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Abstract. Planar 2-degree-of-freedom (DOF) 3-differential Cable-Driven
Parallel Robots (CDPRs) consist of a point-mass end-effector driven by
a number of cables. Each cable is divided into four segments, three of
them being connected to the point-mass end-effector by means of routing
pulleys. This paper deals with the stiffness analysis of such planar 2-DOF
3-differential CDPRs. Based on the usual linear spring cable elongation
model, the expression of the stiffness matrix is derived. The stiffness and
workspace of several examples of planar 2-DOF 3-differential CDPRs are
then compared. The results of these comparisons illustrate that the stiff-
ness of planar CDPRs can be significantly improved by means of pulley
differentials.

Keywords: Cable-driven parallel robots, differential pulley actuation,
stiffness analysis

1 Introduction

This paper deals with cable-driven parallel robots (CDPRs) whose cable seg-
ments are not each driven by a single actuator but are coupled through differ-
entials. Coupling and transmitting the actuation torque of a single actuator to
several cable segments has been shown in previous works to be a possible so-
lution to extend the workspace of CDPRs by purely passive mechanical means
[1–3], i.e. without relying on additional actuators or relocating the latter on a
structural frame. Compared to conventional CDPRs, more cable segments then
cluttered the workspace but this should not be a critical issue for planar and
suspended CDPRs. In the specific example studied here, a single actuator simul-
taneously controls the lengths of three cable segments going from the ground to
the point-mass end-effector of a planar robot and the coupling between these
cable segments is implemented through pulley differentials, similarly in principle
to the well-known block and tackle. The present paper presents and quantifies
the stiffness of such planar 2-DOF 3-differential CDPRs. Such differential cou-
plings will be shown to provide a noticeable improvement in the stiffness of the
CDPR.

As shown in Fig. 1, each cable of the CDPR consists of four successive seg-
ments BiP , PEi, EiMi, and MiP . Three of these cable segments link the point
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Fig. 1. A planar 2-DOF 3-Differential CDPR where each cable consists of four segments
BiPi, PiEi, EiMi, and MiPi, three of these segments connecting the end-effector P to
the ground points Bi, Mi and Ei.

mass P , which plays the role of the CDPR 2-DOF end-effector, to the ground.
In the remainder of this paper, these three segments are referred to as the active
cable segments. The other one, EiMi, extends between points Ei and Mi which
are both fixed to the ground. In other words, cable i exits the base first at point
Bi, and then goes in this order through points P , Ei, Mi to finally be attached
to point P . Hence, these pulley drives are referred to as 3-differential since each
one has three “active” outputs. Figure 2 shows this cable routing. In order to
implement such a mechanism, pulleys need to be used at points P , Ei, and Mi.
However, as a first approximation, the diameters of these pulleys are neglected
(considered to be null) and pulley friction is ignored (no friction). The latter
assumption implies that the cable tension is constant all along the cable, i.e.,
the four cable segments have the same tension and each active segment applies
a force of identical magnitude on the end-effector. Let n be the number of cables
used to drive point P (n = 3 in the case of Fig. 1). This paper deals with the
case of planar 2-DOF 3-differential CDPRs with n ≥ 2 cables. The mass of the
cables is neglected and all the cable segments are considered to be straight line
segments.

Stiffness and vibration analyses of usual CDPRs, where the driving cables are
directly attached to the end-effector, have been proposed in a number of works,
e.g. [4–11]. As previously mentioned, the main difference with these previous
works is that the present paper deals with the stiffness analysis of planar point-
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Fig. 2. Cable routing in a single differential: The cable starts at point Bi where the
actuated drum is located, goes to P (the end-effector), then to Ei where it is redirected
to point Mi in order to be finally attached to point P .

mass CDPRs with 3-differential pulley drive. To the best of our knowledge, the
only previous work on stiffness analysis of differential-pulley planar CDPRs is
[12] where the case of cables with two active segments is considered. Moreover,
the stiffness analysis in [12] only considered stiffness in a single direction and did
not mention the trade-off between the size of the workspace and the improvement
in stiffness inherent to pulley differentials as will be shown here.

This paper is organized as follows: First, Section 2 presents the Jacobian
and wrench matrices of differential-pulley-driven planar point-mass CDPRs with
three active cable segments. Then, in Section 3, the stiffness matrix of these
mechanisms is derived based on the usual linear spring cable elongation model.
Finally, Section 4 reports simulations of the resulting stiffness of several examples
of planar 2-DOF 3-differential CDPRs.

2 Wrench and Jacobian Matrices

The active length of the cable i in each differential routing is defined as li =

lBiP +lEiP +lMiP where lBiP = ‖
−−→
BiP‖, lEiP = ‖

−−→
EiP‖ and lMiP = ‖

−−→
MiP‖ are the

strained lengths of the active cable segments BiP , EiP and MiP , respectively.
Length li is the sum of the cable segment lengths that change when the position
of point P changes. It should not be confused with the total length of the cable
which includes the length of the cable segment between points Ei and Mi. Let us
define the vector l of the active cable lengths li as l = [l1, l2, . . . , ln]

T
. Moreover,

let l̇ be the time derivative of l, p = [px, py]
T

be the position vector of point P
in the fixed reference frame (0, x, y), and ṗ the velocity of point P . A Jacobian
matrix J then maps ṗ (resp. dp) into l̇ (resp. dl)

l̇ =


l̇1
l̇2
...

l̇n

 = Jṗ ⇐⇒ dl = Jdp (1)
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with

J =

 uT
B1 + uT

E1 + uT
M1

...
uT
Bn + uT

En + uT
Mn


n×2

(2)

where uBi, uEi and uMi are the unit vectors directed along the cable segments
BiP , EiP , and MiP , pointing from the base points Bi, Ei, and Mi, to point
P , respectively. The vector of cable tensions ti is denoted t = [t1, t2, . . . , tn]

T
.

Pulley friction being neglected, the cable tension ti is constant all along the
cable. The force f applied by the n cables to the point-mass P is then given by

f = Wt (3)

where the 2× n wrench matrix W is defined as W = −JT .

3 Stiffness Analysis

The elastic potential energy of cable i is given by

Vi =
1

2
ki (lti − l0i)

2
(4)

where lti is the total length of cable i

lti = li + lEiMi
(5)

with lEiMi
the length of the passive cable segment EiMi and li = lBiP + lEiP +

lMiP the active length of cable i, as defined in Section 2. l0i is the corresponding
unstrained length, l0i = l0BiP

+l0EiP
+l0EiMi

+l0MiP
. The elongation is supposed

to be uniform along the cable length and the cable is assumed to be a linear spring
with ti = ki (lti − l0i), ki = AE

l0i
, where A and E are the cable cross-sectional

area and elastic modulus, respectively.
The total elastic potential energy V of the 3-differential CDPR is then the

sum of the elastic potential energies of all its n cables

V =

n∑
i=1

Vi =
1

2

n∑
i=1

ki (lti − l0i)
2

(6)

Computing the derivative of Equation (6) yields

dV =

n∑
i=1

dVi =

n∑
i=1

ki (lti − l0i) dlti =

n∑
i=1

ki (lti − l0i) dli (7)

where dlti = dli according to Eq. (5) and to the fact that dlEiMi = 0 (the
distance between the ground points Ei and Mi is constant). Then, defining the
diagonal matrix D and vectors lt and l0 as follows

D =

k1 . . .

kn

 , lt =


lt1
lt2
...
ltn

 and l0 =


l01
l02
...
l0n

 (8)
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Eq. (7) can be written

dV = (lt − l0)
T
Ddl (9)

According to Eq. (1), dl is equal to Jdp so that according to Eq. (9)

dV

dp
=


∂V

∂px

∂V

∂py

 = JTD (lt − l0) (10)

where it can be noted that D (lt − l0) = t since ti = ki (lti − l0i). The stiffness
matrix K of the 3-differential CDPR is defined as the second derivative of the
elastic potential energy, namely

K =
d2V

dp2
=


∂2V

∂p2x

∂2V

∂px∂py

∂2V

∂py∂px

∂2V

∂p2y

 (11)

Taking the derivative of Eq. (10) with respect to p, the following classic
expression of the stiffness matrix is obtained

K = JTD
dl

dp
+

dJT

dp
D (lt − l0) = JTDJ +

dJT

dp
t (12)

where, once again, the equality dlt = dl has been used. It is worth noting that this
stiffness matrix K can only be used in local stiffness analyses because Eq. (12)
is obtained from Eq. (10) by assuming that l0 is constant. In other words, the
matrix K is defined at an equilibrium, defined by both the position p and the
cable tensions t, and it can be used to analyze the stiffness of the robot in the
vicinity of this equilibrium. In this local analysis, the actuators are assumed to be
locked or their position controlled to a constant value. Note also that, according

to Eq. (3) and (10),
dV

dp
= JT t = −f , and thus

K =
d

dp

(
dV

dp

)
=

d(−f)
dp

⇐⇒ Kdp = d(−f) (13)

Hence, in the vicinity of an equilibrium defined by p and t, K maps an infini-
tesimal displacement dp in the position of point P to the corresponding infini-
tesimal change in the force −f , where f is the force applied by the cables to
point P (Eq. (3)).

The approach used above to derive the stiffness matrix is a rather classic one,
but care must be taken to use in Eq. (12) the Jacobian matrix defined in Eq. (1),
where each row of this matrix is equal to the sum uT

Bi + uT
Ei + uT

Mi of the unit
vectors directed along the three straight line segments delineated by the active
cable segments.
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Referring to the right-hand side of Eq. (12), the stiffness matrix is seen to
be the sum of two matrices. In the next section of this paper, for simplicity and
due to space limitations, only the influence on stiffness of the matrix JTDJ will
be considered.

4 Results

Fig. 3. Example planar 2-DOF 3-differential CDPR with 3 cables (Case 1)

This section reports simulations of the stiffness of six planar 2-DOF 3-
differential CDPRs with n = 3 cables, across their respective workspaces. These
six examples are defined as Cases 1 to 6 in Tables 1 and 2. Case 1 is shown in
Fig. 3 together with its Wrench-Closure Workspace (WCW) [13] and Wrench-
Feasible Workspace (WFW) [14]. Here, the WFW is defined as the set of po-
sitions of point P such that any force f of magnitude less or equal to 0.1 N
can be generated by the cables at P with tensions ti, i = 1 . . . n, satisfying
tmin ≤ ti ≤ tmax where tmin = 0.1 N and tmax = 1 N.

Case 2 defined in Table 1 is a planar 2-DOF 3-differential CDPR where the
three active cable segments are superposed. It is obtained from Case 1 by taking
Bi ≡ Ei ≡ Mi for i = 1, 2 and 3. Case 3 in Table 1 defines a CDPR without
pulley differential where each cable consists of only one segment from Bi to P . It
is obtained from Case 1 by keeping segment BiP and removing the other cable
segments PEi, EiMi, and MiP .

Case 4 defined in Table 2 is another planar 2-DOF 3-differential CDPR. It
is shown in Fig. 4 where its WFW is defined as above for Case 1. Case 5 is a
planar 2-DOF 3-differential CDPR obtained from Case 4 by superposing the 3
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Case 1 Case 2 Case 3

x (m) y (m) x (m) y (m) x (m) y (m)

B1 cos(π/3) sin(π/3) cos(π/3) sin(π/3) cos(π/3) sin(π/3)

E1 cos(2π/3) sin(2π/3) cos(π/3) sin(π/3) × ×
M1 0 1 cos(π/3) sin(π/3) × ×
B2 −1 0 −1 0 −1 0

E2 cos(−2π/3) sin(−2π/3) −1 0 × ×
M2 cos(−5π/6) sin(−5π/6) −1 0 × ×
B3 cos(−π/3) sin(−π/3) cos(−π/3) sin(−π/3) cos(−π/3) sin(−π/3)

E3 1 0 cos(−π/3) sin(−π/3) × ×
M3 cos(−π/6) sin(−π/6) cos(−π/3) sin(−π/3) × ×

Table 1. Geometries of the first three examples of planar 2-DOF 3-differential CDPRs.
The crosses × indicate that the corresponding point Ei or Mi does not exist, i.e., Case
3 defines a CDPR without pulley differential where each cable consists of only one
segment from Bi to P .

Case 4 Case 5 Case 6

x (m) y (m) x (m) y (m) x (m) y (m)

B1 1 0 1 0 1 0

E1 cos(2π/3) sin(2π/3) 1 0 × ×
M1 cos(π/3) sin(π/3) 1 0 × ×
B2 cos(2π/3) sin(2π/3) cos(2π/3) sin(2π/3) cos(2π/3) sin(2π/3)

E2 cos(−2π/3) sin(−2π/3) cos(2π/3) sin(2π/3) × ×
M2 −1 0 cos(2π/3) sin(2π/3) × ×
B3 cos(−2π/3) sin(−2π/3) cos(−2π/3) sin(−2π/3) cos(−2π/3) sin(−2π/3)

E3 1 0 cos(−2π/3) sin(−2π/3) × ×
M3 cos(−π/3) sin(−π/3) cos(−2π/3) sin(−2π/3) × ×

Table 2. Geometries of the last three examples of planar 2-DOF 3-differential CDPRs.
Case 6 defines a CDPR without pulley differential where each cable consists of only
one segment from Bi to P .
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Fig. 4. Example planar 2-DOF 3-differential CDPR with 3 cables (Case 4)

active segments of each cable and Case 6 is a CDPR without pulley differential
obtained from Case 4 by removing, for each cable, all segments but BiP .

As mentioned at the end of Section 3, the subsequent stiffness analysis is
based on considering that the stiffness matrix is K = JTDJ. To “normalize”
the stiffness coefficient with respect to specific values, we use E = 1 Pa and
A = 0.001 m2. Note that these values, together with the tmin and tmax values
defined above, do not correspond to actual physical values since, for instance,
steel wire ropes typically have elastic modulus E of tens of GPa. However, it
is not important for the purposes of this section where stiffness comparisons
between several 2-DOF 3-differential CDPRs are made. Moreover, in the calcu-
lation of D, for simplicity, we assume that the unstrained length of each cable
segment is equal to its strained length. For a given position of the end-effector P ,
the two eigenvalues of the 2× 2 stiffness matrix K can then be calculated. The
minimum (resp. maximum) stiffness values shown in the left part (resp. right
part) of Fig. 5 are defined as the minimum (resp. maximum) of these two eigen-
values. The values of the ratios of the minimum to the maximum eigenvalues
over the WCW of Case 1 are shown in Fig. 6.

The means of the minimum stiffness values, maximum stiffness values and
ratio of minimum to maximum stiffness values over the WCW of the planar
2-DOF 3-differential CDPR examples defined in Tables 1 and 2 are given in
Table 3. The mean of the minimal stiffness in Case 1 is 2.4 times larger than in
Case 3, where Case 3 corresponds to a classic CDPR with no pulley differential.
The means of the maximum stiffness and stiffness ratio in Case 1 are both 1.4
times larger than in Case 3. Comparing Case 2 to Case 3, the minimum and
maximum stiffness values are 3 times larger for Case 2 while the stiffness ratios
are identical. Hence, planar 2-DOF 3-differential CDPRs (Cases 1 and 2) present
a larger stiffness over their workspace than the corresponding CDPR without
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Fig. 5. Minimum and maximum stiffness values over the WCW of Case 1

Case min (N/m) max (N/m) ratio

1 0.0018 0.0041 0.43

2 0.0022 0.0086 0.31

3 0.00074 0.0029 0.31

4 0.0012 0.0016 0.79

5 0.0022 0.0086 0.31

6 0.00074 0.0029 0.31

Table 3. Means of the minimum stiffness values (min), maximum stiffness values (max)
and ratio of minimum to maximum stiffness values (ratio) over the WCW of the 2-DOF
3-differential CDPR examples

pulley differential (Case 3). Similar results are obtained by comparing Cases 4
and 5 to Case 6. The cases with superposed cable segments (Cases 2 and 5) have
larger minimum and maximum stiffness values than the ones with distinct cable
segments (Cases 1 and 4). Note that Case 4 has the best stiffness ratio.

Finally, Table 4 shows a comparison of the size of the WCW and WFW in
each case. The WFW is defined for all the six cases as it has been defined above
for Case 1. From these examples, it can be concluded that the cases of 2-DOF
3-differential CDPRs with superposed cable segments (Cases 2 and 5) lead to
the largest stiffness improvements but with a marginal gain on the sizes of the
WCW and WFW, as compared to the cases without pulley differentials (Cases 3
and 6). In comparison, the stiffness improvement is less significant in the cases of
2-DOF 3-differential CDPRs with distinct cable segments (Cases 1 and 4) with,
however, a slightly better improvement in the WCW and WFW sizes.
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Fig. 6. Ratio of minimal to the maximal stiffness values over the WCW of Case 1

5 Conclusion

This paper presented the stiffness analysis of planar 2-DOF CDPRs with pulley
differentials where a single actuator simultaneously controls the lengths of three
cable segments going from the ground to the point-mass end-effector. Based on
the usual linear spring cable elongation model, the expression of the stiffness ma-
trix has been derived. The stiffness and workspace of several examples of planar
2-DOF 3-differential CDPRs have then been compared. These comparisons show
that the stiffness of such planar CDPRs can be significantly improved compared
to more common CDPRs without pulley differentials, without decreasing the
size of the CDPR workspace. Additionally, the presented example comparisons

Case WCW WFW

1 37.6% 29.5%

2 32.4% 27.3%

3 32.4% 24.7%

4 33.6% 22.6%

5 32.4% 27.3%

6 32.4% 24.7%

Table 4. WCW and WFW coverage of the total area occupied by the CDPR examples.
This total area is the one delimited by the circles shown in Fig. 3 and 4.
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also showed that a trade-off may exist between designing a CDPR with pulley
differentials to improve stiffness and designing one to increase the workspace
size.
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