we have not considered the key management,
using the one adopted in the benchmark under test.
Furthermore, this solution is particularly adequate when at
least one crypto-core is implemented in the circuit under test.

Concerning test time, we consider for each IP core the test
sequence for detecting stuck-at faults, obtained with an
ATPG (Automatic Test Pattern Generator). Tab. 1 reports the
test time overhead for the scan encryption countermeasures.
The test time overhead for SESC is due to the initialization
phase: the TRNG initialization, the shift of the random IV,
and the stream cipher setup. Without considering the TRNG
initialization, we have respectively 138, 95 and 1232 clock
cycles for AES-128 CTR, PRESENT-128 CTR, and
TRIVIUM. In any case, they represent a marginal cost.

For SEBC, every pattern has to be padded in such a way
that its total length is a multiple of the block size of the cipher,
i.e. 64 bits in the case of PRESENT and SKINNY. This
induces a test time overhead for each pattern. This overhead
can be reduced thanks to the optimization presented in
Section VI.B. The DfT tool Tetramax is used for the selection
of observation points in the circuit logic and for test pattern
generation. We have constrained the tool to use only the 𝑁 −
𝑅 extra flip-flops for testability improvement i.e. for the scan
chain length to be a multiple of 64. After selection,
observation points drive extra XOR trees ending on the

Original circuit

Triple-DES Pipelined AES-128 Pipelined AES-256 RSA 1024 LEON3

Area
(µm²)

Test time*
(clock cycles)

Area
(µm²)

Test time*
(clock cycles)

Area
(µm²)

Test time*
(clock cycles)

Area
(µm²)

Test time*
(clock cycles)

Area
(µm²)

Test time*
(clock cycles)

187,494 687,101 367,926 1,944,877 669,193 4,559,845 468,415 39,405,239 1,902,095 11,612,051

Scan

Encryption

Area
(µm²) Overhead (%) Overhead (%) Overhead (%) Overhead (%) Overhead (%)

 SESC Error! Reference source not found. (without TRNG implementation)

AES-128

CTR

48,118.20
+25.66 +0.020 +13.08 +0.007 +7.19 +0.003 +10.27 +0.0004 +2.53 +0.001

PRESENT-

128 CTR

6,833.84
+3.64 +0.014 +1.86 +0.005 +1.02 +0.002 +1.46 +0.0002 +0.36 +0.0008

TRIVIUM 5,408.52 +2.88 +0.18 +1.47 +0.06 +0.81 +0.03 +1.15 +0.003 +0.28 +0.01

SEBC Error! Reference source not found.

PRESENT-
128 CBC

10,915.84
+5.82 +0.31 +2.97 +0.81 +1.63 +0.006 +2.33 +0.33 +0.57 +0.004

Insertion of observation

points on original circuit
+5.95 +0.038** +3.48 +0.013** +2.44 +0.001** +0.57 +0.002**

SKINNY-64-
128 CBC

10,172.24
+5.43 +0.31 +2.76 +0.81 +1.52 +0.006 +2.17 +0.33 +0.53 +0.004

Insertion of observation

points on original circuit
+5.55 +0.038** +3.27 +0.013** +2.28 +0.001** +0.54 +0.002**

Tab. 1 Area and test time cost of scan encryption with stream cipher and block cipher

*: test time considered for a fault coverage of 100% on the original circuit, except for the LEON3 processor where the fault coverage reaches 70%

**: test time overhead for the block-based solutions compared to the test time of the optimized circuit (obtained with the insertion of observation points)

proposed extra flip-flops, thus allowing their observation at
test time. For instance, the Triple-DES core has
8808=137×64+40 flip-flops, implying an extra test time (64-
40=24) for the scan encryption technique to pad on 64-bit
segments. By adding 24 scan flip-flops in the scan chain
connected to observation points, the test time cost has an
overhead of 0.038%, compared to 0.31% for the solution
without the optimization. Tab. 1 presents the results of the
optimization performed on the other circuits, except for the
Pipelined AES-256, whose scan chain is a multiple of 64
(12736=199×64 flip-flops).

It is clear that SESC outperforms SEBC due to the data
volume-dependant overhead of the last one. Except when the
optimization of SEBC is applied on the original circuit, the
test time overhead is reduced, representing a marginal cost.

2) Testability evaluation
The scan encryption permits to test the original circuit

without reducing the test coverage, since the original test
patterns are applied as they are. However, the architecture of
the scan encryption solution must also be tested, without the
help of scan chains that would expose the cipher to scan
attacks. We propose to functionally test the cipher using test
patterns dedicated to the circuit under test.

The test of block ciphers, such as PRESENT, SKINNY
and AES, is facilitated by the diffusion properties of the
crypto-algorithms, as described in [11] and [12]. Stream
ciphers based on shift registers, such as TRIVIUM, are also
easily testable since all the states of the stream cipher are
shifted out the circuit as keystream. Therefore, both ciphers
easily propagate the possible errors to the circuit outputs
when an encryption is performed. To validate the assumption,
we have evaluated the test coverage on every studied cipher
(TRIVIUM, PRESENT, SKINNY and AES) by applying the
test sequence of the original circuits. At scan-input, test
patterns are processed by the input scan cipher, and the test
responses are processed by the output scan cipher. We have
performed experiments with the test sequence of the
Pipelined AES-256, Triple-DES, Pipelined AES-128, RSA
1024 and LEON3 processor cores. In all cases, the fault
coverage for stuck-at faults in the scan encryption is 100%.
In other words, the ciphers are tested for free, with no
additional test patterns compared to those used for testing the
original circuit.

Concerning the test procedure, as described in Section IV,
the tester has to encrypt off-chip the test patterns and to
decrypt off-chip the test responses. The off-chip decryption
is performed in order to compare with the expected plaintext
responses, but this computation is not always necessary
depending on the choice between SEBC and SESC. In fact,
expected test responses computed in simulation by the ATE
can have unknown values (X-values), describing an unknown
binary state in the test responses obtained on the real tested
circuit. These unknown bits are then ignored during the
comparison with the obtained test responses.

Due to the confusion and diffusion properties of block
cipher, the SEBC spreads the unknown bits in the entire
encrypted test response. For this reason, the off-chip
decryption for SEBC is mandatory in order to perform the
comparison with the plaintext responses.

In case of SESC, the unknown bits are at the same
position in the plaintext responses as in the encrypted test

responses, since the encryption operates bitwise. Therefore,
the unknown bits can directly be ignored on the encrypted test
responses, avoiding the need for the tester to decrypt every
obtained test response from the circuit. The comparison is
thus performed between the encrypted obtained responses
and the encrypted expected ones.

C. Integration in a SoC design

The integration on the scan encryption countermeasures
just consists in adding ciphers at the input and the output of
the scan chain. In the case of SESC, it also implies some
modifications on the JTAG test wrapper, but not on the core
itself. Therefore, the solutions can be applied without
modification on the protected core.

Test wrappers of the cores composing a SoC are often
connected in a test daisy-chain, as shown in Fig. 1. The serial
input/output of the test interface provides access to the scan
chains for all cores implemented in the SoC. When the scan
encryption is implemented on one core, all the cores included
in the test daisy-chain receive the encrypted data, providing
protection against malicious cores. The stream cipher
encryption operates bitwise on data, implying no issue on the
integration of the SESC in a test daisy-chain. Contrarily, the
block cipher encrypts blocks of data, implying to pad the test
data to a multiple of the block size. The extra data used for
padding is thus sent to the other cores in the test daisy-chain,
resulting in possible issues during the test operations.
Therefore, the designer has to be aware of the potential
problems when the SEBC is implemented. A way to avoid
the padding issue is to have a scan chain, whose length is
multiple of the block size, resorting to observation points (see
Section VI.B). However, the insertion of observation points
implies the modification of the original circuit. It is thus not
always possible to apply the optimization in the case of a non-
modifiable core.

D. Extension to multiple scan chains

Both SESC and SEBC solutions can be extended to
protect multiple scan chain designs. The encryption of
multiple scan chains has a cost in terms of area and power.

The SESC can be directly adapted to multiple scan chains.
The only limitation is the number of keystreams that the
stream cipher is able to generate. Considering a circuit where
multiple scan chains are accessible through L scan-inputs and
L scan-outputs, as shown in Fig. 6, the stream cipher has to
produce two L-bit keystreams.

Fig. 6 Stream-based solution applied on multiple scan chains regardless

of test compression

The countermeasure can be applied regardless of the test
compression technique. The proposed solution can also be
applied when a test decompressor is implemented at scan-
input, and a test compressor at scan-output. The ATE
generates compressed stimuli used to test the circuit under
test. The ATE encrypts, by stream ciphering, these generated
stimuli following the same test procedure as described before.
The encrypted compressed stimuli are scanned in the circuit
and decrypted with the keystreams generated for the scan-
inputs. The decrypted test stimuli are then applied to the test
decompressor. The test responses are compressed before
being encrypted on-chip with the keystreams generated for
the scan-outputs. Finally, the ATE decrypts the compacted
test responses in order to compare them with the expected
ones.

The number of possible keystreams depends on the used
stream cipher. For instance, the TRIVIUM can compute up
to 64 keystream bits in one clock cycle. Therefore, 32 parallel
test data can be decrypted at scan-input and 32 parallel test
data encrypted at scan-output. For block ciphers in CTR
mode, this number is fixed by the ratio between the encrypted
block size and the number of rounds for the crypto-algorithm
(i.e. the number of clock cycles needed to encrypt a block).
For PRESENT-128, the encryption of 64 bits is done in 31
rounds. As a consequence, PRESENT is able to generate two
bits of the keystream in one clock cycle. Thus, the solution
with PRESENT CTR can only be applied on a single scan
chain. Considering the AES-128 CTR, 128 bits are encrypted
in 10 rounds. The stream cipher is therefore able to generate
12 keystreams in one clock cycle, encrypting up to 6 scan
chains.

Apart from the limit on the number of keystreams, other
perspectives can be considered to increase the number of scan
chains to be encrypted. One of them is to run the stream
cipher at higher frequency in order to increase its throughput.
Due to the low combinational complexity of the stream
cipher, the frequency increase is a potential solution. Another
solution is to implement several stream ciphers even though
a bigger area overhead needs to be tolerated. For both
perspectives, the cost in power consumption increases also in
the same way.

Concerning the SEBC, the extension is not trivial and
requires the implementation of a dedicated architectural
solution, proposed in [23]. The solution consists in
decrypting/encrypting whole scan slices at a faster frequency
than the scan operations frequency. Scan slices are the set of
scan flip-flops of the same rank within the scan chains.

Typically, the scan operations are performed at low
frequency to avoid the issues due to overconsumption and

overheating within the circuit. This feature is exploited to
encrypt/decrypt the data of the test slices at higher frequency,
while shifting the test data in the chains at lower frequency.
The considered block ciphers, PRESENT and SKINNY, can
encrypt slices with length up to 64 bits, corresponding to their
block size, at the cost of an increase of the power
consumption. Beyond the encryption of 64 scan chains,
additional block ciphers must be implemented.

We present in Tab. 2 the experimental results of both
SESC and SEBC proposed solutions applied on multiple scan
chains. We consider a frequency of 10 MHz for the scan
operations. In the following experiments, we use an
estimation of the power consumed by the proposed solutions
considering the implemented ciphers (AES-128 CTR and
TRIVIUM for SECS, PRESENT and SKINNY for SEBC).
The power consumption estimation is obtained after the
synthesis of the scan encryption countermeasure at the
frequency defined in Tab. 2.

The stream cipher decrypts/encrypts test data at 10 MHz
regardless of the number of scan chains (columns SESC, Tab.
2), implying a marginal cost in power consumption (about 82
µW for AES- 128 CTR and 35 µW for TRIVIUM). With
block ciphers encryption (columns SEBC, Tab. 2), the cost in
power consumption increases with the number of scan chains.
For the encryption of four scan chains, the power
consumption is already 2.5 times higher with block ciphers
encryption compared to AES-128 CTR encryption (215.1
µW vs 82.46 µW), and six times higher compared to
TRIVIUM (215.1 µW vs 34.16 µW). The difference is even
greater for the case of 32 scan chains: the TRIVIUM performs
the scan encryption at 10 MHz, consuming 36.37 µW, while
PRESENT and SKINNY operates at 330 MHz (2,365.8 µW)
and 370 MHz (2,274.4 µW) respectively. However, the
generation of several keystreams from the TRIVIUM to
encrypt several scan chains has an area cost. To encrypt 32
parallel scan chains, the area cost of SESC with TRIVIUM
represents 9,999.60 µm², equivalent to the cost (10,727.92
µm²) of SEBC with SKINNY.

E. Summary

Overall, the scan encryption ensures protection against
scan attacks, against reverse engineering through scan chains,
and can be used to prevent attacks from scan IOs as well as
from malicious cores [9]. An attacker is not able to set the
circuit in a desired state, nor to observe internal states of the
circuit without knowing the encryption secret key. Moreover,
the presented SESC does not show the two-time pad
vulnerability, making it more secure than the state-of-the-art
SESC techniques.

Scan

encryption

SESC (without TRNG implementation) Error! Reference

source not found.
SEBC Error! Reference source not found.

Ciphers AES-128 CTR TRIVIUM PRESENT-128 CBC SKINNY-64-128 CBC

scan

chains

Area

(µm²)

Power

(µW)

Freq.

(MHz)

Area

(µm²)

Power

(µW)

Freq.

(MHz)

Area

(µm²)

Power

(µW)

Freq.

(MHz)

Area

(µm²)

Power

(µW)

Freq.

(MHz)

1 48,118.20 81.68 10 5,408.52 34.01 10 10,915.96 71.69 10 10,171.52 61.47 10

2 48,128.60 81.70 10 5,553.60 34.02 10 12,134.84 143.4 20 11,390.4 130.6 21.25

4 48,243.00 82.46 10 5,851.04 34.16 10 11,909.16 215.1 30 11,164.72 199.8 32.5

8 10 6,453.20 34.55 10 11,789.56 358.5 50 11,045.12 338.1 55

16 10 7,615.92 35.14 10 11,777.08 645.2 90 11,032.64 614.7 100

32 10 9,999.60 36.37 10 11,472.36 1,218.7 170 10,727.92 1,167.9 190

64 11,440.12 2,365.8 330 10,695.68 2,274.4 370

Tab. 2 Scan encryption with stream cipher and block cipher applied to multiple scan chains designs

The establishment of the encrypted test communication
between an authorized user and the secure circuit is possible
with the shared knowledge of the secret key. Consequently,
the user with the possession of the secret key is automatically
authenticated by the secure circuit. Only authorized users can
set and read test data to/from the network.

The proposed countermeasures also present advantages
compared to existing scan attacks countermeasures. One of
them is that it is still possible to perform in-field diagnosis
and debug only for authorized users knowing the key, as
opposed to the simple countermeasure consisting in
disconnecting the test accesses. Another advantage is the
possibility to reuse the key management unit of the system
under test if already implemented in the circuit for the
management of crypto-accelerators for instance. Previous
countermeasures based on a secure protocol using
cryptographic primitives, such as in [13]–[15], need to have
a dedicated key management.

Conversely to the Built-In Self-Test solutions which may
reduce fault coverage, the scan encryption scheme does not
impact the test coverage of the original circuit. Moreover,
extra hardware for test data encryption is tested without extra
delay.

Tab. 3 summarizes the comparison between SESC and
SEBC. In order to bring the best comparison possible, we
give the pros and cons of the two solutions for

implementations achieving the best performance in both
cases. Regarding the experimental results, the SEBC is
performed by SKINNY-64-128 in CBC mode, while the
SESC is performed by TRIVIUM. The SEBC is evaluated for
two cases: the solution being optimized or not with the
insertion of test points in the original circuit in order to reduce
the test time overhead. The SESC is also evaluated for two
cases: the TRNG being already implemented or not.

An advantage of the SESC is that the integration in test
daisy-chains implies no issue compared to the SEBC. The
optimization of the SEBC permits to avoid the integration
issue, but it is then not applicable on a non-modifiable core.

SESC has another advantage compared to SEBC
concerning the off-chip decryption of the test responses. As
shown in Section VII.B, SESC does not require the off-chip
decryption of the test responses, while SEBC has to do it due
to the confusion and diffusion properties of the block cipher.

When a TRNG is already implemented in the device,
another advantage of the SESC compared to the SEBC is the
area and test time costs for single scan chains. However, in
the case where a TRNG is not available in the device for the
scan encryption, the SEBC can be preferred to the SESC due
to the important area cost of the TRNG.

Concerning the implementation on multiple scan chains,
the SESC has a lower cost in terms of area and power.

Scan encryption

SEBC (SKINNY-64-128 CBC) SESC (TRIVUM)

Test points insertion for test time optimization: TRNG already implemented:

Not optimized Optimized Yes No

Security

Scan attacks Error!

Reference source not

found.–Error! Reference

source not found.

Protected Protected (two times pad not possible)

Reverse-engineering through
scan side channel

Protected Protected

Malicious core Error!

Reference source not

found.

Protected Protected

Global features

In-field diagnosis & debug Yes Yes

Key management Re-use the key management already implemented Re-use the key management already implemented

Integration

Integration in test daisy

chain

Possible issue with the

padding of test data
No issue No issue

Appl. on non-modifiable core Yes No Yes

Test coverage

Original circuit No impact No impact

Secure test infrastructure Functional test with test patterns of the original circuit Functional test with test patterns of the original circuit

Off-chip decryption of the

test responses
Required Not required

Costs for single scan chain

Area 10,171.52 µm²
+ Insertion of test points

(< 500 µm²)
5,408.52 µm²

+ ~ 31,200 µm² for

TRNG

Test time

Depends on the scan

length

(multiple or not of the
block size)

Marginal cost

(256 clocks cycles)

Clock cycles required for
the initialization phase

(1 232 clock cycles)

+ time to initialize the

TRNG

Cost for multiple scan chains

Area ~ 11,000 µm²
From 5,553.60 µm² to

9,999.60 µm²

+ ~ 31,200 µm² for

TRNG

Power From 130.6 µW to 2,274.4 µW ~ 35 µW
+ power consumption of

the TRNG

Limit on the number of chains

processed by one cipher
From 2 to 64 scan chains From 2 to 32 scan chains

Tab. 3 Comparison between scan encryption with stream cipher and block cipher

However, the limit on the number of chains processed by one
cipher is lower, from 2 to 32 scan chains, compared to the
limit for the SEBC which is from 2 to 64 scan chains.

Therefore, the choice of the SESC or SEBC depends on
the original circuit where the protection is implemented: if a
TRNG is already set up, if the scan chain length is a multiple
of the encrypted block size, if the original circuit is
modifiable in order to insert observation points. The number
of scan chains to encrypt must also be taken into account.

VIII. CONCLUSION

Access to the scan network can be achieved by the test
access ports on the circuit boundary, or by using malicious
cores connected to the test daisy-chain. The access to the scan
network can be exploited by an attacker to carry out scan
attacks and reverse engineer an IP design. To prevent these
threats, a solution consists in encrypting the scan network
using stream or block encryption schemes.

Several solutions have been proposed based on stream
ciphers. However, they present the weakness of using several
times the same keystream to encrypt different test data. This
paper details a solution based on stream cipher encryption
without this vulnerability.

The paper also details another approach, which is based
on lightweight block ciphers. The scan content is encrypted
in that case with a secret key developed for the current
activity, and shared with the authorized users using the key
management already present in the circuit.

We have also drawn a comparison between both scan
encryption solutions. On the basis of the proposed
comparison, it is not possible to designate an absolutely
preferred technique. Many factors must be evaluated by the
designer in order to make an optimal choice. For instance, the
availability of a TRNG in the circuit likely moves the
designer choice towards the SESC technique. On the other
hand, the multiple scan chains scenario could make the
designer prefer the SEBC technique, on the grounds of major
parallelization capabilities.

ACKNOWLEDGEMENT

This project has been funded by the French Government

(BPI-OSEO) under grant FUI#20 TEEVA (Trusted

Execution EVAluation).

REFERENCES

[1] IEEE Standard for Test Access Port and Boundary-Scan Architecture,"
in IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001) , vol.,
no., pp.1-444, 13 May 2013

[2] IEEE Standard Testability Method for Embedded Core-based
Integrated Circuits," in IEEE Std 1500-2005 , vol., no., pp.1-136, 29
Aug. 2005

[3] IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device," in IEEE Std 1687-2014 , vol., no.,
pp.1-283, 5 Dec. 2014

[4] B. Yang, K. Wu and R. Karri, "Secure Scan: A Design-for-Test
Architecture for Crypto Chips," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp.
2287-2293, Oct. 2006.

[5] J. DaRolt, G. Di Natale, M. Flottes and B. Rouzeyre, "Scan Attacks
and Countermeasures in Presence of Scan Response

Compactors," 2011 Sixteenth IEEE European Test Symposium,
Trondheim, 2011, pp. 19-24.

[6] J. Da Rolt, G. Di Natale, M. Flottes and B. Rouzeyre, "Are advanced
DfT structures sufficient for preventing scan-attacks?," 2012 IEEE
30th VLSI Test Symposium (VTS), Hyatt Maui, HI, 2012, pp. 246-251.

[7] S. S. Ali, O. Sinanoglu, S. M. Saeed and R. Karri, "New scan-based
attack using only the test mode," 2013 IFIP/IEEE 21st International
Conference on Very Large Scale Integration (VLSI-SoC), Istanbul,
2013, pp. 234-239.

[8] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

[9] K. Rosenfeld and R. Karri, "Attacks and Defenses for JTAG," in IEEE
Design & Test of Computers, vol. 27, no. 1, pp. 36-47, Jan.-Feb. 2010.

[10] M. Doulcier, M. -. Flottes and B. Rouzeyre, "AES-Based BIST: Self-
Test, Test Pattern Generation and Signature Analysis," 4th IEEE
International Symposium on Electronic Design, Test and Applications
(delta 2008), Hong Kong, 2008, pp. 314-321.

[11] A. Schubert, W. Anheier, "On Random Pattern Testability of
Cryptographic VLSI Cores", Journal of Electronic Testing: Theory
and Applications archive, June 2000, Volume 16, Issue 3, pp 185–192.

[12] G. D. Natale, M. Doulcier, M. Flottes and B. Rouzeyre, "Self-Test
Techniques for Crypto-Devices," in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 2, pp. 329-333, Feb.
2010.

[13] G. Chiu and J. C. Li, "A Secure Test Wrapper Design Against Internal
and Boundary Scan Attacks for Embedded Cores," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 1, pp. 126-134, Jan. 2012.

[14] Das, A., Da Rolt, J., Ghosh, S., Seys, S., Dupuis, S., Di Natale, G., …
Verbauwhede, I. (2013). Secure JTAG implementation using schnorr
protocol. Journal of Electronic Testing: Theory and Applications
(JETTA), 29(2), 193–209.

[15] L. Pierce and S. Tragoudas, "Enhanced Secure Architecture for Joint
Action Test Group Systems," in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 7, pp. 1342-1345, July
2013.

[16] X. Wang, D. Zhang, M. He, D. Su and M. Tehranipoor, "Secure Scan
and Test Using Obfuscation Throughout Supply Chain," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 9, pp. 1867-1880, Sept. 2018.

[17] K. Rosenfeld and R. Karri, "Security-aware SoC test access
mechanisms," 29th VLSI Test Symposium, Dana Point, CA, 2011, pp.
100-104.

[18] S. Kan, J. Dworak and J. G. Dunham, "Echeloned IJTAG data
protection," 2016 IEEE Asian Hardware-Oriented Security and Trust
(AsianHOST), Yilan, 2016, pp. 1-6.

[19] M. Da Silva, E. Valea, M. Flottes, S. Dupuis, G. Di Natale and B.
Rouzeyre, "A New Secure Stream Cipher for Scan Chain
Encryption," 2018 IEEE 3rd International Verification and Security
Workshop (IVSW), Costa Brava, 2018, pp. 68-73.

[20] De Canniere, C., & Preneel, B. (2005). TRIVIUM Specifications.
ECRYPT Stream Cipher Project, Report, 30, 2005.

[21] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe, P. Paillier and I.
Verbauwhede. PRESENT: An Ultra-Lightweight Block Cipher. CHES
2007, LNCS 4727, pp. 450–466, Springer-Verlag Berlin Heidelberg
2007

[22] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., …
Sim, S. M. (2016). The SKINNY Family of Block Ciphers and its Low-
Latency Variant MANTIS. IACR-CRYPTO-2016.

[23] M. Da Silva, M. Flottes, G. Di Natale and B. Rouzeyre, "Preventing
Scan Attacks on Secure Circuits Through Scan Chain Encryption,"
in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems.

[24] Altera. (2009). White Paper Protecting the FPGA Design From
Common Threats. Memory, (June), 1–5.

[25] Synopsys. (2015). DesignWare True Random Number Generator Core.

