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Abstract—Security in the Integrated Circuits (IC) domain is 

an important challenge, especially with regard to the side 

channel offered by test infrastructures. Test interfaces provide 

access to the internal states of the IC by means of the scan chains 

for testing and debugging purposes. In terms of security, 

however, scan chains are a potential source of leakage that can 

be exploited by attackers. A countermeasure against such 

attacks is to encrypt the data flowing through the scan chains. 

Two types of ciphers can be employed: stream ciphers or block 

ciphers. Both have pros and cons in terms of performance 

(footprint, impact on test activity) and security. In this paper, 

we present two solutions: one exploiting stream ciphers fulfilling 

security requirements, and another exploiting block ciphers. We 

draw a comparison between these two scan encryption 

countermeasures taking into account design cost functions and 

security properties. 

Keywords—Test and Security; Stream Cipher; Block Cipher; 

Scan Attacks Countermeasure; Scan Encryption 

I. INTRODUCTION 

The most common Design-for-Testability (DfT) technique 
is the use of scan chains. It consists in replacing original flip-
flops (FFs) by so-called scan FFs organized in shift registers 
during the test phase. The internal state of the circuit can thus 
be controlled at the serial input of the scan chain, called Scan-
In (SI), and it can be observed at the serial output of the scan 
chain, called Scan-Out (SO). In addition to the scan chains, 
several standards at system level have been proposed to 
facilitate the testing of chips. The standard for board testing is 
the IEEE 1149.1 [1], also known as JTAG, the IEEE 1500 [2] 
standard has then been proposed to deal with System-on-
Chips (SoC), more recently the standard IEEE 1687 [3], also 
known as IJTAG, facilitates the access to test embedded 
instruments by defining a Reconfigurable Scan Network 
(RSN). The testing infrastructure of a chip forms a scan 
network, based on these DfT solutions. 

The scan network provides full observation and control on 
the internal states of a device, ensuring its testability. On the 
other hand, the security is compromised by these control and 
observation facilities. An attacker can indeed exploit the scan 
network to steal secret information. For instance, scanning out 
the scan chain content of a crypto-processor after one-round 
execution in functional mode permits to retrieve part of the 
used secret key. Several attacks ([4], [5], [6] and [7]) on the 
Advanced Encryption Standard (AES) [8], called differential 
scan attacks, have been proposed in the literature. 

Another threat coming from the test standards (JTAG, 
IEEE 1500 and IJTAG) concerns the Intellectual Property (IP) 
theft. The scan network has a direct access to the internal 
registers of an IP, giving information on the logic structure of 
the circuit. An attacker can exploit this information to reveal 
the IP design. 

A threat within the device is also presented in [9], which 
consists in studying the case of a malicious device inserted in 

the JTAG daisy-chain. If a malicious device is implemented 
within the system, this one can capture sensitive data of other 
devices connected to the same daisy-chain, such as secret 
keys, configuration files or firmware sent through the JTAG 
interface. 

Several countermeasures have been proposed to cope with 
these attacks. An industrial practice involves blowing fuses to 
disconnect the scan chains after manufacturing test. Another 
countermeasure is based on the Built-In Self-Test (BIST) [10]. 
This DfT approach limits the external control and observation 
on the scan chains, preventing scan attacks. The application of 
this technique is interesting on crypto-processors because they 
are generally easily testable with pseudo-random data 
[11][12]. However, these solutions compromise diagnostics, 
debugging or maintenance in the field. 

Other countermeasures are based on test locking 
mechanisms. The so-called secure test wrappers guarantee 
that only authorized users can unlock the test access with a 
password [13] or through a secure protocol [14][15]. In 
addition to the area and test time overhead introduced with 
these solutions, a key management is required to share the test 
session keys with authorized users. These countermeasures 
rely on secure test interface to prevent any attack through IC 
ports but do not target malicious devices in the system. 

Other architectures have been explored to hide the scan 
chain architecture by means of combinational or sequential 
functions. In [16], the scan chain is dynamically obfuscated 
with a Linear Feedback Shift Register (LFSR) and XOR gates 
inserted within the scan chains. The tester has to know the 
specific test procedure in order to scan-in the desired test data 
and observe readable scanned-out data. This solution impacts 
the design flow since the scan chains have to be replaced by 
the obfuscated ones at core level. In addition, this 
countermeasure is based on obfuscation, thus it relies on the 
assumption that the attacker has no way to get information on 
the scan chain implementation. Obfuscation is not considered 
as strong as encryption according to the Kerckhoff’s doctrine.  

A last family of protections relies on test communication 
encryption, which ensures the confidentiality of the 
exchanged messages between the circuit and the tester. The 
encryption provides protection against unauthorized users 
who want to communicate with the protected circuit, and 
attackers trying to intercept the communication. The 
encryption can be performed either with block ciphers or with 
stream ciphers. The choice must be driven by performance and 
security trade-offs. The preferred mechanism in the literature 
([9], [17]–[19]) for encrypting the scan network is stream 
ciphering, because block ciphers present a larger area and 
have to be adapted to cope with the serial nature of the 
exchanged data with the ATE (Automatic Test Equipment). 
Nevertheless, as shown in Section IV, stream ciphers may 
introduce vulnerabilities. For this reason, the implementation 
of dedicated countermeasure introduce a larger costs. 



In this paper, the main contribution is the evaluation of the 
two solutions: Scan Encryption based on Stream Cipher 
(SESC) not exposed to the state-of-the-art vulnerability, and 
Scan Encryption based on Block Cipher (SEBC). Security, 
implementation costs and impact on testability are presented 
and discussed.  

The remainder of this paper is organized as follows. 
Section II presents the threat model that the countermeasures 
are intended to prevent. Section III gives a brief presentation 
of block ciphers and stream ciphers. Section IV summarizes 
the state-of-the-art protection based on encryption. Section V 
presents the vulnerabilities of both ciphers, and shows how to 
exploit them on the scan attack countermeasures. Section VI 
presents the two secure countermeasures: one based on stream 
ciphers, the other based on block ciphers. Section VII 
evaluates and compares both solutions in terms of security, 
implementation costs, test procedures and integration in SoC 
designs. Finally, Section VIII concludes the paper.  

II. THREAT MODELS 

This section describes the various testing structures that 
can be exploited to carry out attacks. The threat model is not 
limited to attacks targeting internal scan chains. The focus of 
this paper covers general scan structures where data can be 
written and read through a scan network, along the IC supply 
chain. 

A. Testing structures 

Scan chains are inserted within circuits in order to control 
and observe the internal states via the Scan-In (SI) and Scan-
Out (SO) pins. Manufacturing test relies on probe-based 
testing, using dedicated test pads on the silicon die to access 
the scan chains. Increasing the number of internal scan chains 
enables parallel processing of test data. Hence, it produces 
significant test time savings. 

Chip packaging moves away the external test pins 
accessible during manufacturing. The IEEE Std. 1149.1 [1], 
called JTAG, allows the tester to access chips on a board and 
directly communicate with them in a serial way, in order to 
run debug functions or to program reconfigurable hardware. 
Instead of probing, the board-level JTAG allows an external 
tester to access the scan chains via a four-signal Test Access 
Port (TAP). 

In SoC design, cores are manufactured at the same time 
on a unique piece of silicon. Therefore, all cores must be 
scan-tested after the integration of the whole system. In order 
to save test time, parallel scan chains are preferred. The IEEE 
Std. 1500 [2] provides a very similar architecture to JTAG, 
with the same TAP. One of the main differences with respect 
to JTAG is that the test infrastructure may include optional 
parallel test pins to access multiple scan chains of the internal 
cores. As a consequence, test time is drastically reduced. 

Fig. 1 shows a SoC with two cores, equipped with IEEE 
1500 test wrappers, namely Core 1 and Core 2. A 5-bit test 
bus enables parallel testing of these two cores with parallel 
access to their test I/Os (three-pin interface in Core 1 and 
two-pin interface in Core 2). Note that Core 2 is further 
equipped with decompressor/compressor devices enabling 
the delivery and the collection of test data to/from its three 
internal scan chains through only two pins. 

In addition to JTAG and IEEE 1500, a recent standard has 
been set up to deal with the important number of embedded 
instruments. These instruments are used to control different 
pieces of hardware within a chip, such as temperature 
monitors (used to set a temperature sensor), or a memory 
BIST engine (used to control the self-testing of a memory). 
The IEEE Std. 1687 [3], called IJTAG, provides access to 
these instruments through a Reconfigurable Scan Network 
(RSN). It defines the Segment Insertion Bit (SIB) that 
dynamically configures the IJTAG RSN. Selecting one SIB 
activates an RSN segment. As a consequence, the 
instrument(s) on that specific segment of the scan path is 
activated. Conversely, de-selecting the SIB deactivates that 
portion of the RSN and renders the instruments on that 
segment inaccessible. In Fig. 1, one SIB is used to 
activate/deactivate a segment composed of two instruments 
(Instrument 1 and Instrument 2).  

We use the generic test infrastructure depicted in Fig. 1 to 
further define the threat model. This test structure combines 
on-core scan chains, a JTAG interface, IEEE 1500 wrappers 
and an IJTAG SIB. Everything is integrated inside the same 
SoC. An external tester can access the test structures of the 
cores via the JTAG interface. All the cores and instruments 
are connected together through a test daisy-chain. The scan 
chains of Core 1 and Core 2 are accessible through the IEEE 
1500 test wrappers. The two instruments are accessible 
through the IJTAG RSN. The scan chains of the AES IP and 
of Core 3 are directly accessible via the test daisy-chain.  

B. Possible attacks through the scan network 

The controllability and the observability offered by the 
scan network can be exploited to steal critical information or 
to disturb the system operations. For instance, an external 
attacker can discover the secret key of a crypto-processor (e.g. 
the AES IP in Fig. 1), or steal information on an IP design (e.g. 
Core 1 in Fig. 1). The only requirement to perform such 
attacks is the free access to the test interface. Another threat 
can come from internal components. For instance, cores 
provided by untrusted third-parties, inserted in the system and 
connected to the test daisy-chain (e.g. Core 3 in Fig. 1) can 
represent a threat. 

1) Scan attacks 
The first scan attack on an AES co-processor has been 

described in [4]. Its objective is to retrieve the encryption 
secret key. AES executes several rounds of operations (e.g. 
substitutions and permutations) resulting on confusion and 
diffusion of the plaintext data on the ciphertext. The scan 
attack targets the result of the first round, when data stored 

 
Fig. 1 Test infrastructure in a SoC: Core 1-2 with IEEE 1500 wrappers, 

an IJTAG SIB for including/excluding instruments 1-2, TAP 

controllers for system and core management.  

 

 
 



into the round register are partially encrypted. The attack 
procedure consists at first in switching the circuit to test mode 
after the first round. After that, the partially encrypted result, 
stored in the round register, is scanned out. The attacker 
carries out the differential scan attack by applying plaintext 
pairs on the AES inputs, and then calculating the Hamming 
distance between the two results. According to the Hamming 
distance value, the attacker can identify with certainty one key 
byte. The attack strategy is thus to try different plaintext pairs 
until the difference between two intermediate results permits 
the attacker to determine a key byte. The attacker repeats these 
steps for every key byte, in order to retrieve the whole key. In 
average, 512 plaintexts allow the attacker to retrieve the 128-
bit AES key. 

The described scan attack deals with a single scan chain. 
However, the use of advanced DfT structures, such as multiple 
scan chains, on-chip test data decompression, scan response 
compaction, X-masking and partial scan, has been widely 
adopted. When advanced DfT approaches are adopted, the 
entire round register of the crypto-processor is not necessarily 
directly observable at scan output. This makes the execution 
of the scan attack, as presented in [4], very difficult. Improved 
scan attacks have thus been proposed in [5] and [6] that deal 
with this issue. 

 In [7], a test-mode-only attack has been proposed in order 
to cope with the chosen plaintext strategy described in [4]. In 
this attack, plaintexts are applied by scanned-in bit streams. 
The major challenge in this attack is to figure out which scan 
flip-flop corresponds to which input bit of the AES. Once the 
attacker has this knowledge, he or she proceeds, as in [5] and 
[6], without switching from test mode to normal mode. This 
permits to circumvent simple countermeasures, such as 
resetting the round register when the circuit switches from 
normal mode to test mode. However, this attack assumes that 
the key used for encryption in test mode is the same as in 
normal mode.  

2) Design analysis using scan side channel 
The scan network can also be used to obtain some 

information on the sequential and combinational functions of 
a design. In the studied threat model, let us consider that Core 
1 in Fig. 1 is an IP core that holds secret information about its 
design. The direct access to the internal registers of the IP core 
allows an attacker to analyse the logic structures of the design. 
He or she can shift desired data in the scan network in order 
to analyse the resulting outputs. Therefore, the exploitation of 
the scan network provides information on the design, which 
helps to reverse engineer the IP cores. 

3) Malicious IP inserted in the test daisy-chain 
In the two previously presented threats, the attacker is 

external to the chip and gets benefit from the controllability 
and the observability offered by the test infrastructure. 
Another potential threat is the introduction of a malicious 
element in the integrated system or in the board. The malicious 
IP core may be able to spy and modify the test communication. 
This threat is further described in [9], where the depicted 
scenario involves several devices connected to the same JTAG 
network. This threat can be directly extended to scan chains 
and other test standard networks. 

Let us consider a malicious IP core inserted in a test daisy-
chain, for instance Core 3 in Fig. 1. This core may steal 
confidential data sent by the user through the test interface. 
For example, when the device is configured, the malicious IP 
core can intercept the critical configuration data (e.g. the 
firmware of a microprocessor).  The malicious core may also 
modify the data exchanged between a target core and the 
tester, in order to force the device into an illegal behavior, or 
to send fake test responses to the tester. This can prevent the 
tester from detecting possible malfunctions in the circuit, 
leading to an unexpected system failure. 

C. Threats throughout the IC supply chain 

Mentioned threats can be present at every stage of the IC 
supply chain. Fig. 2 presents the actors of the semiconductor 
supply chain and the threats they represent, based on the 
testing procedures that are performed at each stage.  

The first actor is the IC designer who is in charge of the 
DfT (i.e. scan chains definition, test standard interfaces, test 
pattern generation). At this level, the circuit is not yet 
fabricated, therefore no threat is considered. During the 
generation of the IC layout, several third-parties IP cores can 
be inserted into the design, representing a potential target for 
attackers. 

After the definition of the circuit layout, the design is sent 
to a foundry in order to produce several IC samples. Before 
wafer slicing, all dies are independently tested, in series or in 
parallel, depending on the available ATE. No threat is 
considered at this stage. The foundry is regarded as 
trustworthy and the potential malicious cores are not able to 
carry out attacks from this stage. Scan attacks on crypto-cores 
would be useless at this stage, because the attacker could only 
steal the key used during manufacturing test. The key used in 
mission mode is configured at a later stage.  

In the assembly stage the circuit is packaged. When the 
SoC is mounted on the board, the considered threats concern 

 
Fig. 2 IC supply chain with threats of the different actors using the test facilities 



the IP cores (e.g. Core 1 in Fig.1, susceptible target of reverse 
engineering), and internal malicious cores (e.g. Core 3 in 
Fig.1) inserted in the scan network at system level. 
Concerning scan attacks, the key of the crypto-core is still the 
test key, which does not represent a meaningful secret to steal.  

The next stage consists in mounting the IC on the board by 
the Original Equipment Manufacturer (OEM). The OEM 
performs the test of the IC and sets its configuration. The 
configuration goes through loading the bootloader and the 
firmware in the memory, configuring the crypto-processor 
with the key used in mission mode and configuring the 
microprocessors. The threats at this stage are the same as 
during the assembly stage. The secret key of the crypto-core 
is configured by the OEM, therefore scan attacks do not 
represent a threat at this stage.  

The final stage sees the device owned by the final user. 
The test interface of the device can be used to debug the 
system or to perform in-field maintenance. All the studied 
attacks represent a threat at this stage. A malicious user can 
exploit the scan chains to steal the secret key configured by 
the OEM. 

III. CRYPTOGRAPHIC PRIMITIVES FOR ENCRYPTION 

For the sake of completeness, we provide in this section a 
brief reminder about the cryptographic primitives, called 
ciphers, which underlie the encryption techniques discussed 
in the paper. We focus on symmetric ciphers since their 
operations (same key used for decryption/encryption) fit with 
the encryption of the test communication. Moreover, 
symmetric ciphers propose a lower cost in terms of area and 
computation time than asymmetric ciphers. 

 First, we recap the rationale of symmetric data 
encryption. We then provide a brief introduction on block and 
stream ciphers in order to set the terminology and highlight 
the key features that are needed to appreciate the 
vulnerabilities explained in Section V. 

In general, a cipher allows the sender to transform an 
input message m (plaintext) in a ciphered version c using a 
secret key k. The receiver needs to be able to rebuild m from 
c upon knowledge of the same k (or derived from k).  

A cipher is composed of two functions: E, called 
encryption function, and D, called decryption function, such 
that: 
- The encryption algorithm takes as input the message m and 

the secret key k, and outputs a ciphertext c, so that 
𝐸(𝑘, 𝑚) = 𝑐. 

- The decryption algorithm takes as input the ciphertext c and 
the secret key k, and outputs the plaintext m, so that 
𝐷(𝑘, 𝑐) = 𝑚. 

The encryption of a message followed by the decryption 
of the correspondent ciphertext must result in the initial 

message, i.e. 𝐷(𝑘, 𝐸(𝑘, 𝑚)) = 𝑚. Ciphers that are used for 

providing confidentiality in the test infrastructures are stream 
ciphers and block ciphers. 

The main difference between stream and block ciphers 
relies on the size of the data that are processed in each 
encryption. Stream ciphers encrypt one bit at a time from a 
bitstream; this results in the encrypted message having a bit-
to-bit correspondence with the plaintext message. 
Differently, block ciphers take as input an n-bit block of the 

plaintext, which is encrypted in an n-bit block ciphertext; in 
this case, the properties of the plaintext are dispersed on the 
whole n bits of the ciphertext. 

A. Stream ciphers 

Stream ciphers are based on a theoretical cipher, called 
One Time Pad (OTP). In the OTP, the secret key must be as 
long as the message m. The encryption function is defined as 
𝐸(𝑘, 𝑚) = 𝑚⨁𝑘, and the decryption function as 𝐷(𝑘, 𝑐) =
𝑐⨁𝑘. If k is perfectly random (i.e. according to the uniform 
distribution), the OTP has perfect secrecy. This means that 
the produced ciphertext is indistinguishable from a random 
sequence (this is due to the properties of the XOR operator). 
In this case, it is impossible for an attacker that intercepts the 
ciphertext to derive any information neither on the message 
nor on the key. However, from a practical point of view, the 
OTP is not implementable because of the key length.  

Stream ciphers are an implementation of the OTP. Instead 
of XORing a random key 𝑘 as long as the plaintext, a Pseudo-
Random Generator (PRG) generates a pseudo-random 
sequence of bits called keystream. The PRG takes as input a 
value 𝑘, called seed of the stream cipher, and outputs the 
keystream 𝑆(𝑘). The encryption and decryption functions are 
thus defined as 𝐸(𝑘, 𝑚) = 𝑚⨁𝑆(𝑘) and 𝐷(𝑘, 𝑐) = 𝑐⨁𝑆(𝑘). 

As far as the PRG produces a keystream that is 
unpredictable, the resulting stream cipher is considered to be 
secure. As shown in Section V, it is also important that a 
given keystream is not used twice. 

Because of its low cost implementation, the TRIVIUM 
[20] stream cipher is widely used in the context of scan chain 
protection. It is based on a Non-Linear Feedback Shift 
Register (NLFSR) used as PRG. The seed of the TRIVIUM 
PRG is made by an 80-bit secret key K, and an 80-bit 
Initialization Value (IV), which is publicly known. The 
generated keystream is denoted as 𝑆(𝐾, 𝐼𝑉). 

B. Block ciphers 

Block ciphers are based on mathematical objects called 
Pseudo Random Permutations (PRP). They are invertible 
functions that take as input an n-bit value m and a secret key 
k, and output an n-bit value c. A PRP is considered secure if, 
fixed with a key k, the resulting function is indistinguishable 
from a random bijective function on n-bit values. 

Block ciphers implement a secure PRP. They are made of 
an encryption function that is able to encrypt a plaintext block 
into a ciphertext block using a secret key; and a decryption 
function that performs the inverse operation and retrieve the 
plaintext block from the ciphertext. 

The most used block cipher is the AES. Other algorithms 
have been proposed to be more lightweight, i.e. with a lower 
cost in terms of area and power consumption, such as 
PRESENT [21] or SKINNY [22]. 

IV. STATE-OF-THE-ART COUNTERMEASURES BASED ON 

TEST COMMUNICATION ENCRYPTION 

Many solutions have been proposed in order to guarantee 
the confidentiality of communications within test 
infrastructures. Solutions proposed so far rely on a modified 
interface of the test infrastructure that combines both test data 
transmission and encryption. Fig. 3 presents the core scheme 
of countermeasures based on test communication encryption. 



Test data is first encrypted off-chip and stored into the test 
equipment. At test time, encrypted test vectors are sent to the 
target device, which decrypts them on-chip using the 
encryption key, and performs test operations. Before 
scanning out a test response, the data is encrypted on-chip by 
the device under test. The tester collects encrypted responses 
and decrypts them off-chip using the encryption key for 
further comparison with the expected data. Test data, vectors 
and responses, are thus kept confidential during the testing 
process. Without knowing the key, there is neither a 
possibility to control the device to a specific state nor the 
opportunities to observe the device state. Encrypted test data 
can thus flow safely through the entire system containing the 
device under test without risking to be read or written by an 
unauthorized third party. 

Since data in test infrastructures is transmitted serially, 
most of the proposed test data encryption schemes are based 
on stream ciphers. In [9], the authors propose the use of the 
TRIVIUM stream cipher in order to encrypt the content of the 
JTAG communication. The TRIVIUM stream cipher is 
seeded with an IV and a secret key. The IV is hardwired in the 
device with fuses that are programmed at manufacturing time. 
The secret key is derived from a challenge sent by the user; 
the challenge is hashed inside the device exploiting the 
initialization of the TRIVIUM cipher itself; the response of 
this hashing procedure is the secret key used for the 
encryption. An authorized user knows the response to any 
challenge while an unauthorized user, without the knowledge 
of the challenge/response pairs, cannot have the secret key 
used for test data encryption. 

To improve the integrity, the solution presented in [9] also 
proposes to use a HMAC signature appended to the test 
messages. While the TRIVIUM-based encryption prevents 
unauthorized user to write a chosen plaintext in the scan chain, 
the HMAC signature prevents any write operation missing the 
correct signature. 

The SESC technique proposed in [17] addresses the threat 
posed by untrustworthy cores in SoCs. It eliminates the risk of 
a malicious core sniffing test data. The countermeasure 
consists in encrypting test vectors using the TRIVIUM stream 
cipher. For that purpose, the tester generates a random key for 
the TRIVIUM cipher and shifts it to the core under test via a 
dedicated scan chain, non-visible from the other cores. The IV 
setup methodology is not described by the authors. 

Stream ciphers are also used on IJTAG reconfigurable 
scan networks (RSN) in [18]. A TRIVIUM cipher encrypts 
and decrypts the data shifted in and out of the RSN. The goal 
is to protect items under test against malicious embedded 
instruments sniffing the communication, and against external 
attackers who want to illegally use the embedded instruments. 
The authors deal with key and IV management by proposing a 
unique set of keys and IV for each device. The proposed 
implementation is either with fuses or Physical Unclonable 

Functions (PUFs). The authors do not further discuss the 
usage of key or IV values between two encryption sessions. 

All the SESC techniques that have been presented share a 
vulnerability that is based on the incorrect management of the 
stream cipher seed (the IV and the secret key). In the next 
section, we expose the foundation of this vulnerability, and we 
explain how to exploit it to attack the aforementioned 
solutions. 

V. CIPHERS LIMITATIONS AND VULNERABILITIES 

A. Stream cipher limitations 

Stream cipher security relies on the implementation of the 
PRG. Stream ciphers are secure as far as the PRG produces a 
keystream that is unpredictable. However, they have intrinsic 
weaknesses that facilitate attacks when they are used 
incorrectly. 

An important requirement for the security of the stream 
cipher is that the seed 𝑘  must be used only once. In the 
opposite case, a simple attack can be performed, which is 
called two-time pad. When the same seed k is used to encrypt 
two different messages m1 and m2, the two bitstreams are 
equal. Thus: 𝑐1 = 𝐸(𝑘, 𝑚1) = 𝑆(𝑘)⨁𝑚1  and 𝑐2 =
𝐸(𝑘, 𝑚2) = 𝑆(𝑘)⨁𝑚2. This leads to: 

𝑐1⨁𝑐2 = (𝑆(𝑘)⨁𝑚1)⨁(𝑆(𝑘)⨁𝑚2) = 𝑚1⨁𝑚2 

The attacker can exploit the XOR of two messages for a 
differential attack that consists in obtaining confidential 
information from the difference between messages.  

The two-time pad vulnerability can be exploited in the 
protections based on stream cipher presented in the literature 
so far. Let us consider a protection on an AES IP, such as the 
one implemented in the SoC in Fig. 1. The protection is based 
on the encryption of the test communication with a stream 
cipher whose secret key is unknown from the attacker. The 
responses of the AES core are thus encrypted with a stream 
cipher. We carry out the differential scan attack on the 
protected AES IP. 

The structure of the encryption with stream cipher is 
shown in Fig. 4. The stream cipher produces the keystream 
𝑆(𝐾, 𝐼𝑉) from a key 𝐾 and an initial value 𝐼𝑉, and encrypts 
the data XORing them with the keystream. Let us perform a 
differential scan attack and let 𝑅1  and 𝑅2  be the two 
responses. For response 𝑅1 , the stream cipher generates a 
keystream 𝑆(𝐾, 𝐼𝑉) from the key 𝐾 and the initial value 𝐼𝑉. 
Then, after a reset of the circuit, the second response 𝑅2 is 
encrypted with the same keystream 𝑆(𝐾, 𝐼𝑉). By applying the 
differential scan attack between the two encrypted responses, 
we obtain [𝑅1⨁𝑆(𝐾, 𝐼𝑉)]⨁[𝑅2⨁𝑆(𝐾, 𝐼𝑉)] = 𝑅1⨁𝑅2 , 
removing the stream cipher encryption. Therefore, an attacker 
can carry out the differential scan attack, even if the test 
responses are encrypted. 

 

 
Fig. 4 Two-time pad exploited for the differential scan attack  

 

 
Fig. 3 Basic scheme of the test communication encryption 



The countermeasures presented in [9], [17] and [18] are all 
exposed to this vulnerability because the IV and the key are 
not managed properly (i.e. they do not change between two 
encryptions). In [9], the IV is hard-coded with fuses, 
consequently being the same for each generated keystream. 
The key is the response to a challenge sent by the user. An 
attacker needs to send the same challenge in order to generate 
the same keystream to encrypt different test data. Concerning 
the solution proposed in [17], the key is set by the user. 
Therefore, an attacker can send the same key to the circuit in 
order to generate the same keystream for different 
encryptions. In [18], the authors evoke the use of a unique set 
of keys and IVs for each protected instrument in the IJTAG 
network. However, the re-use of the same sets of keys and IVs 
to encrypt test data shifted through a protected instrument 
leads to the presented vulnerability. 

The same seed must not be used more than once to avoid 
the generation of the same keystream for several encryptions. 
In order to protect against differential scan attacks, the stream 
cipher encryption needs to have different IVs and/or keys for 
each generated keystream.  

B. Block cipher limitations 

Block ciphers are stronger primitives than stream ciphers. 
Differently from stream ciphers, they allow to perform 
encryptions of different plaintexts with the same secret key, 
without lacking of security. Depending on the 
implementation mode, an attacker may have the ability to 
identify that identical plaintexts have been processed, or to 
provide correct ciphertexts for a given (potentially unknown) 
plaintext, without knowledge of the key. 

Several modes of implementation exist for the block 
ciphers in order to prevent replay attacks. The simplest one is 
the electronic codebook (ECB) mode, in which data are 
divided into blocks, which are then encrypted separately with 
the same key. Another mode is the cipher block chaining 
(CBC), in which the encryption of a plaintext block depends 
on both the key and all the ciphertext blocks that have been 
processed up to that point. 

The ECB implementation presents the limitation related 
to the identification by an attacker of identical ciphered 
blocks corresponding to the same plaintext block. 
Conversely, CBC mode does not allow an attacker to identify 
repeated data blocks in the encrypted communication since 
each encrypted block of data depends on the previous 
encryptions. 

Applied to the encryption of the test communication, 
differential scan attacks are ineffective no matter which block 
cipher encryption mode is employed. However, ECB mode 
gives the possibility for an attacker to identify bits of interest 
in the encrypted test data. Let assume that data scanned out 
from the device includes round-register bits of a crypto-
processor under test. Using two different plaintexts to 
exercise the crypto-processor will result in two different 
round-register values while other data stored in the scan chain 
will remain the same. After the encryption of the scanned out 
data in ECB mode, the data that did not change were 
encrypted in the same way (i.e. resulting in the same 
ciphertext). On the other hand, round register data, which 
differ due to the application of two different plaintexts, result 
in two different encrypted blocks, revealing the bits of 
interest in the scan chain. 

Consequently, the application on a crypto-processor of 
two different plaintexts could allow an attacker to identify the 
encrypted segments in the scan chain containing at least one 
bit of the round register of a crypto-processor under attack. In 
the case where such information could allow the attacker to 
carry out a new attack, CBC mode is a more secure 
implementation. 

VI. SCAN ENCRYPTION COUNTERMEASURES 

In this section, we first present a SESC [19] 
implementation that does not present the vulnerability of the 
state-of-the-art solutions discussed so far (see Section V.A). 
After that, we describe a SEBC [23] implementation using 
lightweight block ciphers. 

Fig. 5(a) details the basic scheme of both 
countermeasures. Two encryption schemes are implemented 
at the scan pins. The input scan ciphering process is in charge 
of processing the on-chip decryption of the test patterns, the 
output scan cipher is in charge of processing the on-chip 
encryption of the test responses before scan-out.  

Since the scan attack countermeasure relies on test data 
encryption, the process must also provide a scheme for test-
key management, i.e. a way to securely share the secret key 
between the test equipment and the device under test. 
Therefore, it requires the integration of a Secret Key 
Management Unit (SKMU) mechanism within the chip, in 
addition to the ciphers. 

 Assuming that a device must be protected from scan 
attacks because of embedded crypto-processors, we propose 
to re-use the secure storage containing all the secret keys and 
a SKMU, in order not to introduce issues about key 
management. The key is securely stored in the secure storage 
of the crypto-core, and managed with the SKMU in order to 
share the secret only with authorized users. The SKMU also 
performs the operations of key generation, activation and 
revocation during the life cycle of the scan encryption key. 

A. Stream-based scan encryption 

The present SESC countermeasure has been proposed in 
[19]. Compared to previous solutions, the IV value is 
randomly generated by a True Random Number Generator 
(TRNG) at every circuit reset, thus preventing two-time pad 
attacks. The use of a TRNG guarantees to not re-use the same 
IV for the keystream generation. Moreover, the TRNG 
guarantees the generation of a different IV across circuit 

  
Fig. 5 (a) Global architecture of the scan encryption countermeasures. 

(b) SESC implementation. (c) SEBC implementation. 

 
 



resets. This requirement precludes the possibility to employ 
other memory-based techniques (e.g. counters), which would 
impose to keep track of the already-used IVs. 

The on-chip generated random value IV has to be known 
by the external tester/debugger, in order to allow a correct 
communication between the tester and the device. To make 
the random IV value accessible, an extra test data register is 
used to store its value. A custom instruction, GETIV, is added 
to the JTAG instruction set in order to read the content of this 
register. The on-chip generated IV is then accessible to the 
external world. It is important to note that the security of the 
stream cipher is not jeopardized by making the IV public, 
since its key is still kept secret. 

The implementation is illustrated in Fig. 5(b). The stream 
cipher generates two keystreams: (i) 𝑆𝑖𝑛  for decrypting the 
test data shifted in the scan-in port; (ii) 𝑆𝑜𝑢𝑡 for encrypting 
the test data shifted out through the scan-out port. A single 
stream cipher does not generate the same keystream for both 
input decryption and output encryption in order to avoid any 
temporal correlation in the generated output bitstream. The 
generation of independent keystreams can be done in an 
efficient way for some standard stream ciphers. For instance, 
the TRIVIUM requires very few additional logic gates (i.e., 
3 AND gates and 11 XOR gates) to generate 2 streams at the 
same time compared to its standard implementation with a 
unique stream. 

The SESC operates in two phases: the initialization phase, 
followed by the encryption phase. In the initialization phase, 
the TRNG is firstly initialized in order to reach a sufficient 
entropy for generating a random value. Once the TRNG is 
initialized, the random bitstream is generated and stored in a 
shift register. The shift register content is then used as IV for 
the stream cipher. Finally, the stream cipher has a setup phase 
before becoming operational. During the whole initialization 
process, the scan chain is not accessible for an external user, 
since the TAP controller remains set on bypass mode. The 
initialization process is completed when the stream cipher 
setup ends. The stream cipher then generates the keystreams 
while the TAP controller is in the shift state.  

Beforehand, the external user has to execute the custom 
instruction GETIV. The execution of this instruction involves 
copying the content of the shift register into the specific test 
data register IV, and connecting the test data register to the 
TDI/TDO ports. This way, the user can shift out the IV value 
that has been produced by the TRNG. Once the user knows 
both the secret key and the IV, it is possible for him or her to 
encrypt off-chip the test patterns sent to the circuit, and to 
decrypt off-chip the test responses obtained from the circuit.  

B. Block-based scan encryption 

The present SEBC technique has been proposed in [23]. 
It relies on the test communication encryption with 
lightweight block ciphers. As shown in Fig. 5(c), two block 
ciphers are implemented, one for the decryption performed at 
scan input, another for the encryption performed at scan 
output. Each of these two ciphers have two round registers 
(R1 and R2) with two operating modes, parallel load and 
serial shift. The parallel load is used to perform the 
encryption/decryption operations, while the serial shift is 
used to acquire the data shifted through the scan chain. The 
two operating modes are performed in parallel in order not to 
waste test time. 

In this paper, differently from [23], we have implemented 
the block ciphers in CBC mode in order to propose a more 
secure implementation, as explained in Section V.B, 
regarding the possible identification of repeated test blocks in 
the test sequence. 

Test data are acquired serially by the scan chain. The use 
of block ciphers implies thus padding test data into the block 
size. The scan chain is filled/flushed segment by segment, 
each segment consisting of the block size on N bits. When the 
scan chain length is not a multiple of the block size, the 
solution still works, but each test pattern is padded with extra 
data. The tester has thus to complete the shift operations 
employing additional clock cycles, resulting in a test time 
overhead on each test pattern.  

Formally, by considering a circuit having 𝐹 = 𝑆𝑁 + 𝑅 
flip-flops, where F is the total number of flip-flops in the 
original circuit, S is the number of N-bit segments, and 𝑅 =
𝐹 𝑚𝑜𝑑 𝑁, the test time overhead 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 introduced by the 
SEBC on K test patterns is equal to: 

𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = {
2 ∙ 2𝑁 𝑖𝑓 𝑅 = 0

2 ∙ 2𝑁 + (𝑁 − 𝑅)(𝐾 + 1) 𝑖𝑓 𝑅 > 0
  (1) 

This test time overhead is evaluated in Section VII 
considering several circuits. The authors in [23] propose a 
solution not to waste the additional clock cycles used to 
synchronize the scan chain encryption scheme with constant 
segment length N. These 𝑁 − 𝑅  extra clock cycles are 
actually exploited for testability improvement without 
requiring any additional test time. Indeed, by adding 𝑁 − 𝑅 
dummy scan flip-flops to the original scan chain, these extra 
flip-flops can be used as observation points to the circuit 
logic. The observation points permit to improve the 
propagation of test responses to the scan flip-flops, without 
any impact on the test time. The goal of the observation point 
insertion is to reduce the test sequence length, i.e., reducing 
the number 𝐾 of test patterns for the same fault coverage. We 
present the results of the optimisation in Section VII showing 
that the additional flip-flops, used as observation points, can 
compensate the additional shift operations required by the 
SEBC. 

VII. EVALUATION AND COMPARISON 

In this section, we evaluate the scan encryption 
countermeasures in terms of security, implementation costs 
and integration in a SoC design. Moreover, we compare both 
SESC and SEBC implementations. 

A. Security analysis 

The scan encryption countermeasures are evaluated 
regarding the threat model described in Section II. Both 
solutions, SESC and SEBC, are considered. 

An attacker cannot carry out scan attacks, reverse 
engineer an IP using scan side channel, or exploit a malicious 
core inside the device, since the scan network is encrypted. 
The decryption performed on scanning-in test data prevents 
the setup of desired values in the scan chain without knowing 
the secret key. The encryption performed on the scanning-out 
test responses prevents the observation of the internal states 
of the circuit under test without firstly performing the 
decryption. The controller of the scan encryption enables the 
stream cipher as soon as a scan operation is required to 
prevent any clear bitstream from being inserted or observed.  



The SESC technique proposed in [19] does not present 
the same vulnerability as the previous countermeasures in [9], 
[17] and [18] concerning the differential scan attacks. The 
seed used to initialize the stream cipher is randomly 
generated, consequently encrypting with a different 
keystream at each reset of the circuit. Therefore, differential 
scan attacks are not possible. Concerning SEBC, it does not 
present the vulnerabilities of state-of-the-art SESC 
techniques, since the countermeasure is based on block 
ciphers, consequently being a more secure solution. 

Both SEBC and SESC prevent the exploitation of the scan 
chain that would help to reverse engineer an IP. In FPGA, the 
protection of the critical information on IP design contained 
in the bitstream is achieved through data encryption [24]. In 
the same manner as the proposed countermeasure, the 
decryption at scan input does not allow to analyse the IP 
behaviour after the scan-in of desired data. The encryption at 
scan output prevents scanning out critical data related to the 
IP design. 

In terms of security, SESC and SEBC both protect against 
the considered threat model. 

B. Implementation costs 

First, we compare the solutions evaluating the protection 
of some benchmarks, namely a triple-DES, a Pipelined 128-
bit AES, a Pipelined 256-bit AES, a 1024-bit RSA and a 
LEON3 processor. In these first experiments, all the circuits 
are equipped with a single scan chain. 

These benchmarks have been synthesized using a 65nm 
technology library, as well as the ciphers. We have 
implemented the SESC with the TRIVIUM stream cipher, 
and two block ciphers in counter mode (CTR): PRESENT 
[21] and AES [8]. Block ciphers in CTR mode operate like 
stream ciphers. For SEBC, we have used the PRESENT and 
the SKINNY [22] block ciphers in CBC mode. 

Concerning the SESC, we do not consider in the 
experimental results the cost of the TRNG. In the case where 
a TRNG is already implemented for the functional mode of 
the original circuit, the proposed countermeasure can exploit 
this TRNG during the test mode, implying no overhead for 

the random number generation. If a TRNG has to be 
implemented, the related area cost is evaluated to be 15,000 
GE from the Synopsys DesignWare IP library [25]. This 
values is equivalent to 31,200µm² on the 65nm technology 
library adopted for the experiments. 

1) Area and test time overheads  
Area overheads are reported in Tab. 1 for both SEBC and 

SESC solutions. It must be noted that the SEBC requires the 
implementation of two ciphers, one for decrypting input test 
patterns, the other one for encrypting test responses. The 
SESC requires the implementation of only one cipher to 
deliver two keystreams. The overhead is to be compared with 
the original circuit under test. As it can be seen, both solutions 
are expensive in terms of area, making these solutions 
suitable to large designs only. Furthermore, in our 
experiments, we have not considered the key management, 
using the one adopted in the benchmark under test. 
Furthermore, this solution is particularly adequate when at 
least one crypto-core is implemented in the circuit under test. 

Concerning test time, we consider for each IP core the test 
sequence for detecting stuck-at faults, obtained with an 
ATPG (Automatic Test Pattern Generator). Tab. 1 reports the 
test time overhead for the scan encryption countermeasures. 
The test time overhead for SESC is due to the initialization 
phase: the TRNG initialization, the shift of the random IV, 
and the stream cipher setup. Without considering the TRNG 
initialization, we have respectively 138, 95 and 1232 clock 
cycles for AES-128 CTR, PRESENT-128 CTR, and 
TRIVIUM. In any case, they represent a marginal cost. 

For SEBC, every pattern has to be padded in such a way 
that its total length is a multiple of the block size of the cipher, 
i.e. 64 bits in the case of PRESENT and SKINNY. This 
induces a test time overhead for each pattern. This overhead 
can be reduced thanks to the optimization presented in 
Section VI.B. The DfT tool Tetramax is used for the selection 
of observation points in the circuit logic and for test pattern 
generation. We have constrained the tool to use only the 𝑁 −
𝑅 extra flip-flops for testability improvement i.e. for the scan 
chain length to be a multiple of 64. After selection, 
observation points drive extra XOR trees ending on the 

Original circuit 

Triple-DES Pipelined AES-128 Pipelined AES-256 RSA 1024 LEON3 

Area  
(µm²) 

Test time* 
(clock cycles) 

Area  
(µm²) 

Test time* 
(clock cycles) 

Area  
(µm²) 

Test time* 
(clock cycles) 

Area  
(µm²) 

Test time* 
(clock cycles) 

Area  
(µm²) 

Test time* 
(clock cycles) 

187,494 687,101 367,926 1,944,877 669,193 4,559,845 468,415 39,405,239 1,902,095 11,612,051 

Scan 

Encryption 

Area  
(µm²)  Overhead (%) Overhead (%) Overhead (%) Overhead (%) Overhead (%) 

 SESC Error! Reference source not found. (without TRNG implementation) 

AES-128 

CTR 

48,118.20 
+25.66 +0.020 +13.08 +0.007 +7.19 +0.003 +10.27 +0.0004 +2.53 +0.001 

PRESENT-

128 CTR 

6,833.84 
+3.64 +0.014 +1.86 +0.005 +1.02 +0.002 +1.46 +0.0002 +0.36 +0.0008 

TRIVIUM  5,408.52 +2.88 +0.18 +1.47 +0.06 +0.81 +0.03 +1.15 +0.003 +0.28 +0.01 

SEBC Error! Reference source not found. 

PRESENT-
128 CBC 

10,915.84 
+5.82 +0.31 +2.97 +0.81 +1.63 +0.006 +2.33 +0.33 +0.57 +0.004 

Insertion of observation 

points on original circuit 
+5.95 +0.038** +3.48 +0.013**  +2.44 +0.001** +0.57 +0.002** 

SKINNY-64-
128 CBC 

10,172.24 
+5.43 +0.31 +2.76 +0.81 +1.52 +0.006 +2.17 +0.33 +0.53 +0.004 

Insertion of observation 

points on original circuit 
+5.55 +0.038** +3.27 +0.013**  +2.28 +0.001** +0.54 +0.002** 

Tab. 1 Area and test time cost of scan encryption with stream cipher and block cipher  

*: test time considered for a fault coverage of 100% on the original circuit, except for the LEON3 processor where the fault coverage reaches 70% 

**: test time overhead for the block-based solutions compared to the test time of the optimized circuit (obtained with the insertion of observation points) 

 

 

 
 



proposed extra flip-flops, thus allowing their observation at 
test time. For instance, the Triple-DES core has 
8808=137×64+40 flip-flops, implying an extra test time (64-
40=24) for the scan encryption technique to pad on 64-bit 
segments. By adding 24 scan flip-flops in the scan chain 
connected to observation points, the test time cost has an 
overhead of 0.038%, compared to 0.31% for the solution 
without the optimization. Tab. 1 presents the results of the 
optimization performed on the other circuits, except for the 
Pipelined AES-256, whose scan chain is a multiple of 64 
(12736=199×64 flip-flops). 

It is clear that SESC outperforms SEBC due to the data 
volume-dependant overhead of the last one. Except when the 
optimization of SEBC is applied on the original circuit, the 
test time overhead is reduced, representing a marginal cost. 

2) Testability evaluation 
The scan encryption permits to test the original circuit 

without reducing the test coverage, since the original test 
patterns are applied as they are. However, the architecture of 
the scan encryption solution must also be tested, without the 
help of scan chains that would expose the cipher to scan 
attacks. We propose to functionally test the cipher using test 
patterns dedicated to the circuit under test. 

The test of block ciphers, such as PRESENT, SKINNY 
and AES, is facilitated by the diffusion properties of the 
crypto-algorithms, as described in [11] and [12]. Stream 
ciphers based on shift registers, such as TRIVIUM, are also 
easily testable since all the states of the stream cipher are 
shifted out the circuit as keystream. Therefore, both ciphers 
easily propagate the possible errors to the circuit outputs 
when an encryption is performed. To validate the assumption, 
we have evaluated the test coverage on every studied cipher 
(TRIVIUM, PRESENT, SKINNY and AES) by applying the 
test sequence of the original circuits. At scan-input, test 
patterns are processed by the input scan cipher, and the test 
responses are processed by the output scan cipher. We have 
performed experiments with the test sequence of the 
Pipelined AES-256, Triple-DES, Pipelined AES-128, RSA 
1024 and LEON3 processor cores. In all cases, the fault 
coverage for stuck-at faults in the scan encryption is 100%. 
In other words, the ciphers are tested for free, with no 
additional test patterns compared to those used for testing the 
original circuit. 

Concerning the test procedure, as described in Section IV, 
the tester has to encrypt off-chip the test patterns and to 
decrypt off-chip the test responses. The off-chip decryption 
is performed in order to compare with the expected plaintext 
responses, but this computation is not always necessary 
depending on the choice between SEBC and SESC. In fact, 
expected test responses computed in simulation by the ATE 
can have unknown values (X-values), describing an unknown 
binary state in the test responses obtained on the real tested 
circuit. These unknown bits are then ignored during the 
comparison with the obtained test responses.  

Due to the confusion and diffusion properties of block 
cipher, the SEBC spreads the unknown bits in the entire 
encrypted test response. For this reason, the off-chip 
decryption for SEBC is mandatory in order to perform the 
comparison with the plaintext responses.  

In case of SESC, the unknown bits are at the same 
position in the plaintext responses as in the encrypted test 

responses, since the encryption operates bitwise. Therefore, 
the unknown bits can directly be ignored on the encrypted test 
responses, avoiding the need for the tester to decrypt every 
obtained test response from the circuit. The comparison is 
thus performed between the encrypted obtained responses 
and the encrypted expected ones. 

C. Integration in a SoC design 

The integration on the scan encryption countermeasures 
just consists in adding ciphers at the input and the output of 
the scan chain. In the case of SESC, it also implies some 
modifications on the JTAG test wrapper, but not on the core 
itself. Therefore, the solutions can be applied without 
modification on the protected core.  

Test wrappers of the cores composing a SoC are often 
connected in a test daisy-chain, as shown in Fig. 1. The serial 
input/output of the test interface provides access to the scan 
chains for all cores implemented in the SoC. When the scan 
encryption is implemented on one core, all the cores included 
in the test daisy-chain receive the encrypted data, providing 
protection against malicious cores. The stream cipher 
encryption operates bitwise on data, implying no issue on the 
integration of the SESC in a test daisy-chain. Contrarily, the 
block cipher encrypts blocks of data, implying to pad the test 
data to a multiple of the block size. The extra data used for 
padding is thus sent to the other cores in the test daisy-chain, 
resulting in possible issues during the test operations. 
Therefore, the designer has to be aware of the potential 
problems when the SEBC is implemented. A way to avoid 
the padding issue is to have a scan chain, whose length is 
multiple of the block size, resorting to observation points (see 
Section VI.B). However, the insertion of observation points 
implies the modification of the original circuit. It is thus not 
always possible to apply the optimization in the case of a non-
modifiable core. 

D. Extension to multiple scan chains 

Both SESC and SEBC solutions can be extended to 
protect multiple scan chain designs. The encryption of 
multiple scan chains has a cost in terms of area and power. 

The SESC can be directly adapted to multiple scan chains. 
The only limitation is the number of keystreams that the 
stream cipher is able to generate. Considering a circuit where 
multiple scan chains are accessible through L scan-inputs and 
L scan-outputs, as shown in Fig. 6, the stream cipher has to 
produce two L-bit keystreams. 

 
Fig. 6 Stream-based solution applied on multiple scan chains regardless 

of test compression 

 

 

 
 



The countermeasure can be applied regardless of the test 
compression technique. The proposed solution can also be 
applied when a test decompressor is implemented at scan-
input, and a test compressor at scan-output. The ATE 
generates compressed stimuli used to test the circuit under 
test. The ATE encrypts, by stream ciphering, these generated 
stimuli following the same test procedure as described before. 
The encrypted compressed stimuli are scanned in the circuit 
and decrypted with the keystreams generated for the scan-
inputs. The decrypted test stimuli are then applied to the test 
decompressor. The test responses are compressed before 
being encrypted on-chip with the keystreams generated for 
the scan-outputs. Finally, the ATE decrypts the compacted 
test responses in order to compare them with the expected 
ones.  

The number of possible keystreams depends on the used 
stream cipher. For instance, the TRIVIUM can compute up 
to 64 keystream bits in one clock cycle. Therefore, 32 parallel 
test data can be decrypted at scan-input and 32 parallel test 
data encrypted at scan-output. For block ciphers in CTR 
mode, this number is fixed by the ratio between the encrypted 
block size and the number of rounds for the crypto-algorithm 
(i.e. the number of clock cycles needed to encrypt a block). 
For PRESENT-128, the encryption of 64 bits is done in 31 
rounds. As a consequence, PRESENT is able to generate two 
bits of the keystream in one clock cycle. Thus, the solution 
with PRESENT CTR can only be applied on a single scan 
chain. Considering the AES-128 CTR, 128 bits are encrypted 
in 10 rounds. The stream cipher is therefore able to generate 
12 keystreams in one clock cycle, encrypting up to 6 scan 
chains. 

Apart from the limit on the number of keystreams, other 
perspectives can be considered to increase the number of scan 
chains to be encrypted. One of them is to run the stream 
cipher at higher frequency in order to increase its throughput. 
Due to the low combinational complexity of the stream 
cipher, the frequency increase is a potential solution. Another 
solution is to implement several stream ciphers even though 
a bigger area overhead needs to be tolerated. For both 
perspectives, the cost in power consumption increases also in 
the same way. 

Concerning the SEBC, the extension is not trivial and 
requires the implementation of a dedicated architectural 
solution, proposed in [23]. The solution consists in 
decrypting/encrypting whole scan slices at a faster frequency 
than the scan operations frequency. Scan slices are the set of 
scan flip-flops of the same rank within the scan chains.  

Typically, the scan operations are performed at low 
frequency to avoid the issues due to overconsumption and 

overheating within the circuit. This feature is exploited to 
encrypt/decrypt the data of the test slices at higher frequency, 
while shifting the test data in the chains at lower frequency. 
The considered block ciphers, PRESENT and SKINNY, can 
encrypt slices with length up to 64 bits, corresponding to their 
block size, at the cost of an increase of the power 
consumption. Beyond the encryption of 64 scan chains, 
additional block ciphers must be implemented.  

We present in Tab. 2 the experimental results of both 
SESC and SEBC proposed solutions applied on multiple scan 
chains. We consider a frequency of 10 MHz for the scan 
operations. In the following experiments, we use an 
estimation of the power consumed by the proposed solutions 
considering the implemented ciphers (AES-128 CTR and 
TRIVIUM for SECS, PRESENT and SKINNY for SEBC). 
The power consumption estimation is obtained after the 
synthesis of the scan encryption countermeasure at the 
frequency defined in Tab. 2. 

The stream cipher decrypts/encrypts test data at 10 MHz 
regardless of the number of scan chains (columns SESC, Tab. 
2), implying a marginal cost in power consumption (about 82 
µW for AES- 128 CTR and 35 µW for TRIVIUM). With 
block ciphers encryption (columns SEBC, Tab. 2), the cost in 
power consumption increases with the number of scan chains. 
For the encryption of four scan chains, the power 
consumption is already 2.5 times higher with block ciphers 
encryption compared to AES-128 CTR encryption (215.1 
µW vs 82.46 µW), and six times higher compared to 
TRIVIUM (215.1 µW vs 34.16 µW). The difference is even 
greater for the case of 32 scan chains: the TRIVIUM performs 
the scan encryption at 10 MHz, consuming 36.37 µW, while 
PRESENT and SKINNY operates at 330 MHz (2,365.8 µW) 
and 370 MHz (2,274.4 µW) respectively. However, the 
generation of several keystreams from the TRIVIUM to 
encrypt several scan chains has an area cost. To encrypt 32 
parallel scan chains, the area cost of SESC with TRIVIUM 
represents 9,999.60 µm², equivalent to the cost (10,727.92 
µm²) of SEBC with SKINNY. 

E. Summary 

Overall, the scan encryption ensures protection against 
scan attacks, against reverse engineering through scan chains, 
and can be used to prevent attacks from scan IOs as well as 
from malicious cores [9]. An attacker is not able to set the 
circuit in a desired state, nor to observe internal states of the 
circuit without knowing the encryption secret key. Moreover, 
the presented SESC does not show the two-time pad 
vulnerability, making it more secure than the state-of-the-art 
SESC techniques.  

Scan 

encryption 

SESC (without TRNG implementation) Error! Reference 

source not found.  
SEBC Error! Reference source not found. 

Ciphers AES-128 CTR TRIVIUM PRESENT-128 CBC SKINNY-64-128 CBC 

# scan 

chains 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

1 48,118.20 81.68 10 5,408.52 34.01 10 10,915.96 71.69 10 10,171.52 61.47 10 

2 48,128.60 81.70 10 5,553.60 34.02 10 12,134.84 143.4 20 11,390.4 130.6 21.25 

4 48,243.00 82.46 10 5,851.04 34.16 10 11,909.16 215.1 30 11,164.72 199.8 32.5 

8   10 6,453.20 34.55 10 11,789.56 358.5 50 11,045.12 338.1 55 

16   10 7,615.92 35.14 10 11,777.08 645.2 90 11,032.64 614.7 100 

32   10 9,999.60 36.37 10 11,472.36 1,218.7 170 10,727.92 1,167.9 190 

64       11,440.12 2,365.8 330 10,695.68 2,274.4 370 

Tab. 2 Scan encryption with stream cipher and block cipher applied to multiple scan chains designs 

 

 
 



The establishment of the encrypted test communication 
between an authorized user and the secure circuit is possible 
with the shared knowledge of the secret key. Consequently, 
the user with the possession of the secret key is automatically 
authenticated by the secure circuit. Only authorized users can 
set and read test data to/from the network. 

The proposed countermeasures also present advantages 
compared to existing scan attacks countermeasures. One of 
them is that it is still possible to perform in-field diagnosis 
and debug only for authorized users knowing the key, as 
opposed to the simple countermeasure consisting in 
disconnecting the test accesses. Another advantage is the 
possibility to reuse the key management unit of the system 
under test if already implemented in the circuit for the 
management of crypto-accelerators for instance. Previous 
countermeasures based on a secure protocol using 
cryptographic primitives, such as in [13]–[15], need to have 
a dedicated key management. 

Conversely to the Built-In Self-Test solutions which may 
reduce fault coverage, the scan encryption scheme does not 
impact the test coverage of the original circuit. Moreover, 
extra hardware for test data encryption is tested without extra 
delay. 

Tab. 3 summarizes the comparison between SESC and 
SEBC. In order to bring the best comparison possible, we 
give the pros and cons of the two solutions for 

implementations achieving the best performance in both 
cases. Regarding the experimental results, the SEBC is 
performed by SKINNY-64-128 in CBC mode, while the 
SESC is performed by TRIVIUM. The SEBC is evaluated for 
two cases: the solution being optimized or not with the 
insertion of test points in the original circuit in order to reduce 
the test time overhead. The SESC is also evaluated for two 
cases: the TRNG being already implemented or not. 

An advantage of the SESC is that the integration in test 
daisy-chains implies no issue compared to the SEBC. The 
optimization of the SEBC permits to avoid the integration 
issue, but it is then not applicable on a non-modifiable core.  

SESC has another advantage compared to SEBC 
concerning the off-chip decryption of the test responses. As 
shown in Section VII.B, SESC does not require the off-chip 
decryption of the test responses, while SEBC has to do it due 
to the confusion and diffusion properties of the block cipher.  

When a TRNG is already implemented in the device, 
another advantage of the SESC compared to the SEBC is the 
area and test time costs for single scan chains. However, in 
the case where a TRNG is not available in the device for the 
scan encryption, the SEBC can be preferred to the SESC due 
to the important area cost of the TRNG.  

Concerning the implementation on multiple scan chains, 
the SESC has a lower cost in terms of area and power. 

Scan encryption 

SEBC (SKINNY-64-128 CBC) SESC (TRIVUM) 

Test points insertion for test time optimization: TRNG already implemented: 

Not optimized Optimized Yes No 

Security 

Scan attacks Error! 

Reference source not 

found.–Error! Reference 

source not found.  

Protected Protected (two times pad not possible) 

Reverse-engineering through 
scan side channel 

Protected Protected 

Malicious core Error! 

Reference source not 

found.  

Protected Protected 

Global features 

In-field diagnosis & debug Yes Yes 

Key management Re-use the key management already implemented Re-use the key management already implemented 

Integration 

Integration in test daisy 

chain 

Possible issue with the 

padding of test data 
No issue No issue 

Appl. on non-modifiable core Yes No Yes 

Test coverage 

Original circuit No impact No impact 

Secure test infrastructure Functional test with test patterns of the original circuit Functional test with test patterns of the original circuit 

Off-chip decryption of the 

test responses 
Required Not required 

Costs for single scan chain 

Area 10,171.52 µm² 
+ Insertion of test points 

(< 500 µm²) 
5,408.52 µm² 

+ ~ 31,200 µm² for 

TRNG 

Test time 

Depends on the scan 

length 

(multiple or not of the 
block size) 

Marginal cost 

(256 clocks cycles) 

Clock cycles required for 
the initialization phase 

(1 232 clock cycles) 

+ time to initialize the 

TRNG 

Cost for multiple scan chains 

Area ~ 11,000 µm² 
From 5,553.60 µm² to 

9,999.60 µm² 

+ ~ 31,200 µm² for 

TRNG 

Power From 130.6 µW to 2,274.4 µW ~ 35 µW 
+ power consumption of 

the TRNG 

Limit on the number of chains 

processed by one cipher 
From 2 to 64 scan chains From 2 to 32 scan chains 

Tab. 3 Comparison between scan encryption with stream cipher and block cipher 



However, the limit on the number of chains processed by one 
cipher is lower, from 2 to 32 scan chains, compared to the 
limit for the SEBC which is from 2 to 64 scan chains.  

Therefore, the choice of the SESC or SEBC depends on 
the original circuit where the protection is implemented: if a 
TRNG is already set up, if the scan chain length is a multiple 
of the encrypted block size, if the original circuit is 
modifiable in order to insert observation points. The number 
of scan chains to encrypt must also be taken into account. 

VIII. CONCLUSION 

Access to the scan network can be achieved by the test 
access ports on the circuit boundary, or by using malicious 
cores connected to the test daisy-chain. The access to the scan 
network can be exploited by an attacker to carry out scan 
attacks and reverse engineer an IP design. To prevent these 
threats, a solution consists in encrypting the scan network 
using stream or block encryption schemes. 

Several solutions have been proposed based on stream 
ciphers. However, they present the weakness of using several 
times the same keystream to encrypt different test data. This 
paper details a solution based on stream cipher encryption 
without this vulnerability. 

The paper also details another approach, which is based 
on lightweight block ciphers. The scan content is encrypted 
in that case with a secret key developed for the current 
activity, and shared with the authorized users using the key 
management already present in the circuit. 

We have also drawn a comparison between both scan 
encryption solutions. On the basis of the proposed 
comparison, it is not possible to designate an absolutely 
preferred technique. Many factors must be evaluated by the 
designer in order to make an optimal choice. For instance, the 
availability of a TRNG in the circuit likely moves the 
designer choice towards the SESC technique. On the other 
hand, the multiple scan chains scenario could make the 
designer prefer the SEBC technique, on the grounds of major 
parallelization capabilities. 
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