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Planar 2-degree-of-freedom (DOF) 3-differential Cable-Driven Parallel Robots (CDPRs) consist of a point-mass end-effector driven by a number of cables. Each cable is divided into four segments, three of them being connected to the point-mass end-effector by means of routing pulleys. This paper deals with the stiffness analysis of such planar 2-DOF 3-differential CDPRs. Based on the usual linear spring cable elongation model, the expression of the stiffness matrix is derived. The stiffness and workspace of several examples of planar 2-DOF 3-differential CDPRs are then compared. The results of these comparisons illustrate that the stiffness of planar CDPRs can be significantly improved by means of pulley differentials.

Introduction

This paper deals with cable-driven parallel robots (CDPRs) whose cable segments are not each driven by a single actuator but are coupled through differentials. Coupling and transmitting the actuation torque of a single actuator to several cable segments has been shown in previous works to be a possible solution to extend the workspace of CDPRs by purely passive mechanical means [START_REF] Khakpour | Synthesis of differentially driven planar cable parallel manipulators[END_REF][START_REF] Khakpour | Workspace augmentation of spatial 3-dof cable parallel robots using differential actuation[END_REF][START_REF] Khakpour | Analysis and optimization of a new differentially driven cable parallel robot[END_REF], i.e. without relying on additional actuators or relocating the latter on a structural frame. Compared to conventional CDPRs, more cable segments then cluttered the workspace but this should not be a critical issue for planar and suspended CDPRs. In the specific example studied here, a single actuator simultaneously controls the lengths of three cable segments going from the ground to the point-mass end-effector of a planar robot and the coupling between these cable segments is implemented through pulley differentials, similarly in principle to the well-known block and tackle. The present paper presents and quantifies the stiffness of such planar 2-DOF 3-differential CDPRs. Such differential couplings will be shown to provide a noticeable improvement in the stiffness of the CDPR.

As shown in Fig. 1, each cable of the CDPR consists of four successive segments B i P , P E i , E i M i , and M i P . Three of these cable segments link the point mass P , which plays the role of the CDPR 2-DOF end-effector, to the ground. In the remainder of this paper, these three segments are referred to as the active cable segments. The other one, E i M i , extends between points E i and M i which are both fixed to the ground. In other words, cable i exits the base first at point B i , and then goes in this order through points P , E i , M i to finally be attached to point P . Hence, these pulley drives are referred to as 3-differential since each one has three "active" outputs. Figure 2 shows this cable routing. In order to implement such a mechanism, pulleys need to be used at points P , E i , and M i . However, as a first approximation, the diameters of these pulleys are neglected (considered to be null) and pulley friction is ignored (no friction). The latter assumption implies that the cable tension is constant all along the cable, i.e., the four cable segments have the same tension and each active segment applies a force of identical magnitude on the end-effector. Let n be the number of cables used to drive point P (n = 3 in the case of Fig. 1). This paper deals with the case of planar 2-DOF 3-differential CDPRs with n ≥ 2 cables. The mass of the cables is neglected and all the cable segments are considered to be straight line segments.

Stiffness and vibration analyses of usual CDPRs, where the driving cables are directly attached to the end-effector, have been proposed in a number of works, e.g. [START_REF] Behzadipour | Stiffness of cable-based parallel manipulators with application to stability analysis[END_REF][START_REF] Diao | Vibration analysis of cable-driven parallel manipulators[END_REF][START_REF] Arsenault | Workspace and stiffness analysis of a three-degree-of-freedom spatial cable-suspended parallel mechanism while considering cable mass[END_REF][START_REF] Yuan | Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity[END_REF][START_REF] Yuan | Vibration analysis of cable-driven parallel robots based on the dynamic stiffness matrix method[END_REF][START_REF] Anson | Orientation workspace and stiffness optimization of cable-driven parallel manipulators with base mobility[END_REF][START_REF] Abdolshah | Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots[END_REF][START_REF] Jamshidifar | Kinematicallyconstrained redundant cable-driven parallel robots: Modeling, redundancy analysis, and stiffness optimization[END_REF]. As previously mentioned, the main difference with these previous works is that the present paper deals with the stiffness analysis of planar point-Fig. 2. Cable routing in a single differential: The cable starts at point Bi where the actuated drum is located, goes to P (the end-effector), then to Ei where it is redirected to point Mi in order to be finally attached to point P .

mass CDPRs with 3-differential pulley drive. To the best of our knowledge, the only previous work on stiffness analysis of differential-pulley planar CDPRs is [START_REF] Nelson | On improving stiffness of cable robots[END_REF] where the case of cables with two active segments is considered. Moreover, the stiffness analysis in [START_REF] Nelson | On improving stiffness of cable robots[END_REF] only considered stiffness in a single direction and did not mention the trade-off between the size of the workspace and the improvement in stiffness inherent to pulley differentials as will be shown here.

This paper is organized as follows: First, Section 2 presents the Jacobian and wrench matrices of differential-pulley-driven planar point-mass CDPRs with three active cable segments. Then, in Section 3, the stiffness matrix of these mechanisms is derived based on the usual linear spring cable elongation model. Finally, Section 4 reports simulations of the resulting stiffness of several examples of planar 2-DOF 3-differential CDPRs.

Wrench and Jacobian Matrices

The active length of the cable i in each differential routing is defined as l i = l BiP +l EiP +l MiP where l BiP = --→ B i P , l EiP = --→ E i P and l MiP = --→ M i P are the strained lengths of the active cable segments B i P , E i P and M i P , respectively. Length l i is the sum of the cable segment lengths that change when the position of point P changes. It should not be confused with the total length of the cable which includes the length of the cable segment between points E i and M i . Let us define the vector l of the active cable lengths l i as l = [l 1 , l 2 , . . . , l n ]

T . Moreover, let ˙l be the time derivative of l, p = [p x , p y ] T be the position vector of point P in the fixed reference frame (0, x, y), and ṗ the velocity of point P . A Jacobian matrix J then maps ṗ (resp. dp) into ˙l (resp. dl)

˙l =      l1 l2 . . . ln      = J ṗ ⇐⇒ dl = Jdp (1) 
with

J =    u T B1 + u T E1 + u T M 1 . . . u T Bn + u T En + u T M n    n×2 (2) 
where u Bi , u Ei and u M i are the unit vectors directed along the cable segments B i P , E i P , and M i P , pointing from the base points B i , E i , and M i , to point P , respectively. The vector of cable tensions t i is denoted t = [t 1 , t 2 , . . . , t n ] T . Pulley friction being neglected, the cable tension t i is constant all along the cable. The force f applied by the n cables to the point-mass P is then given by

f = Wt (3)
where the 2 × n wrench matrix W is defined as W = -J T .
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Stiffness Analysis

The elastic potential energy of cable i is given by

V i = 1 2 k i (l ti -l 0i ) 2 (4) 
where l ti is the total length of cable i

l ti = l i + l EiMi (5) 
with l EiMi the length of the passive cable segment E i M i and l i = l BiP + l EiP + l MiP the active length of cable i, as defined in Section 2. l 0i is the corresponding unstrained length, l 0i = l 0 B i P +l 0 E i P +l 0 E i M i +l 0 M i P . The elongation is supposed to be uniform along the cable length and the cable is assumed to be a linear spring with

t i = k i (l ti -l 0i ), k i = AE l0i
, where A and E are the cable cross-sectional area and elastic modulus, respectively.

The total elastic potential energy V of the 3-differential CDPR is then the sum of the elastic potential energies of all its n cables

V = n i=1 V i = 1 2 n i=1 k i (l ti -l 0i ) 2 (6) 
Computing the derivative of Equation ( 6) yields

dV = n i=1 dV i = n i=1 k i (l ti -l 0i ) dl ti = n i=1 k i (l ti -l 0i ) dl i (7) 
where dl ti = dl i according to Eq. ( 5) and to the fact that dl EiMi = 0 (the distance between the ground points E i and M i is constant). Then, defining the diagonal matrix D and vectors l t and l 0 as follows

D =    k 1 . . . k n    , l t =      l t1 l t2 . . . l tn      and l 0 =      l 01 l 02 . . . l 0n      (8) 
Eq. ( 7) can be written

dV = (l t -l 0 ) T Ddl (9) 
According to Eq. ( 1), dl is equal to Jdp so that according to Eq. ( 9)

dV dp =     ∂V ∂p x ∂V ∂p y     = J T D (l t -l 0 ) (10) 
where it can be noted that D (l t -l 0 ) = t since t i = k i (l ti -l 0i ). The stiffness matrix K of the 3-differential CDPR is defined as the second derivative of the elastic potential energy, namely

K = d 2 V dp 2 =      ∂ 2 V ∂p 2 x ∂ 2 V ∂p x ∂p y ∂ 2 V ∂p y ∂p x ∂ 2 V ∂p 2 y      (11)
Taking the derivative of Eq. ( 10) with respect to p, the following classic expression of the stiffness matrix is obtained

K = J T D dl dp + dJ T dp D (l t -l 0 ) = J T DJ + dJ T dp t (12) 
where, once again, the equality dl t = dl has been used. It is worth noting that this stiffness matrix K can only be used in local stiffness analyses because Eq. ( 12) is obtained from Eq. ( 10) by assuming that l 0 is constant. In other words, the matrix K is defined at an equilibrium, defined by both the position p and the cable tensions t, and it can be used to analyze the stiffness of the robot in the vicinity of this equilibrium. In this local analysis, the actuators are assumed to be locked or their position controlled to a constant value. Note also that, according to Eq. ( 3) and [START_REF] Abdolshah | Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots[END_REF], dV dp = J T t = -f , and thus

K = d dp dV dp = d(-f ) dp ⇐⇒ Kdp = d(-f ) (13) 
Hence, in the vicinity of an equilibrium defined by p and t, K maps an infinitesimal displacement dp in the position of point P to the corresponding infinitesimal change in the force -f , where f is the force applied by the cables to point P (Eq. ( 3)). The approach used above to derive the stiffness matrix is a rather classic one, but care must be taken to use in Eq. ( 12) the Jacobian matrix defined in Eq. ( 1), where each row of this matrix is equal to the sum u T Bi + u T Ei + u T M i of the unit vectors directed along the three straight line segments delineated by the active cable segments.

Referring to the right-hand side of Eq. ( 12), the stiffness matrix is seen to be the sum of two matrices. In the next section of this paper, for simplicity and due to space limitations, only the influence on stiffness of the matrix J T DJ will be considered. This section reports simulations of the stiffness of six planar 2-DOF 3differential CDPRs with n = 3 cables, across their respective workspaces. These six examples are defined as Cases 1 to 6 in Tables 1 and2. Case 1 is shown in Fig. 3 together with its Wrench-Closure Workspace (WCW) [START_REF] Gouttefarde | Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms[END_REF] and Wrench-Feasible Workspace (WFW) [START_REF] Bosscher | Wrench-feasible workspace generation for cable-driven robots[END_REF]. Here, the WFW is defined as the set of positions of point P such that any force f of magnitude less or equal to 0.1 N can be generated by the cables at P with tensions t i , i = 1 . . . n, satisfying t min ≤ t i ≤ t max where t min = 0.1 N and t max = 1 N.

Results

Case 2 defined in Table 1 is a planar 2-DOF 3-differential CDPR where the three active cable segments are superposed. It is obtained from Case 1 by taking B i ≡ E i ≡ M i for i = 1, 2 and 3. Case 3 in Table 1 defines a CDPR without pulley differential where each cable consists of only one segment from B i to P . It is obtained from Case 1 by keeping segment B i P and removing the other cable segments P E i , E i M i , and M i P .

Case 4 defined in Table 2 is another planar 2-DOF 3-differential CDPR. It is shown in Fig. 4 where its WFW is defined as above for Case 1. Case 5 is a planar 2-DOF 3-differential CDPR obtained from Case 4 by superposing the 3

Case 1 Case 2 Case 3 x (m) y (m) x (m) y (m)
x (m) y (m) B1 cos(π/3) sin(π/3) cos(π/3) sin(π/3) cos(π/3) sin(π/3) E1 cos(2π/3) sin(2π/3) cos(π/3) sin(π/3) active segments of each cable and Case 6 is a CDPR without pulley differential obtained from Case 4 by removing, for each cable, all segments but B i P .

× × M1 0 1 cos(π/3) sin(π/3) × × B2 -1 0 -1 0 -1 0 E2 cos(-2π/3) sin(-2π/3) -1 0 × × M2 cos(-5π/6) sin(-5π/6) -1 0 × × B3 cos(-π/3) sin(-π/3) cos(-π/3) sin(-π/3) cos(-π/3) sin(-π/3) E3 1 0 cos(-π/3) sin(-π/3) × × M3 cos(-π/6) sin(-π/6) cos(-π/3) sin(-π/3) × ×
y (m) x (m) y (m) x (m) y (m) B1 1 0 1 0 1 0 E1 cos(2π/3) sin(2π/3) 1 0 × × M1 cos(π/3) sin(π/3) 1 0 × × B2 cos(2π/3) sin(2π/3) cos(2π/3) sin(2π/3) cos(2π/3) sin(2π/3) E2 cos(-2π/3) sin(-2π/3) cos(2π/3) sin(2π/3) × × M2 -1 0 cos(2π/3) sin(2π/3) × × B3 cos(-2π/3) sin(-2π/3) cos(-2π/3) sin(-2π/3) cos(-2π/3) sin(-2π/3) E3 1 0 cos(-2π/3) sin(-2π/3) × × M3 cos(-π/3) sin(-π/3) cos(-2π/3) sin(-2π/3) × ×
As mentioned at the end of Section 3, the subsequent stiffness analysis is based on considering that the stiffness matrix is K = J T DJ. To "normalize" the stiffness coefficient with respect to specific values, we use E = 1 Pa and A = 0.001 m 2 . Note that these values, together with the t min and t max values defined above, do not correspond to actual physical values since, for instance, steel wire ropes typically have elastic modulus E of tens of GPa. However, it is not important for the purposes of this section where stiffness comparisons between several 2-DOF 3-differential CDPRs are made. Moreover, in the calculation of D, for simplicity, we assume that the unstrained length of each cable segment is equal to its strained length. For a given position of the end-effector P , the two eigenvalues of the 2 × 2 stiffness matrix K can then be calculated. The minimum (resp. maximum) stiffness values shown in the left part (resp. right part) of Fig. 5 are defined as the minimum (resp. maximum) of these two eigenvalues. The values of the ratios of the minimum to the maximum eigenvalues over the WCW of Case 1 are shown in Fig. 6.

The means of the minimum stiffness values, maximum stiffness values and ratio of minimum to maximum stiffness values over the WCW of the planar 2-DOF 3-differential CDPR examples defined in Tables 1 and2 are given in Table 3. The mean of the minimal stiffness in Case 1 is 2.4 times larger than in Case 3, where Case 3 corresponds to a classic CDPR with no pulley differential. The means of the maximum stiffness and stiffness ratio in Case 1 are both 1.4 times larger than in Case 3. Comparing Case 2 to Case 3, the minimum and maximum stiffness values are 3 times larger for Case 2 while the stiffness ratios are identical. Hence, planar 2-DOF 3-differential CDPRs (Cases 1 and 2) present a larger stiffness over their workspace than the corresponding CDPR without Finally, Table 4 shows a comparison of the size of the WCW and WFW in each case. The WFW is defined for all the six cases as it has been defined above for Case 1. From these examples, it can be concluded that the cases of 2-DOF 3-differential CDPRs with superposed cable segments (Cases 2 and 5) lead to the largest stiffness improvements but with a marginal gain on the sizes of the WCW and WFW, as compared to the cases without pulley differentials (Cases 3 and 6). In comparison, the stiffness improvement is less significant in the cases of 2-DOF 3-differential CDPRs with distinct cable segments (Cases 1 and 4) with, however, a slightly better improvement in the WCW and WFW sizes. This total area is the one delimited by the circles shown in Fig. 3 and4.

also showed that a trade-off may exist between designing a CDPR with pulley differentials to improve stiffness and designing one to increase the workspace size.

Fig. 1 .

 1 Fig. 1. A planar 2-DOF 3-Differential CDPR where each cable consists of four segments BiPi, PiEi, EiMi, and MiPi, three of these segments connecting the end-effector P to the ground points Bi, Mi and Ei.

Fig. 3 .

 3 Fig. 3. Example planar 2-DOF 3-differential CDPR with 3 cables (Case 1)

Fig. 4 .

 4 Fig. 4. Example planar 2-DOF 3-differential CDPR with 3 cables (Case 4)

Fig. 5 .

 5 Fig. 5. Minimum and maximum stiffness values over the WCW of Case 1

Fig. 6 .

 6 Fig. 6. Ratio of minimal to the maximal stiffness values over the WCW of Case 1

Table 1 .

 1 Geometries of the first three examples of planar 2-DOF 3-differential CDPRs. The crosses × indicate that the corresponding point Ei or Mi does not exist, i.e., Case 3 defines a CDPR without pulley differential where each cable consists of only one segment from Bi to P .

	Case 4	Case 5	Case 6
	x (m)		

Table 2 .

 2 Geometries of the last three examples of planar 2-DOF 3-differential CDPRs. Case 6 defines a CDPR without pulley differential where each cable consists of only one segment from Bi to P .

Table 3 .

 3 Means of the minimum stiffness values (min), maximum stiffness values (max) and ratio of minimum to maximum stiffness values (ratio) over the WCW of the 2-DOF 3-differential CDPR examples pulley differential (Case 3). Similar results are obtained by comparing Cases 4 and 5 to Case 6. The cases with superposed cable segments (Cases 2 and 5) have larger minimum and maximum stiffness values than the ones with distinct cable segments (Cases 1 and 4). Note that Case 4 has the best stiffness ratio.

	1	0.0018	0.0041	0.43
	2	0.0022	0.0086	0.31
	3	0.00074	0.0029	0.31
	4	0.0012	0.0016	0.79
	5	0.0022	0.0086	0.31
	6	0.00074	0.0029	0.31

Table 4 .

 4 WCW and WFW coverage of the total area occupied by the CDPR examples.

	Case WCW WFW
	1 37.6% 29.5%
	2 32.4% 27.3%
	3 32.4% 24.7%
	4 33.6% 22.6%
	5 32.4% 27.3%
	6 32.4% 24.7%