
HAL Id: lirmm-02310575
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02310575v1

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arc-Consistency in Dynamic Constraint Satisfaction
Problems

Christian Bessiere

To cite this version:
Christian Bessiere. Arc-Consistency in Dynamic Constraint Satisfaction Problems. AAAI Conference
on Artificial Intelligence, Jul 1991, Anaheim, CA, United States. pp.221-226. �lirmm-02310575�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02310575v1
https://hal.archives-ouvertes.fr

Arc-Consistency in Dynamic Constraint Satisfaction Problems

Christian Bessière

Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier
860, rue de Saint Priest

34090 Montpellier FRANCE
Email: bessiere@crim.crim.fr

Abstract
Constraint satisfaction problems (CSPs) provide a
model often used in Artificial Intelligence. Since the
problem of the existence of a solution in a CSP is an
NP-complete task, many filtering techniques have been
developed for CSPs. The most used filtering techniques
are those achieving arc-consistency. Nevertheless,
many reasoning problems in AI need to be expressed in
a dynamic environment and almost all the techniques
already developed to solve CSPs deal only with static
CSPs. So, in this paper, we first define what we call a
dynamic CSP, and then, give an algorithm achieving
arc-consistency in a dynamic CSP. The performances of
the algorithm proposed here and of the best algorithm
achieving arc-consistency in static CSPs are compared
on randomly generated dynamic CSPs. The results show
there is an advantage to use our specific algorithm for
dynamic CSPs in almost all the cases tested.

1. Introduction
Constraint satisfaction problems (CSPs) provide a simple
and good framework to encode systems of constraints and
are widely used for expressing static problems.
Nevertheless, many problems in Artificial Intelligence
involve reasoning in dynamic environments. To give only
one example, in a design process, the designer may add
constraints to specify further the problem, or relax
constraints when there are no more solutions (see the
system to design peptide synthesis plans: SYNTHIA
[Janssen et al 1989]). In those cases we need to check if
there still exist solutions in the CSP every time a
constraint has been added or removed.

Proving the existence of solutions or finding a solution
in a CSP are NP-complete tasks. So a filtering step is
often applied to CSPs before searching solutions. The
most used filtering algorithms are those achieving arc-
consistency. All arc-consistency algorithms are written for
static CSPs. So, if we add or retract constraints in a CSP
and achieve arc-consistency after each modification with
one of these algorithms, we will probably do many times
almost the same work.

So, in this paper we define a Dynamic CSP (DCSP)
([Dechter & Dechter 1988], [Janssen et al 1989]) as a
sequence of static CSPs each resulting from the addition or
retraction of a constraint in the preceding one. We propose
an algorithm to maintain arc-consistency in DCSPs which
outperforms those written for static CSPs.

The paper is organized as follows. Section 2 presents the
CSP model (2.1) and defines what we call a Dynamic CSP
(2.2). Arc-consistency filtering method is introduced and
the best algorithm achieving it (AC-4 in [Mohr &
Henderson 1986]) is described (2.3). Why this algorithm is
not optimal in DCSPs is underlined in 2.4. Section 3
presents a new method which adapts the idea of AC-4 to
reach better performances on DCSPs. In section 4, a
comparison of the performances of the two algorithms on
randomly generated DCSPs is given. Section 5 contains a
summary and some final remarks.

2. Definitions and preliminaries
2.1. Constraint Satisfaction Problems
A static constraint satisfaction problem (CSP) (X, dom,
c, R) involves a set of n variables, X = {i, j,...}, each
taking value in its respective domain, dom(i), dom(j),...,
elements of dom , and a set of constraints c . Each
constraint Cp in c involves a subset {i1,..., iq} of X and is
labeled by a relation Rp of R , subset of the Cartesian
product dom(i1) x ...x dom(iq), that specifies which values
of the variables are compatible with each other. A binary
constraint satisfaction problem is one in which all the
constraints are binary, i.e., involve two variables. A binary
CSP can be associated with a constraint-graph in which

(b,b)
(c,c)
(d,d)

(b,b)
(c,c)
(d,d)

(b,b)
(c,c)
(d,d)

(a,b)
(a,c)
(a,d)

(c,d)

(b,c)
(b,d)
(c,d)

1

23

4

5

6b,c

a

c a,b,c,d

b,c,d

b,c,d

Figure 1: An example of CSP

nodes represent variables and edges connect those pairs of
variables for which constraints are given. In that case, the
relation associated with the edge {i, j} can be denoted Rij.
Consider, for instance, the CSP presented in figure 1
(modified from [Mackworth 1977]). Each node represents a
variable whose values are explicitly indicated, and each
edge is labeled with the set of value-pairs permitted by the

constraint between the variables it connects (non-oriented
edges are equality constraints and oriented ones are a strict
lexicographic order along the arrows).

A solution of a CSP is an assignment of values to all
the variables such that all the constraints are satisfied. The
task, in a CSP, is to find one, or all the solutions.

We now only consider binary CSPs for clarity, but the
results presented here can easily be applied to general CSPs
[Bessière 1991].

2.2. Dynamic Constraint Satisfaction Problems
A dynamic constraint satisfaction problem (DCSP) p is a
sequence of static CSPs p(0),..., p (α), p (α+1),..., each
resulting from a change in the preceding one imposed by
"the outside world". This change can be a restriction (a
new constraint is imposed on a pair of variables) or a
relaxation (a constraint that was present in the CSP is
removed because it is no longer interesting or because the
current CSP has no solution).

So, if we have p(α)=(X, dom, c(α), R), we will have
p(α+1)=(X, dom, c(α+1), R) where c(α+1)=c(α) ± C , C
being a constraint. p(0) =(X, dom, ∅, R).

2.3. Arc-consistency
The task of finding solutions in a CSP has been treated by
several authors, and since the problem is NP-complete,
some of them have suggested that a preprocessing or
filtering step be applied before the search (or backtracking)
procedures. Then, consistency algorithms were proposed
([Montanari 1974], [Mackworth 1977], [Freuder 1978],
[Dechter & Pearl 1988]). These algorithms do not solve a
CSP completely but they eliminate once and for all local
inconsistencies that cannot participate in any solutions.
These inconsistencies would otherwise have been
repeatedly discovered by most backtracking procedures.

(b,b)
(c,c)
(d,d)

(b,b)
(c,c)
(d,d)

(b,b)
(c,c)
(d,d)

(a,b)
(a,c)
(a,d)

(c,d)

(b,c)
(b,d)
(c,d)

1

23

4

5

6b,c

a

c a,b,c,d

b,c,d

b,c,d

Figure 2: The CSP of fig.1 after application of an
arc-consistency algorithm

A k-consistency algorithm removes all inconsistencies
involving all subsets of size k of the n variables [Freuder
1978]. In fact, the most widely used consistency
algorithms are those achieving 2-consistency (or arc-
consistency). Arc-consistency checks the consistency of
values for each couple of nodes linked by a constraint and
removes the values that cannot satisfy this local condition
(see figure 2). It is very simple to implement and has a
good efficiency. The upper bound time complexity of the

best algorithm achieving arc-consistency (AC-4 in [Mohr
& Henderson 1986]) is O(ed2) with e the number of
constraints and d the maximal number of values in the
domain of a variable .

Arc-consistency can be seen as based on the notion of
support. A value a for the variable i is viable if there exists
at least one value that "supports" it at each variable j. The
Mohr's and Henderson's algorithm, AC-4, makes this
support evident by assigning a counter to each arc-value
pair. Such pairs are denoted [(i, j), a] and indicate the arc
from i to j with value a at node i. The edge {i, j} between i
and j may be replaced by the two directed arcs (i, j) and
(j, i) as they are treated separately by the algorithm (but
we still have Rij = Rji-1). The counters are designed by
counter[(i, j), a] and indicate the number of j values that
support the value a for i in the constraint { i , j}. In
addition, for each value b at node j , the set Sjb is
constructed where Sjb ={(i, a) / b at node j supports a at
node i}, that is, if b is eliminated at node j, then counters
at [(i, j), a] must be decremented for each (i, a) supported
by (j, b). This algorithm uses too, a table, M , to keep
track of which values have been deleted from which nodes,
and a list, List, to control the propagation of deletions
along the constraints. List is initialized with all values
(i, a) having at least one counter equal to zero. These
values are removed from M. During the propagation phase,
the algorithm takes values (j, b) in List, removes one at
each counter counter[(i, j), a] for all (i, a) in Sjb, and when
a counter[(i, j), a] becomes equal to zero, it deletes (i, a)
from M and puts it in List. The algorithm stops when List
is empty. That means all values in M have non empty
supports on all the constraints. So, the CSP is arc-
consistent. And it is the maximal arc-consistent domain.

2.4. Arc-consistency in DCSPs
Mohr's and Henderson's algorithm, AC-4, can be used in
DCSPs. It keeps all its goods properties when we do a
restriction, starting filtering from the current arc-consistent
domain and pruning a new value when one of its counters
has become zero (i.e. the value has no support on a
constraint) after addition of constraints. But, when we
remove a constraint (making a relaxation), AC-4 cannot
find which value must be put back and which one must
not: as it has "forgotten" the reason why a value has been
removed, it cannot make the opposite propagation it has
done during restrictions. So, we have to start filtering from
the initial domain.

3. A new method
3.1. Introduction
As we have seen above, AC-4 does not have good
properties (incrementality) for processing relaxations. So,
in this section, we propose DnAC-4, a new arc-consistency
algorithm for DCSPs. In DnAC-4 we extend AC-4 by
recording some informations during restrictions while

keeping its good properties. Then, DnAC-4 remains
incremental for relaxations.

More precisely, during a restriction, for every value
deleted, we keep track of the constraint origin of the
deletion as the "justification" of the value deleted. The
justification is the first constraint on which the value is
without support. During a relaxation, with the help of
justifications we can incrementaly add to the current
domain values that belong to the new maximal arc-
consistent domain. But we need to be careful because after
the relaxation, the system must be in the same state as if
the algorithm had started with the initial CSP p(0), and had
done only restrictions with all the new set of constraints:
the new domain must be the maximal arc-consistent
domain and the set of justifications of removed values
must remain well-founded . Well-founded means that
every value removed is justified by a non-cyclic chain of
justifications (see figure 2: (2, c) deletion justified by the
constraint {2, 6}, (6, c) by {6, 5} and (5, c) by {5, 2}
would not be a well-founded set of justifications).

This process of storing a justification for every value
deleted is based on the same idea as the system of
justifications of deductions in truth maintenance systems
(TMSs) [Doyle 1979], [McAllester 1980].

3.2. The algorithm DnAC-4
The algorithm we propose works with nearly the same data
structures than AC-4. Each arc-value pair [(i, j), a] has a
counter of the number of supports, denoted
counter[(i, j), a]. A table D of booleans keeps track of
which values are in the current domain or not. The first
difference is that a set of supported values Sjib is
constructed for each arc-value pair [(j, i), b]: Sjib ={a / b at
node j supports a at node i} (we have Sjb (of AC-4) equal
to ≈Sjib for {j, i} ∈ c). So, when a constraint {i, j} is
retracted, we delete Sija and Sjib for all arc-value pairs
[(i, j), a] and [(j, i), b] instead of removing values (i, a) in
Sjb and values (j, b) in Sia. In the data structure we added a
table justif to record the justifications of the values deleted:
justif(i, a)=j iff (i, a) has been removed from D because
counter[(i, j), a] was equal to zero (i.e. {i, j} is the origin
of (i, a) deletion). Then, for all (i, a) in D, justif(i, a)=nil.
The lists SL and RL respectively control the propagation
of deletions and additions of values along the constraints.
When the algorithm starts with p(0), the tables are
initialized:
for each (i, a) ∈ dom do

begin D(i, a) , true; justif(i, a) , nil end;

Adding a constraint {i, j} is done by calling:
procedure Add ({i, j });

begin
Put {i, j } in the set of constraints c;
SL , ∅ ;
Beg-Add ((i, j), SL); Beg-Add ((j, i), SL);
Propag-Suppress (SL);

end;

• the procedure Beg-Add (see fig.3) builds
counter[(i, j), a], counter[(j, i), b], Sija, Sjib, for each
values (i, a) and (j, b). It puts in the suppression list S L
arc-value pairs without support on {i, j} (i.e. with counter
equal to zero).

procedure Beg-Add ((i, j) ; var SL);
begin

1 for each b ∈ dom(j) do Sjib , ∅;
2 for each a ∈ dom(i)do

begin
3 Total , 0;
4 for each b ∈ dom(j) do
5 if ((i, a), (j, b)) ∈ Rij then

begin
6 if D(j, b)=true then Total , Total + 1;
7 Append(Sjib , (a));

end;
8 counter[(i, j), a] , Total ;
9 if counter[(i, j), a]=0 then Append(SL, [(i, j), a]);

end;
end;

Figure 3

• in the procedure Propag-Suppress (see fig.4), values
without support (in SL) are deleted and the consequences of
these deletions are recursively propagated. For all value
removed from D, Propag-Suppress updates the table justif.

procedure Propag-Suppress (var SL);
begin

1 while SL ≠ ∅ do
begin

2 choose [(i, m), a] from SL and remove it from SL;
3 if D(i, a)=true and counter[(i, m), a]=0 then

begin
4 justif(i, a) , m ;
5 D(i, a) , false;
6 for each j / {i, j } ∈ c do
7 for each b ∈ Sija do

begin
8 counter[(j, i), b] , counter[(j, i), b] - 1;
9 if counter[(j, i), b]=0 then

Append(SL, [(j, i), b]) ;
end;

end;
end

end;
Figure 4

Removing a constraint {k, m} is done by calling:
procedure Relax ({k, m });

begin
SL , ∅ ;
Init-Propag-Relax ({k, m }, SL);
Propag-Suppress (SL);

end;
The well-foundness property must be kept after the
relaxation of a constraint. So, there are two parts in the

relaxation process:
• part1 : the procedure Init-Propag-Relax (see fig.5) in

step 1 puts in the relaxation list R L values (k , a) and
(m, b) for which removing was directly due to {k, m} (i.e.
justif(k, a)=m or justif(m, b)=k), and deletes counters and
sets of supported values for all arc-value pairs [(k, m), a]
and [(m, k), b]. In step 2 it adds in D values in RL and
these adding of values are recursively propagated to each
value that has a support restored on the constraint marked
as its justification. Init-Propag-Relax finishes when every
value with a support on the constraint marked as its
justification of deletion is added to D. During this phase of
putting back values, when an added value (i, a) is still
without support on a constraint {i , j} (i.e.
counter[(i, j), a]=0), Init-Propag-Relax puts in SL the arc-
value pair [(i, j), a].

procedure Init-Propag-Relax ({k, m }; var SL);
begin
{ Step 1: values whose justification was {k, m } are

put in RL }
1 RL , ∅ ;
2 for each a ∈ dom(k) do

if justif(k, a)=m then
begin
Append(RL, (k, a)); justif(k, a) , nil ;
end;

3 for each b ∈ dom(m) do
if justif(m, b)=k then

begin
Append(RL, (m, b)); justif(m, b) , nil ;
end;

4 Delete {k, m } from the set of constraints c and remove
its counters and sets of supported values;

{ Step 2: values in RL are added to D and
consequences are propagated }

5 while RL ≠ ∅ do
begin

6 choose (i, a) from RL and remove it from RL;
7 D(i, a), true ;
8 for each j / {i, j } ∈ c do

begin
9 for each b ∈ Sija do

begin
1 0 counter[(j, i), b] , counter[(j, i), b] + 1;
1 1 if justif(j, b)=i then

begin
Append(RL, (j, b)); justif(j, b) , nil ;
end;

end;
1 2 if counter[(i, j), a]=0 then

Append(SL, [(i, j), a]);
end;

end;
end;

Figure 5

• part2 : Propag-Suppress retracts again values in SL ,
marking as the new justification the constraint on which

the value is still without support (or one of the constraints
if there are more than one). These suppressions are
propagated: the classic arc-consistency process restarts.

We develop here DnAC-4 on the DCSP of figures 1, 2
and 6, to show the mechanism of justifications:

Changes : Consequences : Justifications stored :
Add {1, 2} deletion of (2, a) justification(2, a)={1, 2}
Add {2, 3} deletion of (2, b) justification(2, b)={2, 3}

deletion of (2, c) justification(2, c)={2, 3}
Add {2, 4}
Add {2, 5} deletion of (5, b) justification(5, b)={2, 5}

deletion of (5, c) justification(5, c)={2, 5}
Add {5, 6} deletion of (6, b) justification(6, b)={5, 6}

deletion of (6, c) justification(6, c)={5, 6}
Add {6, 2}
Relax {2, 3}: • step1: (2, b) and (2, c) are added because
justification(2, b)={2, 3} and justification(2, c)={2, 3}. So,
(5, b) and (5, c) are added and so (6, b) and (6, c) too.

• step2: (2, b) has no support on {2, 4} so (2, b)
is deleted and justification(2, b)={2, 4}. So, (5, b) and (6, b)
are removed too by propagation and their justifications are
recorded: justification(5, b)={2, 5} or {5, 6} and
justification(6, b)={5, 6} or {6, 2} (it depends of the order of
the propagation of suppressions).

Remarks: - (2, a) is not added in step 1 of the relaxation
process because its empty support on {1, 2} (its justification)
is not affected by the {2, 3} retraction.

- when step 1 starts, (2, c) has no support on {6, 2}, but
since its justification is not {6, 2}, it is added and the
propagation shows that (2, c) deleted cannot be supported by a
well-founded set of justifications. (2, c) is in the new arc-
consistent domain.

- at the end of step 1 (2, b) is still without support on the
constraint {2, 4}, so the classic arc-consistency process
restarts, deleting (2, b) and propagating.

(b,b)
(c,c)
(d,d)

(b,b)
(c,c)
(d,d)

(b,b)
(c,c)
(d,d)

(a,b)
(a,c)
(a,d)

(b,c)
(b,d)
(c,d)

1

23

4

5

6b,c

a

c a,b,c,d

b,c,d

b,c,d

Figure 6: The CSP of fig.2 after the relaxation of the
constraint {2, 3}

3.3. Correctness of DnAC-4
We outline here the key steps for a complete proof given
in [Bessière 1991].
Notations:
ACα(dom)=the maximal arc-consistent domain of the CSP
p(α).
dom = {(i, a) / i ∈ X, a ∈ dom(i)}
(i, a) ∈ D ⇔ D(i, a)=true

TWS = {[(i, j), a] / counter[(i, j), a]=0 and (i, a) ∈ D}
(* TWS : true without support *)

Let E ⁄ dom : p(E) ≡ ∃ (i, a) ∈ E, justif(i, a)=j
and Sija (E = ∅

Basic properties:
(1) Sjib ={a / ((i, a), (j, b)) ∈ Rij}
(2) counter[(i, j), a] = number of supports of (i, a)

on {i, j} (*=∧Sija (D∧ because Rij is symetric *)
Justification properties:
(3) justif(i, a)=j ⇒ (i, a) ∉ D and counter[(i, j), a]=0
(4) (i, a) ∉ D ⇒ justif(i, a)≠nil
(5) ∀E ⁄ dom\D : p(E)=true (* well-foundness

property *)
Property 1: The assertion (TWS ⁄ SL) denoted (P1) is true
after each procedure of DnAC-4.
Proof: (P1) was true for p(0) with D=dom because c = ∅
⇒ TWS = ∅. We can easily verify this remains true by
looking lines 8-9 of Beg-Add, lines 8-9 of Propag-
Suppress and lines 7 and 12 of Init-Propag-Relax. ❏

Corollary 1: D is an arc-consistent domain at the end of
Propag-Suppress.
Proof: We know that P1 is true after Propag-Suppress.
Line 1 ⇒ SL = ∅ at the end of Propag-Suppress
 (P1)⇒ ∀(i, a) ∈ D, ∀j /{i, j} ∈ c : counter[(i, j), a] > 0
 (2)⇒ ∀(i, a) ∈ D , ∀j /{i, j} ∈ c : (i, a) has a support
(j, b) on {i, j} in D
⇒ D is arc-consistent. ❏

Corollary 2: At the end of Add, D is arc-consistent.
Corollary 3: At the end of Relax, D is arc-consistent.
Lemma 1: The assertion (ACα(dom) ⁄ D) is not affected
by Propag-Suppress.
Proof: Suppose (ACα(dom) ⁄ D) is true when Propag-
Suppress starts. A value is removed from D if one of its
counters is equal to zero. So, it has no supporting value in
D on one constraint. Since (ACα(dom) ⁄ D) was true
before its deletion, the value has no supporting value in
ACα(d o m) on this constraint and couldnot be in
ACα(dom). So, (ACα(dom) ⁄ D) remains true after the
deletion of the value. By induction it remains true during
all Propag-Suppress. ❏

Corollary 4: (ACα(dom) ⁄ D) is true at the end of Add.
Proof: In the procedure Add, before the call of Propag-
Suppress, ACα(dom) ⁄ A Cα-1(dom)=D since D is not
affected by Beg-Add. From lemma 1 we deduce that
(ACα(dom) ⁄ D) is true at the end of Add. ❏

Theorem 1: At the end of Add we have ACα(dom)=D.
Proof: From corollary 2 and 4. ❏

Lemma 2: (ACα(dom) ⁄ D) is true at the end of Init-
Propag-Relax.
Proof: ACα(dom)\D ≠ ∅ implies (from (5)) that:
∃ (i, a) ∈ ACα(dom)\D, justif(i, a)=j

and Sija ((ACα(dom)\D) = ∅

Now justif(i, a)=j (3)(2)⇒ Sija (D = ∅
so: Sija (ACα(dom) = ∅ . It is a contradiction because
(i, a) ∈ ACα(dom) ❏

Theorem 2: At the end of Relax we have ACα(dom)=D.
Proof: From lemma 1, 2 and corollary 3. ❏

3.4. Complexity of DnAC-4
DnAC-4 uses a maximum of 2ed counters (with e the
number of edges and d the maximal number of values in
the domain of a variable). The tables D and justif have a
size of nd. There are 2ed sets Sija, each having a maximal
size of d, so they need a total space of O(ed2) which is the
space complexity of the algorithm.

The upper bound time complexity for DnAC-4 is
trivially O(ed2), like for AC-4. More precisely, on one
hand, during a restriction, DnAC-4 checks the consistency
of more pairs of values than AC-4. The reason is that
during a restriction, DnAC-4 builds S jib and
counter[(i, j), a] even after the deletion of the value (i, a)
from D , because it needs these informations for an
hypothetic future relaxation. AC-4 stops this work, as
soon as (i, a) is out of D . On the other hand, during a
relaxation, DnAC-4 only checks values needed to verify the
well-founded property of justifications. AC-4 handles all
the new CSP.

3.5. Cases where DnAC-4 is performant
DnAC-4 is efficient when the phase of adding values is
short.

This is the case when the constraint graph is not
connected. Then, the propagation stay in one connected-
component.

Actually, what seems the most important for DnAC-4
efficiency is chronology. Indeed, constraints are added step
by step, and their coming date is important since the
justification of a removed value is the first constraint for
which the value had no support. This means that when a
"young" constraint is retracted, the algorithm probably
propagates a few, as the opposite of the retraction of an
"old" constraint that can modify many justifications, and
so can make the propagation larger.

4. Performance comparison
We compared AC-4 to DnAC-4 on randomly generated
DCSPs. Two probabilistic parameters were used in the
generation of CSPs. pc determines the probability that any
two variables are directly connected, and pu the probability
that any two values in an existing constraint are permitted.
Two other parameters are n the number of variables and d
the number of values for each variable.

For each randomly generated CSP, we counted the total
number of consistency checks done in AC-4 and in
DnAC-4 to achieve arc-consistency when we add
successively all the constraints generated. Then, we
choosed randomly a constraint which is responsible of at

least one value deletion (if there exists any such
constraint), and removed this constraint. We counted the
number of consistency checks done in AC-4 and in
DnAC-4 to achieve again arc-consistency in the CSP. We
summed for each algorithm the number of consistency
checks done during restrictions and relaxation. The
comparison of the results indicates if DnAC-4 is better
than AC-4 after only one relaxation (i.e. the number of
consistency checks avoided during relaxation is more
important than the number done in excess during
restrictions).

We tested the algorithms on random DCSPs with 8, 12
and 16 variables, having respectively 16, 12 and 8 values.
We tried three values for (pc, pu): (35, 65), (50, 50) and
(65, 35). For each of the nine classes of CSPs defined, we
made the test on 10 different instances of DCSPs to have a
result representative of the class.

The results reported in the table below are the averages
of the ten tests for each class.

3611
3622
3536

4
7147
3626

pc=35
pu=65

49%

n=16 d=8

3866
4010
3818

28
7684
4038

pc=50
pu=50

47%

4498
6968
4526

266
9025
7234

pc=65
pu=35

20%

4140
4140
3946

0
8086
4140

pc=35
pu=65

48%

n=12 d=12

4683
4698
4541

11
9224
4709

pc=50
pu=50

48%

4223
4449
4136

33
8359
4482

pc=65
pu=35

46%

3128
3128
2793

0
5921
3128

pc=35
pu=65

47%

n=8 d=16

3654
3654
3401

0
7055
3654

pc=50
pu=50

48%

3298
3337
3142

12
6440
3349

pc=65
pu=35

47%

restrictions AC-4
restrictions DAC-4
relaxation AC-4
relaxation DAC-4
total AC-4
total DAC-4

DAC-4 gain

Figure 7: Results of comparison tests between
AC-4 and DnAC-4

We can see that on all the classes of problems tested,
after one relaxation of constraint DnAC-4 has recovered the
time losed during restrictions. We found only three
instances, in class 3, where AC-4 remains better than
DnAC-4 after one relaxation. But in that class, CSPs are
too restricted and much more than one relaxation is needed
before the CSP accepts solutions. So, we can say that
DnAC-4 can easily recover its extra-time-consuming.

The very good results after one relaxation in classes 1,
4, 7 and 8 are not really significant because CSPs in that
classes are underconstrained, and doing a relaxation in that
case is unlikely.

The last remark we can add is that randomly generated
CSPs are not the best way to test efficiency of an
algorithm. Constraints that are created are meaningless and
propagations during relaxations always found very short in
our tests could be larger in real applications, and so the
algorithm DnAC-4 be less advantageous. But the gain
during a relaxation is so important here in all DCSPs
tested that we can hope DnAC-4 remains good on real
applications.

DnAC-4 is currently under implementation on the
SYNTHIA system [Janssen et al 1989].

5. Conclusion

We have defined what we call Dynamic CSPs and have
provided an efficient algorithm (DnAC-4) achieving arc-
consistency in DCSPs. We have compared the
performances of DnAC-4 and AC-4 (the fastest arc-
consistency algorithm on static CSPs) on many different
randomly generated CSPs. If DnAC-4 uses a little more
time than AC-4 to build an arc-consistent domain after a
restriction, it is more efficient for a relaxation because it
has learned informations about the reasons of the deletions
of values.

DnAC-4 can be useful for many systems that work in a
dynamic environment. It can easily be extended to non-
binary CSPs (see [Bessière 1991]).

The data structure created for the algorithm DnAC-4 can
be used too to answer requests of the system (or the
expert), like: "why this value has been deleted ?". The
explanation given is then the set of constraints currently
justifying the deletion of the value. It is a TMS-like use.

Acknowledgments
I would like to thank particularly Marie-Catherine Vilarem
who gives me advice and invaluable help in preparing this
paper, and also Philippe Janssen and Philippe Jégou for
their useful comments.

References
Bessière, C. 1991. Using CSPs to encode TMSs.
Technical Report, LIRMM, Montpellier II, France
Dechter, R., and Dechter, A. 1988. Belief Maintenance in
Dynamic Constraint Networks. in Proceedings AAAI-88,
St Paul MN, 37-42
Dechter, R., and Pearl, J. 1988. Network-Based Heuristics
for Constraint-Satisfaction Problems . Artificial
Intelligence 34, 1-38
Doyle, J. 1979. A Truth Maintenance System. Artificial
Intelligence 12, 231-272
Freuder, E.C. 1978. Synthesizing Constraint Expressions.
Communications of the ACM Vol.21 No.11, 958-966
Janssen, P.; Jégou, P.; Nouguier, B.; and Vilarem, M.C.
1989. Problèmes de Conception : une Approche basée sur
la Satisfaction de Contraintes . 9èmes Journées
Internationales d'Avignon: Les Systèmes Experts et leurs
Applications, 71-84
Mackworth, A.K. 1977. Consistency in Networks of
Relations. Artificial Intelligence 8, 99-118
McAllester, D.A. 1980. An Outlook on Truth
Maintenance. Technical Report AI Memo No.551, MIT,
Boston MA
Mohr, R., and Henderson, T.C. 1986. Arc and Path
Consistency Revisited. Artificial Intelligence 28, 225-233
Montanari, U. 1974. Networks of Constraints:
Fundamental Properties and Applications to Picture
Processing. Information Science 7, 95-132

