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Abstract

In this study, we present a new model describing the mechanical behavior of the skeletal

muscle during isometric contraction. This model is based on a former Hill-inspired model

detailing the electromechanical behavior of the muscle based on the Huxley formulation.

However, in this new multiscale model the muscle is represented at the Motor Unit (MU)

scale. The proposed model is driven by a physiological input describing the firing moments

of the activated MUs. Definition of both voluntary and evoked MU recruitment schemes are

described, enabling the study of both contractions in isometric conditions. During this type of

contraction, there is no movement of the joints and the tendon-muscle complex remains at the

same length. Moreover, some well-established macroscopic relationships such as force-length

or force-velocity properties are considered. A comparison with a twitch model using the same

input definition is provided with both recruitment schemes exhibiting limitations of twitch

type models. Finally, the proposed model is validated with a comparison between simulated

and recorded force profiles following eight electrical stimulation in isometric conditions. The

simulated muscle force was generated to mimic the one recorded from the quadriceps of a

patient implanted with a functional electrical stimulation neuroprosthesis. This validation

demonstrates the ability of the proposed model to reproduce realistically the skeletal muscle

contractions and to take into account subject-specific parameters.
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Recruitment scheme

1. Introduction

Ever since the mid 60s, researchers have attempted to better understand the mechanisms

behind human body motion. They found that the movement is the result of several inter-

actions between complex mechanisms in the body [1]. At the macroscopic scale, the muscle

contraction is in charge of the movement genesis through the joints. In fact, during con-

traction, the muscle length shortens and thus it stretches the connected tendons resulting in

movement of bones around a specific joint.

Several studies have been focused on the understanding of the activation [2, 3, 4] and

the mechanical phenomena of the muscle contraction [5, 6]. Due to the complex feasibility

of studying human muscles in vivo, the alternative would be to use realistic mathematical

models. These models allow us a better understanding of the motor control and the different

mechanisms of muscle contraction. Moreover, by controlling all the parameters of the model,

users can precisely investigate the impacts of these parameters on the outputs and can, thus,

be able to simulate physiological or pathological conditions.

Different approches of modeling of muscle contraction have been proposed and used in

the litterature [5, 6, 7, 8, 9, 10, 11]. These models can be divided into different types based

on the scale and the approach considered. First we have the phenomenological macroscopic

models that are governed by Hill-Maxwell or Hill-Voigt models, inherited from the classic

Hill model [5], which is generally credited as the first model describing the mechanical be-

havior of a muscle contraction. The Hill model describes the muscle as an active contractile

component with series and parallel passive elastic components. Furthermore, the author con-

sidered the muscle as a visco-elastic material and thus, described the well-known force/length

relationship of the muscle. However, this systemic macroscopic model is often described as

a "black-box" driven by fitted parameters such as the muscle activation to fit the measured

force. Some improved versions integrated the pennation angle of the muscle fibers with

the tendon [7] and macroscopic features. Secondly, in addition to these rheological models,

some biochemical microscopic models were developed. The most widely used is the model

proposed by Huxley [6] which considered the muscle at the sarcomere scale. Huxley and

2



al. proposed an interpretation of the cross-bridges dynamic through mathematical equations

and attempted to determine the muscle force from the rates of attachment and detachment

of these cross-bridges. From these two classes of muscle models, Zahalak proposed a model

that bridges together the microscopic and macroscopic models [8]. From the cross-bridges

model, the author computed the muscle force through mathematical approximation with the

distribution-moment technique [8, 10]. Finally, we have to mention the twitch type model

introduced by Coggshall and al. [12], where the authors only described the muscle force as

the sum of mechanical activities resulting from the convolution operation between the firing

times of the active Motor Units (MUs) and a function defining the MU twitch. This type of

model does not consider the induced muscle deformation or the underlying processes arising

between the muscle activation and the force generation.

All these models provided some information about the muscle contraction and brought

crucial knowledge about the muscle force generation. However, these models, in the exception

of the twitch type ones, suffers from inaccuracies mainly concerning the muscle activation.

Hill-type models use an identified parameter input enclosed in [0;1] interval representing the

activation percentage of the muscle. This parameter has no physiological meaning and is

hard to experimentally estimate. Other models attempted to give a sense to this activa-

tion parameter through the Functional Electrical Stimulation (FES) [10, 4, 13] where the

parameter represented the percentage of muscle fiber recruited during stimulation. Yet, the

recruitment pattern induced by FES does not follow voluntary contraction [13]. It reverses

the natural sequence since larger MUs are recruited the first and smaller the last. Also, the

FES synchronizes the firing times of all recruited MUs whereas the voluntary recruitment

pattern is asynchronous. Riener and al. [13] attempted to keep the muscle representation at

the MU scale. Riener and al. tried to describe the muscle force from the summation of all

active MUs. They described the depolarization of the T-Tubule membrane dynamics induced

by the neural activation as well as the calcium release from the sarcoplasmic reticulum in

order to compute the MUs twitch. This model was the first twitch type model describing

physiological processes. Recently, another type of model combining the microscopic sarcom-

ere model of Huxley [6] with the distribution moment theory of Zahalak [8] was proposed

[10]. El Makssoud and al. defined a macroscopic muscle model [10] based on the sarcomere
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model formalism and avoided the costly computation time at the sarcomere scale. From the

description of the muscle with one contractile element, only one type of fiber can constitute

the muscle model. Moreover, the authors also proposed a visco-elastic model describing the

muscle-tendon contraction during isometric contraction. This model was validated on both

animal and human subjects [10, 4].

The major increment of the proposed model is to drive the mechanical muscle response

with the voluntary MU spatiotemporal recruitment scheme using specific Hill inspired ele-

ments at the MU scale including fiber population. In [10], the proposed mechanical model

represented the whole muscle response with an unspecific fiber stack. Furthermore, the

model was driven by a single input (FES input). This mechanical modeling at the MU scale

combining Hill-type representations and microscopic sarcomere model does not exist, to our

knowledge, in the literature. Moreover, using this activation definition was never imple-

mented in Hill-type models where the sEMG signal envelope was often used. This classical

activation definition suffers from a lack of representativeness of the underlying neural intent

during the contraction. In our proposed model, the muscle is represented at the MU scale

where the MU contractile elements are repeated in parallel to constitute the muscle. Firstly,

we detail the different models used for the simulation (see sections 2.1, 2.2 and 2.3). Then,

some results showing the efficiency of our model are presented and discussed (see section 3).

Finally, we conclude by emphasizing the main contribution of this study and the possible

perspectives.

2. Materials and methods

As introduced, the main purpose of this study is to propose a mechanical multiscale

modeling of the skeletal muscle driven by voluntary neural control. This model would be

a significant improvement of the model presented above [5, 6, 8, 13, 10]. The underlying

purpose is also to provide a bio-reliable model which is based on physiological parameters

to get significant results that can help in a better description of the muscle contraction for

clinical purposes. Each MU will be modeled by one specific contractile element placed in

parallel to model the whole muscle. Thus, the proposed muscle model is divided into two

parts as presented in Fig. 1:
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• the first part represents the activation model of the muscle and gives a physiologic

meaning of the input of the mechanical model;

• the second part is the muscle mechanical model at the MU scale based on the distributed

moment technique inspired by [10].

Figure 1: Model block diagram. On the left, there is the input of the model corresponding to the recruitment

pattern describing the discharge instant of the recruited MUs. On the right, the mechanical model scheme,

determining the activation (αi) and calcium release (ui) of each MUs then, processes at the muscle scale in

order to determine the muscle force (Fc), the muscle stiffness (kc) and its deformation (εc).

The first challenge is to provide an activation model based on the firing instants of the

active MUs.

2.1. Motor Unit recruitment model

2.1.1. Voluntary recruitment

During contraction, MUs are recruited independently of others and in agreement with the

size principle [14]. Each MU is activated at a specific threshold depicted in the Fuglevand

model [15]. However, Kukulka and Clamann [16] have provided evidence that the distribution

of the recruitment threshold for larger proximal muscles, such as the Biceps Brachii, is less

skewed compared with the exponential distribution of other muscles. Therefore, we decided

to use the following equation from which is an extension of the Fuglevand model [17]:

RTEi =
(
a.i

N

)
ei
ln(RRa )

N (1)

where RTEi is the recruitment threshold for the ith MU, N is the total number of MU in

the muscle and a = 40 is a constant value describing the slope of the recruitment threshold

5



function [17]. It is also tuned by the recruitment range (RR= 88% [16]) which describes the

percentage of the Maximal Voluntary Contraction (MVC) when all MUs are recruited in the

muscle.

Each MU recruitment is regulated by a motoneuron firing rate (Fri) which increases

linearly or non-linearly with force level, from its minimal firing rate (Frmin) to its peak

firing rate (PFRi). In this model, for each MU, PFRi is taken inversely proportional to the

recruitment threshold for the linear increase of firing rate.

Fri(t) = gi (E(t)−RTEi) +Frmin, if E(t)≥RTEi (2)

gi = PFRi−Frmin
100%MVC −RTEi

PFRi = PFR1−PFRD
RTEi
RTEN

Where E(t) is the excitatory drive provided by the Central Nervous System. The firing

frequencies Frmin and PFR1 are fixed to 8 and 35 Hz, respectively [17]. PFRD is the peak

firing rate difference and is fixed to 15 Hz in this study. It accounts for the simulation of the

"onion skin" phenomenon observed in several experimental studies [18].

Moreover, the model also considers the MU type since it is well-known that most of the

skeletal muscles are composed of four types of fiber and thus, of MU:

• Slow or type I MUs (SMUs) that provide a low force with a slow contraction speed and

has a high resistance to fatigue;

• Fast Resistant or type IIa MUs (FRMUs) that provide an intermediate force, with fast

contraction speed and are resistant to fatigue;

• Fast Intermediate or type IIx MUs (FIMUs) that provide an intermediate force (more

than FRMU), with fast contraction speed and are less resistant to fatigue than FRMU;

• Fast Fatigable or type IIb MUs (FFMUs) that provide high force, with very fast con-

traction speed but are quickly fatigued.
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Figure 2: Example of simulated voluntary MU recruitment starting at 0.5s from 0% to 30% (at 1.0s) of

the Maximum Voluntary Contraction (MVC) for a muscle composed of 100 MUs with the following MUs

distribution type: 33% type I, 33% type IIa, 17% type IIx and 17% type IIb. Each point represents a firing

moment of the MU.

2.1.2. Evoked recruitment model

In addition to the voluntary recruitment, an evoked recruitment of the MUs simulating a

Neural Electrical Stimulation (NES) is also developed in this model. This type of recruitment

is often used in mechanical muscle study to exactly quantify the muscle activation parameter

[13, 10]. During a NES, the MUs are recruited synchronously with respect to the diameter

size of their motoneuron and the area of electrical spread. Larger motoneurons, representing

larger MU radius, are hired first in descending order [19]. The number of recruited MUs

mostly depends on the current intensity and the pulse width of the NES [2]. The number of

contracting MUs is bigger with a higher intensity and a longer pulse width. For this purpose,

we have used the same equation as in [4] that describes the recruitment, corresponding to

the recruited percentage of the muscle, (noted α) according to the pulse width.

α(pw) = c1

1 + e
c2

(
c3− pw

pwmax

) (3)

with pwmax as the maximal pulse width depending on the stimulator device. c1, c2 and

c3 are parameters that represent the plateau level, maximum slope and inflection point,

respectively. These parameters can be computed using an identification algorithm as in [4].
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This description ensures a monotonic increase of eq (3) assuring function α increase according

to the input pulse width pw. Moreover, this equation can be adapted considering the current

intensity. Function α is no longer a function of the pulse width but of the current intensity

giving:

α(i) = c1

1 + ec2(c3− i
imax ) (4)

where imax is the maximal current intensity depending on the stimulator.

Then, from the recruitment α representing the percentage of recruited fibers in the muscle,

we generated the corresponding evoked recruitment pattern (see Fig. 3). Since we know the

total number of fibers in the muscle and the number of fibers per MU from the anatomy

generated by [20], we can create the corresponding recruitment pattern of the NES.

Figure 3: Example of evoked recruitment where 32.4% of the muscle fibers are recruited for the same muscle

defined in Fig. 2.

2.2. Activation model

Previously, the mechanical model input was the percentage of recruited muscle fibers de-

termined with FES [10]. This input description cannot be applied for voluntary contractions

and thus, restricts the use of this model type. The purpose of this study is to simulate

accurate contractile behaviors of the muscle governed by a MU voluntary or evoked recruit-

ment pattern. We based our model development on physiological processes arising during

the contraction [13].
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Each MU type will have its own set of parameters for both activation and mechanical

characteristics corresponding to their different properties. As in [6, 13, 10], we considered

that the fiber contraction is dependent on the calcium ion (Ca2+) concentration presents in

the cytoplasm. From this hypothesis, MUs can be in one of these three states during the

muscle contraction: in contraction, in relaxation or relaxed. When a MU is recruited, it will

contract during a determined time, according to the Ca2+ release. If it does not receive a

new impulse during the contraction time, the MU starts to be in relaxation according to the

Ca2+ uptake time. Finally, if it still does not receive a new impulse it goes in relaxed state

when its Ca2+ concentration reaches the concentration at rest. Thus, these states will be

defined according to the intracellular Ca2+ dynamic.

2.2.1. Calcium dynamics

When a neural Action Potential (AP) reaches the fiber neuromuscular junction, an ac-

tion potential traveling along the sarcolemma is created. During the AP propagation, the

sarcoplasmic reticulum (SR) releases Ca2+ into the myoplasm [21]. When this concentration

exceeds a specific threshold, the fibers within the MU begin to contract. The contraction re-

mains until this concentration decreases below the threshold. Detailed models of the calcium

concentration dynamics are presented in [22, 23, 13, 24]. However, we decided to use the

definition of the SR Ca2+ release in response to an AP from [24] adapted to the MU type.

ui(t) =


Ur,i if t < τD

Ri.

(
1− e−

(
t−τD
τ1,i

))5

.e
−
(
t−τD
τ2,i

)
if t≥ τD

(5)

Where i represents the ith MU, Ur,i is the Ca2+ concentration at rest according to the

MU type of MU i, τD is the time delay response to the Ca2+ release which is the same for all

type of MU, Ri is an amplitude parameter to be in agreement with the calcium amplitude

according to the type of the MU i and τ1,i and τ2,i are specific parameters according to the

MU type and representing the rise and the descent of the Ca2+ dynamics, respectively. This

calcium dynamic is depicted in Fig. 4.

The contraction-relaxation cycle is formed to follow two phases: every time an AP reaches

a MU, a contraction begins with a time delay of τD for taking into account the propagation

time of the AP and the average time delay due to the calcium dynamics. After this delay, a
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Figure 4: Calcium dynamic of MU according to its type after a neural activation at 0.5s.

contraction phase takes place and Ca2+ concentration ups above the calcium threshold (Uc,i)

during a few moments according to the MU type. After this, if no other AP has been received

in the meantime, an active relaxation follows until the rest Ca2+ concentration Ur,i is reached.

The calcium release is fast enough in skeletal muscle to be considered quasi-instantaneous

(see Fig. 4). These dynamics will be determined using the convolution operator between the

firing times of the corresponding MU and the calcium function. In this model, the calcium

kinetics is the same for all MUs with the same type. In Table 1 is presented the values

of the parameters defining the calcium dynamics according to the MU type. Parameters

in this table have been determined based on results from the SR release [25] to represent

physiological behavior according to MU type. Compared to [24], the time response (τD) is

higher. However, we fixed this value in order to correspond to the electromechanical delay of

the twitch model [26] since the mechanical response starts instantaneously when the calcium

dynamic goes above the contraction threshold.
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Table 1: Parameters defining the calcium dynamics according to MU type

Parameter Value (unit)

Time delay response (τD) 5 (ms) [26]

SMU Ca2+ concentration at rest (Ur,S) 5 (µmol.L−1)

FRMU Ca2+ concentration at rest (Ur,FR) 5 (µmol.L−1)

FIMU Ca2+ concentration at rest (Ur,FI) 7 (µmol.L−1)

FFMU Ca2+ concentration at rest (Ur,FF ) 8 (µmol.L−1)

SMU rise slope (τ1,S) 4 (ms)

SMU descent slope (τ2,S) 20 (ms)

SMU amplitude calcium dynamics (RS) 16

FRMU rise slope (τ1,FR) 3 (ms)

FRMU descent slope (τ2,FR) 17 (ms)

FRMU amplitude calcium dynamics (RS) 16

FIMU rise slope (τ1,F I) 1.3 (ms)

FIMU descent slope (τ2,F I) 13 (ms)

FIMU amplitude calcium dynamics (RS) 14.5

FFMU rise slope (τ1,FF ) 1 (ms)

FFMU descent slope (τ2,FF ) 8 (ms)

FFMU amplitude calcium dynamics (RS) 20.0

2.2.2. MU activation model

During muscle contraction, the MU can be in one of these three states: activated (αi(t)),

in relaxation (βi(t)) and relaxed (γi(t)). This activation can be determined from the calcium

dynamics of the MU defined above (see section 2.2.1). From this definition, we proposed

these activation equations describing MU state in time:

αi(t) =

 1 if ui(t)≥ Uc,i
0 otherwise

(6)

11



βi(t) =

 1 if Ur,i < ui(t)< Uc,i

0 otherwise
(7)

γi(t) =

 1 if ui(t) = Ur,i

0 otherwise
(8)

By weighting the MU activation parameter with its number of fibers divided by the total

number of fibers within the muscle, we can obtain the muscle activation state related to the

percentage of the muscle that is contracted, in relaxation and relaxed during time as we can

see in Fig. 5. Table 2 presents the parameter values used in this model.

Table 2: Fixed parameters

Concentration activated threshold Value (unit)

SMU Ca2+ (Uc,S) 10 (µmol.L−1)

FRMU Ca2+ (Uc,FR) 11 (µmol.L−1)

FIMU Ca2+ (Uc,FI) 14 (µmol.L−1)

FFMU Ca2+ (Uc,FF ) 15 (µmol.L−1)

Figure 5: Muscle activation states α, β and γ (Right) according to a voluntary contraction at 50% MVC

(Left). No relaxation model is considered in this modeling thus, once the contraction task is over, all the

MUs stop to be recruited instantaneously.
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2.3. Mechanical model of the muscle during isometric contraction

Previously, the muscle mechanical model was developed only at the muscle scale. In the

proposed model, we attempt to provide a mechanical model at the MU scale. Unlike models

in [5, 7, 8, 10], the muscle is modeled by N contractile elements with the same length Lc

placed in parallel. Each contractile element will describe the mechanical dynamics of one

MU.

Figure 6: Mechanical rheological model of the muscle, including masses and dampers derived from [10] with

N parallel contractile elements representing the MU. X1 and X2 are the positions of the muscle-tendon

junction when the muscle is at rest.

This model presented in Fig. 6 is composed of macroscopic passive elements interacting

with N contractile elements Eic that contract independently and with its local activation

described in section 2.2.2. We assume the left and right tendons having the same properties.

To stay close to the structure proposed by Hill, the springs ks1 are assumed to be linear. Ls10

is the length of the springs at rest condition when no force is generated and Ls1 is the spring

length at any time. L is the length of the parallel spring and Lc0 is defined as the length at

which the muscle produces the maximum isometric force and m is the muscle mass. From

this model we have:

 mẍ1 = Fc+ks1(X1−x1) +λ ˙(X1−x1)

mẍ2 = −Fc+ks1 (X2−x2)−λ ˙(X2−x2)
(9)

Subtracting these two dynamics leads to:
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m(ẍ2− ẍ1) =−2Fc+ks1 (X2−x2−X1 +x1) +λ(ẋ1− ẋ2) (10)

Knowing that : (x2−x1) = Lc and (X2−X1) = L0
c , the rest length of the muscle, we

obtain:

mL̈c =−2Fc+ks1
(
L0
c−Lc

)
−λL̇c (11)

with εc = Lc−Lc0
Lc0

⇒ Lc = εcLc0 +Lc0.

Equation (11) becomes:

mLc0ε̈c =−2Fc−ks1
(
L0
c− εcLc0−Lc0

)
−λε̇cLc0 (12)

⇒ ε̈c =− 2Fc
mLc0

− ks1
m
εc−

λ

m
ε̇c−

ks1
m

+ ks1L0
c

mLc0
(13)

Moreover, by definition we have: L0
c = ε0

cLc0 +Lc0. Where εc, defined above, represents

the relative deformation of the muscle compared to Lc0. Thus, equation (13) becomes:

⇒ ε̈c =− 2Fc
mLc0

− ks1
m
εc−

λ

m
ε̇c−

ks1
m

+
ks1

(
ε0
cLc0 +Lc0

)
mLc0

(14)

Finally,

⇒ ε̈c =− 2Fc
mLc0

− ks1
m
εc−

λ

m
ε̇c+ ks1

m
ε0
c (15)

Then, from (10), we also have:

2Fc =−mLc0ε̈c+ks1
(
L0
c−Lc

)
−λL̇c (16)

Knowing that in isometric contraction we have: Lc+ 2Ls1 = L= L0
c + 2Ls10 and Lc0εc+

2Ls10εs1−2Ls10ε0
s1 = 0. With ε0

s1 = L0
s1−Ls10
Ls10

is the relative deformation of the tendon between

its length at rest (Ls10) and its optimal length (L0
s1), equation (16) becomes:

2Fc = 2mLs10ε̈s1 + 2ks1 (Ls1−Ls10) + 2λL̇s1 (17)

⇒ Fc =mLs10ε̈s1 +ks1Ls10εs1 +λLs10 ˙εs1 (18)
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Moreover, the force Fe of the visco-elastic component representing the tendon is the sum

of the spring force Fs and the damper force Fd. Thus, Fe = Fs+Fd = ks1Ls10εs1 +λLs10ε̇s1.

When the ratio of Fc and Fe is considered using Laplace transform, we have:

L [Fc]
L [Fe]

= ms2Υ(s) +λsΥ(s) +ks1Υ(s)
λsΥ(s) +ks1Υ(s)

With Υ(s) is the Laplace transform of Ls10εs1(t). Thus, we can write:

λsL [Fc] +ks1L [Fc] =ms2L [Fe] +λsL [Fe] +ks1L [Fe] (19)

Giving, after inverse Laplace transform use, the following differential equation:

mF̈e+λḞe+ks1Fe = λḞc+ks1Fc (20)

⇒ F̈e =− λ
m
Ḟe−

ks1
m
Fe+ λ

m
Ḟc+ ks1

m
Fc (21)

Finally, we have this system at the muscle scale:


ε̈c = ks1

m ε0
c− 2Fc

mLc0
− ks1

m εc− λ
m ε̇c

F̈e = − λ
m Ḟe−

ks1
m Fe+ λ

m Ḟc+ ks1
m Fc

(22)

An equation system is also needed for each contractile element representing a MU. Ac-

cording to [10], we have, for each contractile element, the dynamic of its stiffness kc,i and its

force Fc,i:


k̇c,i(t) = −(ui(t) +a|ε̇c(t)|)kc,i(t) +αi(t)kmax,i(t)Πc,i(t)Uc,i
Ḟc,i(t) = −(ui(t) +a|ε̇c(t)|)Fc,i(t) +αi(t)Fmax,i(t)Πc,i(t)Uc,i+

ω (Fc,i(t))kc(t)Lc0ε̇c(t)

(23)

With, Fc =
N∑
i=0

Fc,i and kc =
N∑
i=0

kc,i the muscle force and stiffness, respectively. ui is

the calcium dynamic described in section 2.2.1, a is a parameter describing the velocity

contribution between the actin and myosin filaments, αi is the activation parameter described

in section 2.2.2, kmax,i and Fmax,i are the maximum stiffness and force produced by the
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ith MU. Uc,i is the calcium concentration threshold of the ith MU determining when the

contraction occurs. Moreover, Πc,i is a function following the normalized calcium dynamic

according to the MU type (see eq 5). Assuming that all the fibers have the same mechanical

contribution, kmax,i(t) and Fmax,i(t) are determined as a percentage of the maximal stiffness

(kmax) and force (Fmax) produced by the muscle according to the number of innervated fiber

in the MU. Moreover, kmax,i(t) and Fmax,i(t) are function of the deformation εc described as

follow:  Fmax,i(t) = Fmax,ifl (εc)

kmax,i(t) = kmax,ifl (εc)
(24)

with

fl (εc) = e
−ε2
c
b (25)

where b is a scale parameter. Finally, ω (Fc) (in equation (23)) is defined as follows:

ω (Fc) =

 1 if Fc > 10−4

0 otherwise
(26)

This window function is used to prevent the passive force generated by the non recruited

MUs that should not produce active force. Details of the calculus to obtain the system (23)

can be obtained from [10].

3. Results

In all the results present below, some parameters were set. These parameters are presented

in tables 1 and 2.

At first, we propose to study the fusion frequency using the proposed model on the same

muscle with only different MU type distribution (see 3.1.1). Then, thanks to the MU scale

modeling, we propose to study these frequencies at the MU scale regarding the MU type

(see 3.1.2). Afterward, we suggest doing the comparison of the fusion frequency between

the proposed model and the twitch model (see 3.1.3). This comparison is then extended to

voluntary isometric contractions (see 3.2). Finally, a validation of the model is proposed with

experimental data extracted from the study in [4] (see 3.3).
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3.1. Fusion frequency study

3.1.1. Muscle scale

In this subsection, we will present some results concerning the fusion frequency needed

to simulate the twitch fusion according to the MU type. For this purpose, we simulated two

muscles composed of 500 MUs using the following distributions of MU type: 33% SMU, 17%

FRMU, 17% FIMU and 33% FFMU for the first muscle (M1) and 33% SMU, 33% FRMU,

17% FIMU and 17% FFMU for the second muscle (M2). This difference between these two

muscles is the percentage of MUs considering their force generation. In M1 there are 250

MUs that are considered low (S and FR MUs) regarding their force production whereas 330

are defined in M2. These two configurations physiologically mimic fast (M2) and slow (M1)

muscle respectively. Concerning the MU recruitment, it was defined using the description in

section 2.1.2 and equation (3). Parameters of this equation were set in order to recruit all

the MUs at each stimulation (see Table 3).

Different frequencies of stimulation were used in this study, according to [26, 27], the

frequency fusion of MU mechanical response to a stimulus is correlated to its type. Thus,

we proposed to simulate for the same muscle and parameters of the model, 4 different fusion

frequencies, 5, 20, 50 and 100 Hz. The simulation’s parameters set is presented in Table 3.

Using this set of parameters will recruit 100% of the MUs in the muscle. The fusion

frequency comparison can be made on the different mechanical behavior of the muscle (force,

stiffness or deformation). In this section, we decided to compare the force generation accord-

ing to the stimulation frequency using the recruitment defined above in Fig. 3.

In Fig. 7, we can observe an increase in the generated force according to the stimulation

frequency increase. We can also observe the force fusion increasing with the frequency from

the amplitude reduction between impulses. Thus, the optimal fusion frequency for these

muscles is around 100 Hz.
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Table 3: Parameters used for the fusion frequency

Parameter Value (unit)

Maximal intensity (imax) 3.15 (mA) [4]

Intensity (i) 3.15 (mA)

Ellicited recruitment parameters (c1, c2, c3) 1.15, 8.12, 0.75 [4]

Optimal muscle length (Lc0) 9.18 (cm)

Rest muscle length (L0
c) 10.0 (cm)

Velocity contribution (a) 1.0 [4]

Force-length parameter (b) 0.54[4]

Tendon viscosity (λ) 19.0 (kg.s−1) [10]

Muscle weight (m) 0.5 (kg)

Maximal force (Fmax) 300 (N)

Maximal stiffness (kmax) 100 N.mm−1

Tendon stiffness (ks1) 120 N.mm−1

Figure 7: (L) Fused and unfused tetani according to the stimulation frequency for muscle M1. The first

stimulation pulse appends according to the stimulation frequency, i.e., for 5Hz the first impulse arises at 0.2s.

(R) Fused and unfused tetani according to the stimulation frequency for muscle M2.

Moreover, we observe lower generated force with M2 muscle than M1 muscle at 100 Hz.

In fact, M2 muscle has more slow MUs that generate less force than M1 muscle that has

more fast MUs. This difference could be explained by the MU type distribution, knowing
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that SMUs generate less force than FFMUs. Yet, at 50 Hz the M2 generates more force than

M1. Thus, we can suppose that the optimal fusion frequency for M2 muscle is around 50 Hz.

Finally, at 5 and 20 Hz, only partial fusion arises and gives almost the same results for both

simulated muscles. These differences are exhibited in Fig. 8.

Figure 8: Differences of the force generated from muscles M1 and M2 according to the stimulation frequency.

3.1.2. Motor unit scale

Considering the model description, we have now access to the mechanical contribution

developed by each MU. Thus, deeper investigation about the muscle mechanical behavior is

feasible. In this section, we propose to dissect these simulated muscles at the MU scale in

order to give some insights about the underlying mechanical phenomena.

On Fig. 9, the generated force according to the stimulation frequency and the MU type is

presented. As one can see in this figure, the SMUs generate more force at 50 Hz than at 100

Hz. Considering the slow contraction of such MUs, the tetanus contraction is obtained around

50 Hz. The same effect can be observed on the FRMU type, where its optimal stimulation

frequency is higher than the one for SMU. On the other hand, FIMU and FFMU have also

this effect but with even a higher fusion frequency than SMU and FRMU. In this model, the

optimal stimulation frequency is highly correlated to the calcium dynamic presented in 2.2.1.

19



Figure 9: MU force response to the stimulation frequency according to its type.

3.1.3. Comparison with the twitch model

In this section, we will compare the force generated from a classical twitch model [26]

using the same anatomy and stimulation frequency as depicted before (see Figs. 10 and 11).

In [26], the twitch is a function of 6 parameters identified from experimental study.

F (t) = ptme−kt (27)

with, p= Fmaxe
−kTc(ln(Tc)−1), m = kTc and k = ln(2)

−Tcln
(
Thr
Tc

)
+Thr−Tc

. Tc represents

the contraction time, the time from the start of MU force generation to the time where MU

reaches its peak value Fmax. Thr describes the half time relaxation corresponding to the time

from the start of MU force generation to the time where MU force decreases to half of its

peak. Moreover, a time delay Tlead representing the electromechanical delay is given to delay

the response. Value of the parameters governing this model is presented in Table 4.

From this definition, the muscle force is computed as:

Fm =
N∑
i=1

Fi(t)∗
M∑
j=0

tk (28)

where Fm is the muscle force, Fi is the twitch definition (see eq 27) of the ith MU, N is

20



Table 4: Parameters used for the twitch model developped in [28]

MU type Tlead (ms) Tc (ms) Thr (ms) Fmax (N)

S 70 80 200 0.0382

FR 60 70 175 0.0764

FI 30 40 100 0.191

FF 20 30 60 0.328

the number of MU, tk is the kth discharge time of the MU, M is the number of discharge

and ∗ the convolution operator.

Figure 10: Fused and unfused tetani according to the stimulation frequency for muscle M2 with twitch model

where all the muscle MU are recruited as in Fig. 7.

On Fig. 10, we can see a continuous increase in the generated force while increasing the

stimulation frequency. Compared to Fig. 7, where we can observe an optimal frequency, the

twitch model cannot describe this optimal frequency in this range of stimulation frequency.

No saturation of tetanus can be visible with the twitch model. In fact, in the twitch model,

the muscle force is computed from the sum of the convolution between the firing times of the

MU and their corresponding twitch. Because of this convolution operator and the definition

of the firing times of the MUs (Dirac impulse), it does not exist a generated force limit if
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M →∞. Thus, the increase of the stimulation frequency will define ∞ number of firing

times.

Figure 11: MU force response to the stimulation frequency according to its type using the twitch model.

At the MU scale, the same trend is observed on the generated force, which continuously

increases with the stimulation frequency whatever the MU type (see Fig. 11). Compared to

Fig. 9, the FRMU generates more force than FF or FIMUs that is not in agreement with the

literature since the FFMUs are the MUs that produce the highest force. Thus, we can assess

that the twitch model cannot transcribe an optimal stimulation frequency and is meaningless

when high stimulation frequency (>100 Hz) is considered.

3.2. Voluntary contraction simulation

In the proposed model, the input parameter α describing the activation of the muscle

is also adapted to MU voluntary recruitment. This formalism also allows us to simulate

voluntary contraction as presented in Fig. 12.

Force profiles were generated using the same voluntary recruitment patterns defining force

plateaus from 10 to 100% MVC. We are comparing the force profiles generated using the

twitch model defined in [28] and the proposed mechanical model from the same recruitment
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Figure 12: Force profiles for voluntary contractions from 10 to 100% MVC using the twitch model described

above (blue) and the proposed muscle mechanical model (red).

pattern. The anatomy used is the M1 muscle one described in the previous section 3.1.

Moreover, we notice that the parameters remain the same among the simulations for both

models, only the recruitment pattern changes at each contraction.

As it can be observed in Fig. 12, the plateau remains stable along with the contraction

with slight variability due to the MU recruitment rolling. The proposed model correctly

represents the same force profiles generated from the validated twitch model [26]. In fact, the

Normalized Root Mean Squared Error (NRMSE) is 5.51% between normalized force profiles

for every contraction level. Only for the 10 and 20% MVC contractions, the proposed model

simulates a higher force than the twitch model (at 10% MVC NRMSE is 126% and 74% at

20% MVC). A comparison of the mean and the standard deviation (std) computed over the

force plateau for both models is presented in Fig. 13a and 13b.

On Fig. 13a, we can observe almost the same mean computed over the force profiles

plateau from both models (NRMSE is 1.26%). Only the mean computed with the twitch

model at 10 and 20% MVC is underestimated compared to the proposed model (-48.52%

and -29.98%). Moreover, in Fig. 13b, is presented the standard deviation computed for both

models. As we can see, more dispersion of the generated force is observed with the proposed

model compared to the twitch model. Yet, the trend remains the same, the std increases
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(a) Computed mean force for each contraction level

according to the proposed model

(b) Computed standard deviation (std) force for each

contraction level according to the proposed model

Figure 13: Mean and std force computed from both models from 10 to 100% MVC.

according to the increase of the contraction level. Mean and std increasing according to the

contraction level are also observed in experimental recordings [29, 30].

Otherwise, with the proposed model, we also have access to the muscle stiffness and

deformation at each simulated instant of the contraction. Figures 14a and 14b present the

computed mean for the stiffness and the deformation respectively.

According to Fig. 14a, the muscle stiffness continuously increases with the contraction

level. The stiffness range value according to the contraction level is in agreement with

experimental studies recording the muscle stiffness during contraction [31]. On Fig. 14b,

one can see that the muscle continuously shortens according to the muscle activation level.

At 100% MVC, the muscle length is around 2.4% shorter than its defined optimal length

supposing less effectiveness of the force generation according to the defined force-length

relationship (see eq (25)).

3.3. Model validation

Experimental data used in this study come from the study [4]. Particularly, these data

were used to identify the parameters of a multiscale musculoskeletal model controlled by

electrical stimulation. Details about the experimental setup and the identification process

can be found in [4]. In this study, one force profile from isometric measurements recorded

from the paraplegic subject implanted with an electrical stimulation device was used (see
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(a) Computed mean stiffness for each contraction

level according to the proposed model

(b) Computed mean deformation for each contrac-

tion level according to the proposed model

Figure 14: Mean stiffness and deformation computed from the proposed model from 10 to 100% MVC.

[32] for the detailed clinical setup). During the stimulation, the knee joint was fixed at the

position at which the torque was maximum. The quadriceps muscle was stimulated with 8

stimulation trains (duration 1.5s), separated by a 2s rest time. The neural stimulation was

performed using an implanted FES system [33] i.e. bipolar neural stimulation on the femoral

nerve. Stimulation frequency was set at 20Hz for the subject. Pulse widths were fixed during

the stimulation, but the intensity increased between trains from 0.4mA to maximum imax =

3.15mA with a constant step (min. 50µA). These data are unique because neural implanted

stimulation allows performing highly reproducible responses to stimulation and provide a

full contraction of the targeted muscle without stimulating undesired muscle owing to the

selection of fascicles during the initial surgery.

3.3.1. Simulation of a quadriceps bulk

The aim of this section is to validate the presented model according to the experimental

recording. For this purpose, simulation parameters concerning the simulation are presented

in Tables 1, 2 and 5. Some of these parameters were extracted from [4] while others were

defined based on the literature [34, 35, 36, 37].

Considering that the stimulated muscle is the quadriceps, we decided in a first step to

simulate a quadriceps bulk regrouping the four muscles composing the quadriceps as in [4].

For this purpose, we defined a muscle composed of 3250 MUs with the following distribution
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Table 5: Parameters used for the validation simulation

Parameter Value (unit)

Maximal intensity (imax) 3.15 (mA) [4]

Intensities (i) 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.15 (mA) [4]

Ellicited recruitment parameters (c1, c2, c3) 1.15, 8.12, 0.75 [4]

Optimal muscle length (Lc0) 9.18 (cm) [4]

Rest muscle length (L0
c) 10.5 (cm)

Velocity contribution (a) 1.0 [4]

Force-length parameter (b) 0.54 [4]

Tendon viscosity (λ) 19 (kg.s−1) [10]

Muscle weight (m) 1.6 (kg) [35]

Maximal force (Fmax) 1000 (N)

Maximal stiffness (kmax) 10000 (N.m−1) [30]

Tendon stiffness (ks1) 40000 (N.m−1) [30]

40% SMU, 13% FRMU, 16% FIMU and 31% FFMU. This distribution is determined as a

weighted average according to each muscle composition based on [37, 38] and the number of

MUs. Here, we assumed that the rectus femoris (RF) muscle is composed of 750 MUs with

an innervation ratio ' 750. This innervation ratio represents the average number of fiber

innervated by the MUs. Thus, FF and FI MUs innervate more than 750 fibers and FR and

S MUs less. The vastus intermedius (VI) has 500 MUs innervating around 750 fibers each.

The vastus medialis (VM) has 1000 MUs innervating around 1000 fibers each. Finally, the

vastus lateralis (VL) has 1000 MUs innervating around 1000 fibers each. In total, the defined

muscle is composed of ' 2,500,000 muscle fibers.

Simulated and experimental force profiles were normalized according to their respective

maximum. The first observation in Fig. 15 concerns the global dynamic of the force gen-

eration according to the stimulation intensity. Compared to experimental recording, the

simulated force correctly describes the trend of experimental force. Only one force genera-

tion according to the stimulations (the 3rd) is underestimated while the 5th stimulation is
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Figure 15: Normalized generated force in experimental conditions following the protocol presented above

(data extracted from [4]) compares to simulated force from the proposed mechanical muscle model. Each

stimulation train is separated by black lines.

overestimated. Moreover, we can observe the experimental recording a two steps increase of

the force. After a few stimulations, the muscle force increases and stabilizes during a few

hundreds of milliseconds and then continues to rise. This sidestepping rise is always the same

between the stimulation whatever the intensity. To assess the effectiveness of the model, the

Normalized Root Mean Square Error (NRMSE) was computed as follows:

NRMSE = 1(
max

(
F̂
)
−min

(
F̂
))
√√√√∑P

i=1
(
F̂i−Fi

)2

P
(29)

where, P is the number of time sample of the force, F̂ is the experimental force and F is

the simulated force. Using this equation, computed NRMSE indicates that the error between

experimental and simulated force is 7.0%. The major error comes from the almost perfectly

synchronization of the muscle contraction since we only simulated one muscle representing

the quadriceps. Moreover, the pennation angle influencing the force generation of each muscle

is not considered and induce also possible error.

On Fig. 16, is exhibited the relationship between the generated force and the stimulation

intensity. As one can see, the simulated forces closely fit the measured one, with a NRMSE

of 4.6%. This error is mainly due to the underestimation of the generated force of the
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Figure 16: Mean of the normalized generated force in experimental conditions with the proposed mechanical

muscle model according to the electrical stimulation intensity.

mechanical model compared to the experimental data. However, the relationship trend is

preserved with a continuous increase of the force according to the stimulation intensity.

Finally, concerning the computation time of the model, this simulation lasts 57min using

a dedicated workstation (2×8 cores Intel Xeon 2.40Ghz with hyperthreading, 128Gb Ram,

Ubuntu 14.04 64bits) without parallel computation and using a unique processor. Naturally,

this computing time can be drastically reduced using parallel computing paradigm for future

applications.

4. Discussion

In this study, we proposed to model the mechanical behavior through the mechanical

contractile properties of the skeletal muscle during isometric contraction. This model was

described at the scale of the MUs, which are assumed to be placed as N parallel contractile

elements. In order to portray the MU mechanical behavior in a realistic manner, muscle MU

typing and distribution is a crucial physiological and anatomical strategy for ensuring motor

function diversity. This is often impacted in pathological conditions (sarcopenia, myopathies,

etc.). Modeling the mechanical contribution of the muscle at the MU scale had previously

been used in different studies [13, 26]. Nevertheless, these models only computed the force
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contribution of each MU individually. In the work of Riener and al. [13], they described

the calcium dynamics induced by the recruitment of the MU. However, some important

relationships such as the force-length relationship were not considered in this work.

Determining the muscle force contribution is an association of several mechanisms and

interactions. Most of these mechanisms are well described in [5, 6, 7]. However, in [5, 7]

the muscle was described only as one contractile element where its activation did not have

any physiological meaning. In [6], the muscle was described at the fiber scale and accurately

characterized the underlying processes arising during muscle fiber contraction. But, using

this model to define each fiber in the muscle is not feasible in terms of computation time for

bio-reliable modeling used in clinical applications. Using these models tends to define the

muscle activation during the contraction which is usually estimated from the corresponding

recorded sEMG signal [7, 9, 39, 40, 41]. This estimation is reasonable since it is well known

that the muscle activation is correlated to the sEMG signal amplitude but not necessarily

in a linear manner [7, 29]. We also know that the sEMG signal can suffer from the auto-

cancellation phenomenon [42] and the attenuation effect that leads to underestimated neural

intent. Also, the electrical signal can record neighboring muscle electrical activity inducing

crosstalk [43]. Another important issue is the spatial representativeness of a unique sEMG

signal to estimate the muscle activation input. This problem has been recently partially solved

using High-Density sEMG (HD-sEMG) technique [29, 44] where it has been demonstrated,

by simulation, that using fusion technique on the HD-sEMG signals is more accurate to

estimate the muscle activation. In the proposed model, this activation is estimated from

the discharge times of each MU during contraction rather than using sEMG signal intensity.

This major innovation opens the doors to possible studies linking neural drive strategies and

bio-reliable production of muscle force. However, estimating the MU recruitment scheme

from decomposing experimental sEMG activities is still a scientific challenge [45].

An important compromise between the Hill-type and Huxley-type models proposed in

[8] using the distribution moment theory, allowed to upscale from the fiber scale to the

muscle scale and thus, preserved the fiber accurate modeling to the muscle scale. This model

gives promising results. There have been even some studies that upgraded this model as in

the work of Makssoud and al. [10]. In [10], the authors also defined the input parameter α
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according to the functional electrical stimulation. Nevertheless, using the formalism proposed

by Zahalak implies modeling simplification such as the muscle composition. In fact, applying

the distribution moment theory proposed in [8] will consider that the muscle is composed of

N times the same muscle fiber.

In our model, we used the formalism proposed in [10] since this model was validated

on human recordings. But, the major improvement is the description of the muscle as N

(number of MUs) contractile elements placed in parallel (see Fig. 6) where each contractile

element is activated independently from the others. Actually, except for the activation, there

is a strong dependence between the contractile element contraction and the global muscle

contraction since muscle force-length and muscle force-velocity relationships are considered.

The mechanical dynamic of this contractile element considered local variables as well as

global variables at the muscle scale. Compared to [10], we specified the activation dynamic

according to the MU type. We also decomposed the muscle as N MUs placed in parallel

with a specific mechanical contribution for each MU. In the anatomical model, we supposed

a different amount of fiber according to the MU type. Thus, FFMUs have more fiber than

SMUs in order to provide more contribution to the muscle contraction.

This is the first model, to our knowledge, that considers the mechanical relationships

(force-length and force-velocity) and is able to simulate realistic mechanical voluntary con-

tractions at the MU scale based on the discharge times of each MU composing the studied

muscle. Moreover, compared to the twitch model, the proposed dynamic model is more com-

plex and can simulate physiological behaviors that the twitch model cannot (see section 3.1).

In fact, the twitch model cannot represent this fusion frequency compared to the proposed

mechanical model (see section 3.1). It also does not represent the muscle stiffness and the

muscle deformation which affect the muscle force dynamic where the proposed model does

(see equation (23) and Fig. 14a). This model presented a continuous increase of the force

generation for all the MUs. However, the proposed model exhibited a decrease in the force

generation compared to 100Hz of stimulation frequency for all MUs. Beyond the fusion fre-

quency, we should observe an increase followed by a plateau of the force generation, not a

decrease as seen only for SMUs. This decrease of force generation beyond the fusion fre-
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quency could be explained since above this fusion frequency the FFMUs will generate more

force inducing more important muscle deformation. A confusion could thus appear with

the contribution of the force-length relationship that applies separately for each MU type.

However, the total force increases with the frequency following an already well-established

statement.

Despite the promising results, we estimated that a comparison with experimental record-

ings during voluntary isometric contraction was not suitable yet. In fact, experimental record-

ings describe the global torque applied to a specific joint. Moreover, noises in the recorded

signals and lack of training for force sustaining induces unsteady force plateaus (even for low

contraction level) and thus, bias the comparison. Estimation of the recruitment instants of

the active MUs is also hard and complex to perform [45]. Thus, comparison with experimen-

tal recordings can only be made on the statistics computed over the force profile and their

trends according to force level.

Thus, the proposed model has been validated with experimental data under electrical

stimulation context only [4]. In this context, the MU recruitment is not random but in a

specific, even unknown, order. In fact, neural stimulation is very accurate and reproducible

and thus, the input is an image of the neural drive, accurately controlled. Moreover, the

muscle composition was roughly estimated and thus, the validation could provide an assess-

ment of the ability of the model not only to estimate the global recruitment but also an

estimation of the muscle composition. We chose this unique case, as we were able in previous

studies [4, 10] to estimate all the biomechanical parameters with acceptable accuracy. It

has to be noticed that no identification algorithm was used to identify the parameter values,

since these values were extracted from the literature and experimental studies without an

additional refining step. Most of the values of the parameters were found, but a major issue

came during their collect: some parameter values were significantly different between studies

representing the subjects’ inter-variability and recording technique. On the other hand, some

parameter values could not be found in the literature. Thus, for the simulations, we tried

to define these values inside a physiological range, but a parameter identification algorithm

is definitively needed to provide better results and the subject’s specific parameter tuning.

We thus could perform statistics, with more simulations, but we thought it is a first step to
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validate such a complex model in a well-controlled experiment. According to Fig. 15 and

the small obtained NRMSE value, we can assess that the proposed model is quite accurate.

Besides, the experimental setup measures the torque on the knee, not the direct output of

the quadriceps muscle. The mechanical part linking the chair and the lower limber further

induces slight modifications of the global dynamics due to small movements of the system:

it smooths the torque and increases the time response. However, in isometric conditions,

the final torque is almost a proportional image of the muscle force knowing that the neural

stimulation used is targeting only the quadriceps. Thus, obtained results seem to be accurate

and reliable.

The developed model does not consider the muscle fatigue. Yet, it is known that the

electrical stimulation induced intense fatigue compared to voluntary contractions [46, 47].

This fatigue phenomenon is described at two different levels [48]:

• the neural fatigue representing the limitation of the nerves to generate sustained action

potential;

• the muscular fatigue (or metabolic fatigue) representing the reduction of force genera-

tion by the muscle fibers.

Thus, the fatigue will induce a significant decrease in muscle force generation due to

repeated muscular activation [49]. Considering the successive stimulations used in the exper-

imental protocol (see section 3.3), the muscular fatigue phenomenon may occur during the

recording as well as the potentiation effect at the beginning of the stimulation [50]. However,

the data used were at a relatively low frequency and without extended stimulation periods so

one can speculate that these phenomena should be relatively low but should be considered

in further studies. The muscle fatigue is not considered in the proposed model but can be

defined at the neural level as well as at the muscle level thanks to the decoupling of the

neural input describing the MU firing times and the muscle definition. Moreover, the twitch

potentiation phenomenon [51] is not described in the proposed model. This phenomenon

is more pronounced for the fast twitch than in slow twitch fibers. It transcribes the aug-

mentation of the twitch response following a brief muscle activation. Other physiological

phenomena such as catch, sag [52] and cooperativity [53] are not yet considered in this model
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but can be included in further works. These phenomena are fiber-type specific and related

to the calcium kinetics and will be added in further extension of the model. Furthermore,

the proposed model should be used in macroscopic studies including agonist and antagonist

muscles around a joint to evaluate, after model personalization, muscle synergies in several

contexts like aging.

5. Conclusion

In this study, we proposed a mechanical model representing the muscle at the MU scale.

Modeling the muscle at the MU scale allows us to have more information than the modeling

at the muscle scale and also permits us to simulate a whole muscle compare to the fiber scale

modeling. It also allows the simulation of mechanical behavior according to various muscle

compositions.

This modeling at the MU scale can also provide the activation level of the muscle through

the MUs firing times. This description provides us the possibility to define evoked contrac-

tions as well as voluntary contractions. To assess the validity of our model, we performed

a validation comparison with experimental data recorded in a former study where we know

exactly the recruitment induced by the electrical stimulation. The muscle force was simu-

lated for a single muscle representing the quadriceps bulk composed of 3250 MUs with the

suspected fiber type distribution. The results exhibit reliable results compare to experimen-

tal recording with a NRMSE of 7.0%. The relationship between the muscle force increase

according to the intensity of the stimulation is respected.

Future works, using this model, are envisaged for more realistic study of the sEMG/force

relationship as in [29]. In fact, this model can easily be used in parallel with an electrical

model of the muscle contraction [20] where the input representing the MUs firing times and

the muscle composition are the same. Using an electrical and the proposed mechanical muscle

models can also assess the effectiveness of the muscle activation based on the sEMG signal

[39, 40]. Moreover, this proposed model can also be used for studying the musculoskeletal

system of a specific joint. Currently, these studies used a Hill-type model describing the

muscle contractile dynamics and estimate the muscle activation based on the corresponding

sEMG signal [54, 55, 56].
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Finally, a quasi-dynamic electro-mechanical model of the skeletal muscle during isometric

contractions can be defined. Since the muscle deformation is determined with the corre-

sponding MU recruitment pattern, we can use this deformation information in the electrical

model to have a better representation of the muscle anatomy during contraction. Moreover,

studies concerning the contribution of agonist and antagonist muscles can be performed using

an identification algorithm and adapted MU recruitment pattern. A possible clinical applica-

tion is related to the comprehension of sarcopenia, a degenerative loss of skeletal muscle mass

quality and strength with aging, leading to frailty. Using the proposed model, after parame-

ter identification and model personalization, one can simulate a sarcopenic muscle with both

mechanical and electrical manifestations, using the coupling of the proposed model and a re-

cent electrical model [20] and assess its impact on force production and motion genesis. Also,

the proposed model will help the clinicians to better understand the relationship between

neural drive and the force generation for a specific muscle architecture (fiber and MU typing

and distribution). In fact, thanks to the model, it becomes possible to evaluate the effect of

a modification of the MU recruitment scheme on the force and stiffness generation process

specifically to a personalized muscle architecture. For this purpose, sensitivity analysis can

be performed to study the impact of the muscle parameters. Since this electro-mechanical

model is developed in a bio-reliable way (using parameters with a physiological meaning),

sensitivity analysis can be used for the inverse problem to identify patient-specific parameters

and possibly the firing discharge of the MUs during the generated contraction.
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