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Abstract. Estimating the geometric parameters of a cable-driven par-
allel robot (CDPR) can be a labour intensive process or one that requires
expensive sensors. This paper presents a low-cost method for estimating
initial cable lengths and fixed cable attachment points of CDPRs. The
proposed approach relies on the detection, mapping and localisation of
fiduciary markers in the robot environment using a camera attached to
the end effector. This paper additionally tackles the generation of a list
of reachable calibration poses and presents a control scheme allowing
the CDPR to reach those. Experiments are also carried out to assess the
performance of the proposed calibration method. It appears that the pro-
posed eye-on-hand method is more accurate than a previously reported
method relying solely on cable-length measurements.

Keywords: Cable-driven parallel robot, parameter identification, ex-
perimental testing, vision-based calibration

1 Introduction

Cable-driven parallel robots (CDPRs) are a type of parallel robots where rigid
links are replaced by cables, known for their advantageous payload to weight ra-
tio which allows for higher dynamic capabilities, potentially larger translational
workspace, portability and reconfigurability. In order to fully benefit from these
capabilities, the CDPR geometric parameters have to be determined accurately,
which can prove to be difficult on a medium to large scale. Indeed, a poor knowl-
edge of these parameters inevitably degrades the positioning accuracy of the end
effector.
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Excluding conceptually simple but impractical direct measurement of the
geometry, some techniques have been developed for the Gough-Stewart platform
calibration, but also apply to CDPRs. A popular and straightforward method
uses measurements of the end effector pose in order to minimise inverse kinematic
residuals [16]. The required measurements are often obtained using external
sensors, such as a redundant leg [12], a theodolite [15] or a camera [13]. The
calibration can also be performed by imposing additional kinematics constraints
to render the internal sensors redundant [5].

Methods were proposed specifically for calibrating fully-constrained CDPRs,
without the need for external sensors [1, 2, 6]. The use of force sensors, allowing
for simultaneous stiffness identification, is also addressed in [10]. A few different
calibration algorithms are also tested experimentally in [1]. However, because
they rely on measurement redundancy, these methods algorithms cannot be ap-
plied to cable-suspended CDPRs. Without proper initial estimation of the so-
lution to the geometric identification problem, the calculation time for a large
number of calibration poses can also be considerable and the accuracy of the
solution cannot be guaranteed.

An alternative to these self-calibration methods consists in resorting to exter-
nal sensors to measure directly the end effector pose. Over the large workspace
of CDPRs, one could use traditional surveying sensors such as theodolites or
total stations but their use is time-consuming. This problem can be resolved by
resorting to automated measurement devices such as laser trackers [4] or motion
capture systems, which can be used to perform different measurements either to
directly measure the geometry or to establish the robot posture. However, while
these solutions currently seem to prevail within academia, the cost of such sys-
tems may be of the same order of magnitude as that of the CDPR itself. Hence,
there is a true incentive to find an inexpensive methodology for the calibration
of CDPRs.

It is well known that a calibrated camera can be used to estimate the position
and orientation of a size-known object expressed in its own reference frame
and vice versa. Eye-on-hand, or eye-in-hand calibration is performed using a
moving camera, often attached to the robot end effector and a fixed target. This
method is used in particular to calibrate serial robots [7]. In the case of a CDPR,
one advantage of this method is that only one camera is needed to perform a
calibration over a large workspace. Moreover, the placement of the camera is
simple and space efficient, considering that the camera on the end effector can
move across the whole workspace. This avoids having to position one or more
fixed cameras in such a way that it is possible to accurately track targets fixed on
the end effector. Considering those potential benefits, the present paper outlines
a new approach to CDPR calibration using this technique.

In section 2, the calibration process and the generation of a list of poses used
to gather data is addressed. Then, in section 3, a control scheme for reaching the
calibration poses is described. Finally, experiments are presented and the results
are discussed in section 4.
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2 Calibration

The goal of the calibration process is to identify the geometry of a given CDPR.
In the current case, we work under the hypothesis of massless and inextensible
cables. Fig. 1 shows the general geometric model of a CDPR driven by m cables.
We assume that the cable lengths are measured using relative encoders, so that
the total length of the ith cable is expressed as ρi = ∆ρi + ρi,0, where ρi,0 is the
cable length when the robot controller is first powered on after a reconfiguration.
The geometric loop-closure equation, for a given poseX = {p,Q} takes the form:

(∆ρi + ρi,0)2 = (p + Qbi − ai)
T (p + Qbi − ai), (1)

where p and Q are respectively the position vector and orientation matrix of
the end effector. In the case of a CDPR, the unknown parameters are usually
the position of the cable output points and the initial cable lengths, namely ai
and ρi0 . A full calibration would include an identification of the end effector
attachment points bi but since the latter is generally small, we consider that
these parameters can be established beforehand using conventional measuring
techniques. Regardless of the value of m, if a spatial mechanism is considered,
the constraint n ≥ 4 must be satisfied in order to avoid underdetermination of
the system, where n is the number of calibration poses.
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pcm,Qcm
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Fig. 1. Cable robot geometric model for eye-on-hand calibration

The residual of the loop-closure equation, for each measurement j, is written

ui,j = ||pj + Qjbi − ai||22 − (∆ρi,j + ρi,0)2. (2)

where ∆ρi,j is directly obtained from the relative encoders and pj and Qj are
provided by an external sensor. The calibration problem is then written as a
nonlinear least squares optimisation, namely

minimise
ai,ρi,0

m∑
i=1

n∑
j=1

u2i,j (3)
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when considering all cables i = 1, ...,m. The next section provides details con-
cerning the external measurements for every calibration pose.

2.1 Eye-on-Hand Calibration

In the work reported in this paper, this external sensor is an embedded camera,
which must provide enough data to estimate the end effector pose (pj ,Qj). The
detection of fiduciary markers is the chosen approach because it is simple and it
allows for fast processing and reliable positioning.

As the end effector is intended to cover a large workspace, the use of a single
marker would result in poor positioning accuracy and would be limited to only a
small part of the workspace. This problem could be solved by using an array of
different markers of known relative poses but the manufacturing of such objects
would be impractical or prone to errors. Instead, we choose to spread uniquely
identified markers throughout the robot workspace, without prior knowledge
of their relative pose. The existing ArUco C++ library [3, 14] can be used for
marker generation and detection and the corresponding marker mapper [11] tool
can easily be adapted, which makes it well suited for the current application.
This library allows for localisation and mapping of the markers. The resulting
map can then be used to estimate the camera pose. In such a case, the markers
can be removed after the calibration is completed.

The end effector pose can be obtained from the measured camera pose
through the rigid transformations pce and Qce, namely,

p = pmw + Qmwpcm + QmwQcmpce, (4a)

Q = QmwQcmQT
ce, (4b)

where pcm and Qcm are obtained using the camera pose reconstructed by the
marker mapper. If pmw and Qmw are not known beforehand, it is possible to
choose Ow such as it is coincident with Om, which leads to pmw = 0 and
Qmw = 13×3, thus eliminating any possibility of measurement errors between
the two reference frames.

The constant values pce and Qce must be determined prior to calibration.
These can be obtained by observing a marker with the end effector camera and
comparing the resulting pcm and Qcm measurements to the measured position
and orientation of the end effector with respect to the marker reference frame. For
fully-constrained CDPRs, this transformation can also be estimated alongside
the calibration by simply adding the parameters pce and Qce to the decision
variables of the optimisation problem of Eq. 3.

2.2 Generation of a List of Reachable Calibration Poses

In order to perform an autonomous calibration, it is essential to generate a pool of
poses Xj = {pj ,Qj}, which can be reached from an initial pose X0 = {p0,Q0},
located inside the workspace. To be feasible, the trajectory must be included
within the wrench-feasible workspace and free of collision between cables. The
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proposed method works by projecting Xr, a pose randomly generated inside a
6-dof box, towards X0, on the workspace of the robot.

However, in order to find reachable poses, an initial estimation of the param-
eters to calibrate is needed. In the context of this paper, the latter is obtained
using a simple measuring tape, but other viable and affordable solutions are
available, such as ultra-wideband positioning systems and inclinometers.

Let us define the trajectory between X0 and Xr as a straight-line motion of
point p0 combined with a constant angular velocity of the end effector. Such a
motion is parameterised as

p(λ) = p0 + λ(pr − p0), (5a)

Q(λ) = Qt(λ)Q0, (5b)

where 0 ≤ λ ≤ 1 and

Qt(λ) = eeT + cos(λφ)(13×3 − eeT ) + sinλφE (6)

is the rotation undergone by the end effector along its trajectory from its attitude
at λ = 0 to that at λ. We use

E = cpm(e), where cpm(x) ≡ ∂(x× y)

∂y
(7)

so that e and φ respectively represent the rotation axis and the rotation angle.
Upon solving Eq. (5b) for Qt(λ) and setting λ = 1, we obtain

Qt(1) = QrQ
T
0 . (8)

Those axis and angle values can be then found first by defining

vect(Qt(1)) ≡ 1

2

qt32 − qt23qt13 − qt31
qt21 − qt12

 and tr(Qt(1)) ≡ qt11 + qt22 + qt33 (9)

and then using the properties

tr(Qt(1)) = 1 + 2 cosφ, (10a)

vect(Qt(1)) = sinφe. (10b)

For the purpose of satisfying the wrench-feasible criterion, we aim to find the
maximum λ = λs value that can be reached without any constraint violation.
This can be ensured first by defining the cable direction for each cable

ci(λs) =
ai − p(λs)−Q(λs)bi
||ai − p(λs)−Q(λs)bi||

(11)

and constructing the end effector pose-dependant wrench matrix

W(λs) =

[
c1(λs) · · · cm(λs)

Q(λs)b1 × c1(λs) · · · Q(λs)bm × cm(λs)

]
. (12)
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By imposing bounds over the cable tensions in the cables tmin ≤ ti ≤ tmax and
the static equilibrium constraints, we then formulate the problem as follows

maximise λs

subject to tmin ≤ t ≤ tmax,

W(λs)t + we = 0,

0 ≤ λs ≤ 1

(13)

where t is the array of cable tensions and we is the wrench applied on the end
effector by its environment.

A similar approach is used for considering the cable-cable interferences. Let
ζ(pk1,pk2,pl1,pl2) be a function computing the distance between two line seg-
ments defined by their four end-points pk1,pk2,pl1 and pl2, as presented in [9].
The cables k and l are therefore represented by the line segments pk2−pk1 and
pl2 − pl1. These points can then be rewritten as functions of the geometry and
of the trajectories described in Eqs. (5a) and (5b):

pk1 = ak, (14a)

pk2 = p(λk,l) + Q(λk,l)bk, (14b)

pl1 = al, (14c)

pl2 = p(λk,l) + Q(λk,l)bl. (14d)

A collision between two real cables occurs when ζ(pk1,pk2,pl1,pl2) < ε, where
ε is the diameter of the cables. For the sake of simplicity, we consider cables of
a negligible diameter, i.e., ε = 0. The roots of the function are then found using

minimise
λk,l

ζ(pk1,pk2,pl1,pl2)

subject to 0 ≤ λk,l ≤ 1
(15)

for the m
2 (m − 1) possible pairs of cables, i.e., for k, l ∈ {1, ...,m}, k < l. If

no root is found, then λk,l = 1. Ultimately, when considering simultaneously
wrench feasibility and the possibility of interference between any cable pair, the
maximum point that can be reached on the trajectory is obtained as:

λ = µmin{λs, λk,l} (16)

where 0 ≤ µ ≤ 1 is a factor introduced to account for discrepancies between the
initial estimate of the robot geometry and its true geometry. It can be adjusted
according to the level of trust in the initial approximation of the parameters,
a high value representing confidence, and a low one, uncertainty. The resulting
pose X can finally be obtained using Eqs. (5a) and (5b). Since the optimisations
(13) and (15) both starts from X0, known to be located within the workspace of
the robot, a feasible solution is always found, the worst case scenario being that
Xj = X0, i.e., λ = 0.

Once the list of poses and their associated trajectories is generated, the focus
can shift to the problem of tracking them with the robot.
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3 Control

In order to move the end effector to the computed calibration poses before the
robot is fully calibrated, a control scheme capable of dealing with errors in the ini-
tial estimate of the geometric parameters is necessary. Thus, control is achieved
by a simple low-level velocity controller, inspired by [2], driven by a Cartesian
position controller. The block diagram of the control algorithm is presented in
Fig. 2. To ensure valid cable measurements, this controller purpose is to keep
the cables thaught, while trying to reach the desired pose.

Kv

RobotKτ

Cp
ṗ,ωp,Q

J
ρ̇

˙̃ρ

ρ̃p̃, Q̃

ρ̃, ˙̃ρ

+

+
+
+

−

tv

tτ

tc

t

θ̃

Forward
Kinematics

Cogging
Compensation

Tension
Distribution

we

te

Fig. 2. Control scheme used to perform the calibration

The controller Cp generates trajectories with trapezoidal speed profiles ṗ
and ω in order to reach the desired Cartesian position p and orientation Q. The
matrix J = −WT is then used to transform the desired Cartesian and angular
speeds into articular speeds. A set of feasible cable tensions τe is generated
from we using quadratic programming. The algorithm is concretely implemented
using a C program generated with CVXGEN [8]. The gain Kτ is derived from
the geometry of the winches and used to link the desired cable tension to the
motor torque, while Kv is the gain of the low-level proportional speed controller.
It should be noted than Kτ could be replaced by a closed loop tension controller.
To address undesirable speed variation issues caused by the cogging ripple of the
permanent magnets motors used in section 4, a cogging compensation block was
introduced in the model. Even though this addition produced satisfying results,
it will not be discussed in detail in this paper. The controlled motor torque is
then given by the sum of the cogging compensation torque tc, the torque tτ
needed to achieve the desired set of tensions and the torque tv generated by the
low-level proportional speed controller. A saturation is placed on tv to prevent
any excessive unwinding of the cables that could be caused by modeling errors,
since the mechanism that will next be presented for validation is backdrivable.

4 Experiment

To test the performance of the proposed method, a validation is carried out
on an existing CDPR. The setup consists of eight winches, each mounted on a
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motorised linear axis, allowing it to be easily reconfigured. The winches were
designed to operate in industrial-like conditions and to withstand a large pay-
load. They are driven by Parker MPP0923D motors coupled to 4:1 gearboxes.
The size of the gantry is approximately 5 m × 4 m × 3 m and the winches are
brought as close as physically possible to the corners of the structure.

The end effector is a 0.2 m, × 0.2 m × 0.6 m prism. The cables are made
of �5 mm Dyneema SK75 synthetic rope. As can be seen in Fig. 3, they are
attached to the end effector in a way that allows the control of its orientation. A
self-contained vision module consisting of a 1.3 megapixel Basler ace acA1300-
30gm camera, a battery and a Raspberry Pi computer is located inside the latter.
The camera is oriented towards the markers, placed on the ground for practical
reasons. For generality’s sake, the markers are not considered to be located on
a common plane. One marker is chosen as the reference for the whole map.

For the measurements, the ground truth is provided by a Faro X130 laser
scanner with a ranging error of ± 2 mm (at 1σ).

4.1 Trials and results

At first, the camera is calibrated using the Aruco calibration board, laminated on
a flat plastic surface, resulting in a mean reprojection error is 0.51 pixels. Then,
three different lists of random calibration poses (A, B and C) are generated using
µ = 0.8 and a length of n = 100 samples. The practical choice of Ow coincident
with Om is made. Data is then gathered in the form of relative cable length and
pictures of the marker map are taken using the camera. Once the robot covered
all calibration poses, the marker map geometry is established. Fig. 4 shows an
example of the reconstructed camera poses and markers locations. Using the
reconstructed camera poses, the calibration is performed by solving Eq.(3) using
the trust-region-reflective algorithm provided by the lsqnonlin MATLAB func-
tion. The resulting geometric parameters are then updated, and the accuracy is
tested for ten witness poses, shown in Fig. 5.

A second calibration, for comparison purposes, is performed again but exclud-
ing the camera data, i.e., using only cable measurements. The second method,
described in [2, 6], relies exclusively on the motor encoders of fully constrained

Fig. 3. Experimental setup: on the left, an overall view of the gantry and markers
located on the ground. On the right, the end effector and the embedded vision system
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Fig. 4. Reconstructed marker map and camera poses
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Fig. 5. Prescribed poses for calibration validation

CDPR architecture and as stated above, it can only be applied to robots with
more cables than degrees of freedom. Without an external reference, the mech-
anism geometry is unconstrained. To resolve this indeterminacy and to ensure
consistancy, six components of the ai vectors are prescribed from the values ob-
tained in the previous step. The end effector pose previously computed using the
camera is also provided to the optimisation algorithm as an initial estimation of
the solution to avoid convergence to a different local minimum. Upon completion
of the calibration, the accuracy is tested for the same ten witness poses.

The error is determined by the difference between the forward kinematics
problem (FK) result and an external measurement between the end effector and
the reference marker, provided by the laser scanner. The optimisation conver-
gence is expressed by r, which is defined as the fourth root of the residual of
Eq. (3), divided by the number of calibration poses n.

Table 1 presents the compiled performance results. The pose is measured
relative to the marker map (R.t. marker) used for calibration. To ensure proper
comparison between the two calibration methods, and to prevent any bias caused
by the camera from degrading the accuracy over the entire workspace, the pose
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is also measured relative to the first pose (R.t. 1st pose). It should be noted
that according to the ground truth measurements, errors in both position and
orientation do not seem to be predominant in one particular direction.

Table 1. Calibration results

Data set r (mm) Position error (mm) Orientation error (deg)

R.t. marker R.t. 1st pose R.t. marker R.t. 1st pose

Mean Std Mean Std Mean Std Mean Std

Proposed
method

(with camera)

A 12.9 60.9 8.1 25.8 7.8 2.1 0.8 1.3 0.9
B 14.1 64.5 14.0 27.4 8.2 2.3 0.5 1.3 0.7
C 15.6 59.5 17.2 30.5 11.1 2.9 0.6 1.6 1.2

Cable lengths

only [2, 6]

A 3.8 278.3 22.0 28.6 11.2 4.6 1.8 2.9 2.0
B 4.2 268.2 24.0 28.7 16.0 3.2 1.2 2.7 1.0
C 4.0 984.5 25.6 110.1 32.1 7.6 4.4 5.7 1.1

Additionally, for each of the 10 validation poses of the eye-on-hand calibra-
tions, a snapshot of the marker map is taken using the camera. The resulting
images can be compared to the previously established marker map geometry for
the purpose of validating the camera pose reconstruction. Because the pose of
the camera cannot be directly picked up, we measured instead the end effector
pose. Table 2 summarises the errors obtained using the laser scanner data as a
reference while Table 3 presents the discrepancy between the poses obtained with
the camera measurements alone, and those obtained through the cable lengths,
after calibration. In the following section, relationships between these data and
the calibration results will be discussed.

Table 2. Camera pose errors, relative to ground-truth

Data set Position error (mm) Orientation error (deg)

Mean Std Mean Std

A 59.2 9.1 1.8 0.4
B 61.5 12.4 1.9 0.4
C 30.8 9.6 1.5 0.4

4.2 Discussion

From the results of Table 1, it appears that the proposed eye-on-hand calibration
method did improve the accuracy of the robot relative to the first pose, but this
improvement is only statistically significant for some data sets. It can also be
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Table 3. Camera pose inconsistencies, relative to FK solution

Data set Position error (mm) Orientation error (deg)

Mean Std Mean Std

A 8.4 4.2 1.3 0.4
B 8.2 3.5 1.2 0.5
C 32.2 10.3 2.3 0.5

seen by looking at the data set C that, when compared to the calibration method
using only measurement redundancy, the use of the camera can prevent excessive
divergence of the geometric parameters. Upon one-way analysis of variance using
a significance level of 0.05, the positioning accuracy was improved only for the
dataset C, while the orientation accuracy was improved for all datasets.

It can be observed from Table 3 that the FK solution is generally consistent
with the reconstructed camera pose, especially in the case of the mean position
error of data sets A and B. However, Table 2 shows that the same camera pose
estimation is subject to errors in an order of magnitude similar to those mea-
sured after calibration, both in orientation and in translation. This suggests that
the precision of the camera pose reconstruction is limiting the accuracy of the
calibration. Improving the resolution and calibration of the vision system could
therefore lead to improvements in calibration and thus in positioning accuracy.

5 Conclusion

This paper presents an investigation into the use of an eye-on-hand calibration
method, for determining the geometric parameters of CDPRs. To this end, a list
of reachable poses was generated based on an estimate of the CDPR geometry.
A control scheme was adapted to allow the end effector to reach each of these
poses. Finally, the method was experimentally validated on a medium sized fully
constrained CDPR. While the worst relative mean position and orientation errors
measured were respectively of 30.5 mm and 1.6◦, the results suggest that the
positioning accuracy of the calibrated CDPR could be increased by improving
the accuracy of the reconstruction of the camera pose.
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