
HAL Id: lirmm-02310588
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02310588

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arc-Consistency for Non-Binary Dynamic CSPs
Christian Bessiere

To cite this version:
Christian Bessiere. Arc-Consistency for Non-Binary Dynamic CSPs. ECAI 1992 - 10th European
Conference on Artificial Intelligence, Aug 1992, Vienna, Austria. pp.23-27, �10.5555/145448.145487�.
�lirmm-02310588�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02310588
https://hal.archives-ouvertes.fr

Arc-Consistency for Non-Binary Dynamic CSPs
Christian Bessière

LIRMM (UMR C 9928 CNRS / Université Montpellier II)
860, rue de Saint Priest 34090 Montpellier, France

Email: bessiere@crim.fr

Abstract. Constraint satisfaction problems (CSPs) provide a
model often used in Artificial Intelligence. Since the problem of
the existence of a solution in a CSP is an NP-complete task, many
filtering techniques have been developed for CSPs. The most
used filtering techniques are those achieving arc-consistency.
Nevertheless, many reasoning problems in AI need to be
expressed in a dynamic environment and almost all the
techniques already developed to solve CSPs deal only with static
CSPs. So, in this paper, we first recall what we name a dynamic
CSP, and then, generalize the incremental algorithm achieving
arc-consistency on binary dynamic CSPs to general dynamic
CSPs. Like for the binary version of this algorithm, there is an
advantage to use our specific algorithm for dynamic CSPs instead
of the best static one, GAC4.

1. Introduction
Constraint satisfaction problems (CSPs) provide a
simple and good framework to encode systems of
constraints and are widely used to express static
problems. Nevertheless, many problems in Artificial
Intel l igence involve reasoning in dynamic
environments. For instance, in a design process, the
designer may add constraints to specify further the
problem, or relax constraints when there are no more
solutions (see the system to design peptide synthesis
plans: SYNTHIA [1]). Every time a constraint has been
added or removed we need to check if there still exist
solutions in the CSP.

Proving the existence of solutions or finding a
solution in a CSP are NP-complete tasks. So, a filtering
step is often applied to CSPs before searching
solutions. The most used filtering algorithms are those
achieving arc-consistency. Almost all arc-consistency
algorithms are written for static CSPs. So, if we add or
retract constraints in a CSP and achieve arc-consistency
after each modification with one of these algorithms, we
will probably do many times almost the same work. The
only arc-consistency algorithm written for dynamic
CSPs, DnAC-4 in [2], deals only with binary CSPs.

So, in this paper we recall that a Dynamic CSP
(DCSP) is a sequence of static CSPs each resulting from
the addition or retraction of a constraint in the preceding
one ([3], [2]). We propose a generalized version of

DnAC-4 to maintain arc-consistency in general DCSPs
which outperforms those written for static CSPs.

The paper is organized as follows. Section 2 presents
the CSP model (2.1) and defines what is a Dynamic CSP
(2.2). Arc-consistency filtering method is introduced
and the best algorithm achieving it (GAC4 in [4]) i s
described (2.3). Why this algorithm is not optimal in
DCSPs is underlined in 2.4. Section 3 presents a new
method which adapts the idea of GAC4 to reach better
performances on DCSPs. Section 4 contains a summary
and some final remarks.

2. Definitions and preliminaries
2.1. Constraint Satisfaction Problems

A s t a t i c constraint satisfaction problem (CSP)
(X, dom, c) involves a set of n variables , X={i, j…},
each taking value in its respective domain , dom(i),
dom(j),…, elements of dom , and a set of constraints
c . A constraint C p(i1,…,iq) constraining the subset
{i1, . . . ,iq} of X is a subset of the Cartesian product
dom(i1)x…xdom(iq), that specifies which values of the
variables are compatible with each other. A constraint i s
usually represented by the set of all tuples which are
not forbidden by it. A s o l u t i o n of a CSP is an
assignment of values to all the variables such that all
the constraints are satisfied. The task, in a CSP, is to
find one, or all the solutions. Consider for instance the
CSP presented in fig. 1. Each node represents a variable
whose values are explicitly indicated. Each constraint i s
explicitly given by the list of its admissible tuples (C1
and C5 are a strict lexicographic order along the arrows
and C2, C3, C4 are equality constraints).

1 2

cb

6 2

ba
a
b c

c

2 5

aa
b
c c

b

c c

2 3

aa
b b

3 4

aa
b
c c

b

5

a
b
c

C1 C2

C 5C4

C3

1 3

56

4
2

C4

C3

C2C1

C5
a b c

a b c
a b

a b c

a b c b

Figure 1: An example of CSP

2.2. Dynamic Constraint Satisfaction Problems

A dynamic constraint satisfaction problem (DCSP) p
is a sequence of static CSPs p(0),...p (α), p(α+1),..., each
resulting from a change in the preceding one imposed by
"the outside world". This change can be a res tr i c t ion
(a new constraint is imposed on a subset of variables) or
a relaxat ion (a constraint which was present in the
CSP is removed because it is no longer interesting or
because the current CSP has no solution).

So, if we have p (α)=(X , dom , c (α)), we will have
p(α+1)=(X, dom, c(α+1)) where c(α+1)=c(α) ± C , C being a
constraint. p(0)=(X, dom, ∅).

2.3. Arc-consistency

The task of finding solutions in a CSP has been treated
by several authors, and since the problem is NP-
complete, some of them have suggested that a
preprocessing or filtering step be applied before the
search (or backtracking) procedures. Then, consistency
algorithms were proposed ([5], [6], [7]). These
algorithms do not solve a CSP completely but they
eliminate once and for all local inconsistencies that
cannot participate in any solutions. These
inconsistencies would otherwise have been repeatedly
discovered by most backtracking procedures. The most
widely used consistency algorithms are those achieving
arc-consistency.

Definition. A tuple u in a constraint Cp is viable
iff for all variable i constrained by Cp, u[i] is a viable
value. A value a for a variable i is viable iff for all
constraint Cp constraining i there exists a viable
tuple u in C p such that u[i]=a. A CSP is arc-
consistent iff for all i∈X, for all a∈dom(i), a i s
viable.

The complexity of the best algorithm building the
largest arc-consistent domain in general CSPs (GAC4 in
[4]) is O(K) with K the sum of the lengths of all tuples
for all constraints. It has been shown that it is an
optimal algorithm.

The efficiency of GAC4 comes from the data structure
it handles which is suitable to the arc-consistency
property. Arc-consistency can be seen as based on the
notion of support. A value a for the variable i is viable if
there exists at least one tuple which "supports" it at each
constraint. GAC4 makes this support evident by
assigning a set of supports to each constraint-value
pair. The sets designed by Siap contain the tuples in Cp
that support the value a for the variable i. The algorithm
is founded on a recursive value pruning, deleting a value
when it has no support on a constraint, and then
removing at their turn all tuples including this value.
And so on until all remaining values have support on all

the constraints. So, the CSP is arc-consistent. And it i s
the maximal arc-consistent domain.

2.4. Arc-consistency in DCSPs

Mohr's and Masini's algorithm, GAC4, can be used in
DCSPs. It keeps all its goods properties when we do a
restriction, starting filtering from the current arc-
consistent domain and pruning a new value when one of
its support sets is empty after addition of constraints.
But, when we remove a constraint (making a relaxation),
GAC4 cannot find which value must be put back and
which one must not: as it has "forgotten" the reason
why a value has been removed, it cannot make the
opposite propagation it has done during restrictions.
So, we have to start filtering from the initial domain.

3. The incremental method
3.1. Introduction

As we have seen above, GAC4 does not have good
properties (incrementality) for processing relaxations.
So, in this section, we propose DnGAC4, a new arc-
consistency algorithm for DCSPs. In DnGAC4 we
extend GAC4 by recording some informations during
restrictions while keeping its good properties. Then,
DnGAC4 remains incremental for relaxations.

More precisely, during a restriction, for every value
deleted, we keep track of the constraint origin of the
deletion as the "justification" of the value deleted. The
justification is the first constraint on which the value i s
without support. For every tuple deleted, we keep track
of the value origin of its deletion as the "killer" of the
tuple deleted. The killer is the first value retracted in the
tuple. During a relaxation, with the help of
justifications and killers, we can incrementally add to
the current domain values which belong to the new
maximal arc-consistent domain. But we need to be
careful because after the relaxation the system must be in
the same state as if the algorithm had started with the
initial CSP p(0) and had done only restrictions with all
the new set of constraints: the set of justifications and
killers must remain well-founded to ensure that the
new domain is the maximal arc-consistent domain.

Definition. Justifications and killers are well-
founded iff in any set E of retracted values there
exists a value (i, a) such that, its justification being
the constraint Cp, every tuple of Cp including (i, a)
has its killer out of E.

In other words, well-foundness means that every
removed value is justified by a non-cyclic chain of
justifications and killers. The value is not recorded as
one of the reasons of its self deletion.

3.2. The algorithm DnGAC4

The algorithm we propose works with the following data
structures:
• a table D of booleans keeps track of which values are
in the current domain or not (the current domain being
named D we confuse (i, a)∈D and D(i, a)=true)
• a set of supports for each value on each constraint:
Siap={u∈Cp /(i, a)∈u and u is viable}
• for each value, the constraint origin of its deletion i s
stored in justif(i, a).

if (i, a) is viable, justif(i, a)=nil
else justif(i, a)=the number of the first constraint on

which (i, a) had got an empty support.
• for each tuple, we store in killer(u) the first value
deleted in it.

if u is viable, killer(u)=nil
else killer(u)=the first value in u retracted from D.

• a set of killed tuples for each value on each constraint:
Tiap={u∈Cp /killer(u)=(i, a)}
• the lists S L and R L respectively control the
propagation of deletions and additions of values along
the constraints; the list UL records for reconsideration
the tuples put back to ensure well-foundness but that
still have a killer.

Before giving the algorithms, we define the function
find-killer which will be used in the following.

function find-killer(u: tuple): value;
return (j, b) ∈ u /D(j, b)=false
else return nil

When the algorithm starts with p (0), the tables are
initialized:

for all (i, a) ∈ dom do
D(i, a) , true; justif(i, a) , nil ;

Add a constraint Cp to the DCSP is done by calling the
procedure Add.

procedure Add (Cp(i1,…,iq): constraint);
Put Cp(i1,…,iq) in c;
SL , ∅ ;
Init-Add (Cp(i1,…,iq), SL);
Propag-Suppress (SL);

• the procedure Init-Add creates lists Siap and Tiap for all
(i, a) such that i is constrained by Cp. It updates killer
for all tuple u in C p, adding u in all Sjbp such that
(j, b)∈u if u is viable or in Tkiller(u)p if not. All (i , a , p)
without support (Siap=∅) are added to SL.
procedure Init-Add (in Cp(i1,…,iq): constraint;

in out SL: list);

1 for all i ∈ {i1,…,iq } do
2 for all a ∈ dom(i) do Siap , ∅ ; Tiap , ∅
3 for all u ∈ Cp do
4 killer(u) , find-killer(u);
5 if killer(u) = nil then
6 for all (j, b) ∈ u do Append(Sjbp, u);
7 else Append(Tkiller(u)p, u)
8 for all i ∈ {i1,…,iq } do
9 for all a ∈ dom(i) do
10 if D(i, a) and Siap = ∅ then Append(SL, (i, a, p));

• the procedure Propag-Suppress takes constraint-value
pairs (i, a , m) in SL , removes (i, a) from D , updates
justif(i, a) and also killer(u) for all u viable such that
(i, a) ∈ u. These tuples u are added to Tiap and removed
from all Sjbp which they were belonging. If a Sjbp
becomes empty, (j, b, p) is added in SL. And so on.

procedure Propag-Suppress (in out SL: list);
1 while SL ≠ ∅ do
2 keep(SL, (i, a, m));
3 if D(i, a) and Siam = ∅ then
4 justif(i, a) , m ;
5 D(i, a) , false;
6 for all Cp in c constraining i do
7 for all u ∈ Siap do
8 killer(u) , (i, a); Append(Tiap, u);
9 for all (j, b) ∈ u do
10 Suppress(Sjbp, u);
11 if D(j, b) and Sjbp = ∅ then

Append(SL, (j, b, p));

To retract the constraint Cm(i1,…,iq) from the DCSP we
call the procedure Relax.

procedure Relax (Cm(i1,…,iq): constraint);
SL , ∅ ;
Init-Propag-Relax (Cm(i1,…,iq), SL);
Propag-Suppress (SL)

Two parts are needed in the relaxation process to
maintain the well-founded property.

• part 1. first, the procedure Init-Propag-Relax
adds to D and puts in RL all values (i, a) for which
deletion was justified by Cm (i.e. justif(i, a)=m). In a
second step, the consequences of the addition of these
values (i, a) to D are propagated. Tuples u deleted by
them (killer(u)=(i, a)) are put back in the supports lists
Sjbp of values (j, b) that they support (lines 13-15),
except if there is another value of u for which we are sure
that retraction is independant of u's retraction (lines 10-
12). At each tuple put back, we add in D and in RL every
(j, b) which has the supports set Sjbp that becomes non
empty on its justification constraint (p= justif(j, b))
(line 16). Additions of values are recursively
propagated: this second step processes while RL is non
empty. In this second step, if a tuple is added when i t

includes values not in D because we are not sure of the
independance of the retraction of these values, we add i t
in a list UL which records these "suspended" tuples (line
17). In the third step, we check if these suspended tuples
are really saved (their killers were not independent, they
had not a well-founded justification) or if their killers are
still present. In this latter case, we kill again the tuple
and remove it from the supports sets of the values it
supports.

During all the procedure Init-Propag-Relax, each time
a support set Sjbp of an added value (j , b) is found
empty, we put the constraint-value pair (j, b, p) in SL.

procedure Init-Propag-Relax (in Cm(i1,…,iq): constraint;
in out SL: list);

{Step 1: values with justification equal to Cm are added to D and
put in RL for propagation}
1 RL , ∅ ;
2 for all i ∈ {i1,…,iq } do
3 for all a ∈ dom(i) do
4 if justif(i, a)=m then

Append(RL, (i, a));
justif(i, a) , nil; D(i, a) , true

5 Remove Cm from c;
{Step 2: consequences of the addition to D of the values in RL
are propagated }
6 while RL ≠ ∅ do
7 keep (RL, (i, a));
8 for all Cp in c constraining i do
9 for all u ∈ Tiap do
10 if u!D and (∀(j, b)∈u, justif(j, b)≠p) then
11 killer(u) , find-killer(u);
12 Append(Tkiller(u)p, u)

else
13 killer(u) , nil;
14 for all (j, b) ∈ u do
15 Append(Sjbp, u);
16 if justif(j, b)=p then

Append(RL, (j, b));
justif(j, b) , nil; D(j, b) , true

17 if u!D then Append(UL, u);
18 Tiap , ∅ ;
19 if Siap = ∅ then Append(SL, (i, a, p));

{endwhile}
{Step 3: "suspended" tuples are checked }
20 while UL ≠ ∅ do
21 keep(UL, u);

{ let Cp being the constraint including u }
22 killer(u) , find-killer(u);
23 if killer(u) ≠ nil then
24 Append(Tkiller(u)p, u);
25 for all (j, b) ∈ u do
26 Suppress(Sjbp, u);
27 if D(j, b) and Sjbp = ∅ then

Append(SL, (j, b, p))

• part 2. Propag-Suppress takes constraint-value
pairs (i, a, m) in SL and removes again from D values

(i, a) which still are without support on the constraint
Cm (S iam=∅). These retractions are propagated on the
tuples and on the other values: the classic arc-
consistency process restarts.

We develop here DnGAC4 on the DCSP of fig.1, to show
the mechanism of justifications and killers (notation:
up q is the qth tuple of the constraint Cp).

Add C1. (2, a) and (2, b) deleted: justif(2, a),1 and
justif(2, b),1
Add C2. killer(u2 1),(2, a) and killer(u2 2),(2, b).
(3, a) and (3, b) deleted: justif(3, a),2 ; justif(3, b),2
Add C3. killer(u3 1),(3, a) and killer(u3 2),(3, b).
(4, a), (4, b), (5, a), (5, b) deleted: justif(4, a),3; justif(4,
b),3; justif(5, a),3; justif(5, b),3
Add C4. killer(u4 1),(2, a) and killer(u4 2),(2, b).
Add C5. killer(u5 1),(2, b).
Relax C1. (2 , a) and (2 , b) are added because
justif(2 , a)=1 and justif(2 , b)=1 . All tuples killed by
(2, a) and (2, b) are examined. u2 1, u2 2, u5 1 are restored
but not u4 1 and u4 2 because we can find another killer for
them without losing well-foundness. So, new killers are
recorded: killer(u4 1),(5, a) and killer(u4 2),(5, b). (2 , a)
and (2, b) are without support on C4 so we add them to
SL. The consequence of u2 1 and u2 2 rehabilitation is the
addition of (3, a) and (3 , b) to D. So, u3 1 and u3 2 are
restored and (4, a), (4, b), (5, a) and (5, b) are added to D.
Then, u4 1 and u4 2 are restored. The first part of the
relaxation process is finished. The second part is the
classical arc-consistency process, examining values in
SL and propagating deletions. (2 , b) is in SL but has
now a support on C4 so nothing is done. (2 , a) i s
without support on C5 so it is discarded and justif(2,
a),5. So, killer(u2 1),(2, a) and killer(u4 1),(2, a). Then, (3,
a) and (5, a) are discarded (justif(3, a),2, justif(5, a),4).
Then, killer(u3 1) , (3 , a) and (4 , a) is discarded
(justi f(4 , a) ,3). We have the new maximal arc-
consistent domain.

3.3. Correctness of DnGAC4

We give here the properties true after each procedure of
DnGAC4 which are needed to prove the correctness of
the algorithm. For a complete proof we will see [8].

Basic properties.
(1) Siap={u ∈ Cp / (i, a) ∈ u and u ⁄ D}
(2) Tiap={u ∈ Cp / (i, a)=killer(u)}

Justifications and killers properties.
(3) justif(i, a)=p ⇒ (i, a) ∉ D and Siap=∅
(4) {(i, a) ∉ D / justif(i, a)=nil}=∅

(5) {(i, a, p)/ Siap=∅ and (i, a) ∈ D} ⁄ SL
(6) killer(u)=(i, a) ⇒ (i, a) ∈ u and (i, a) ∉ D
(7) u ! D ⇒ killer(u)≠nil
(8) ∀E⁄dom\D: ∃(i, a)∈E: justif(i, a)=p and ∀u∈Cp
/(i, a)∈u: killer(u) ∉ E {well-founded property}

From (5) we can deduce that D is arc-consistent at the end
of Propag-Suppress, so at the end of Add or Relax too.
From Propag-Suppress construction we can see that if D
includes the maximal arc-consistent domain at its
begining, this remains true at its end. Now, we need
only to prove that when Propag-Suppress begins, we
always have D including the maximal arc-consistent
domain. It is evident in Add, and for Relax, we can prove
this using properties (6), (7), (8) and looking Init-
Propag-Relax construction.

3.4. Complexity of DnGAC4

In DnGAC4, the bigger data structures are the Siap and
Tiap lists of tuples. They take the same space as all the
constraints Cp in the CSP. This space is linear in the
sum of the lengths of all the tuples of all the constraints
(it is linear in the size of the problem).

The upper bound time complexity of DnGAC4, like in
GAC4, is linear in the size of the problem since the
atomic operations are first Append(Siap, u), and then
Suppress(Siap, u) (the total size of the Siap sets being
bounded by the size of the problem). But these
operations must be processed in constant time. A
suitable data structure is shown in [4].

If we want to specify the complexity of DnGAC4, we
can say that, on one hand, during a restriction, DnGAC4
does a little more processing than GAC4, building a
more complex data structure (for each tuple a killer i s
stored, and for each value we record a justification). On
the other hand, during a relaxation, DnGAC4 only
checks values and tuples needed to verify the well-
founded property of justifications and killers. GAC4
handles all the new CSP.

3.5. Performance comparison

There are too many parameters in general DCSPs to
provide significant tests on randomly generated DCSPs
but it seems that DnGAC4 on general DCSPs works at
least as better as DnAC-4 on binary DCSPs. If DnGAC4
is applied on CSPs containing only ternary constraints,
we can see that it generally outperforms GAC4 after the
first relaxation of constraint, reaching a gain of 35%
(average of the classes of CSPs tested) on the sum of the
running time of all restrictions plus the relaxation.
More, if we modify the DCSP several times, adding and
removing constraints until we find a "good" consistent

CSP (what is done in all design problems) we remark
that the gain of DnGAC4 fastly grows and overtops 50%
after two or three relaxations. More changes will be
done, more the use of DnGAC4 will be interesting.

DnGAC4 is now under implementation on
SYNTHIA [1].

4. Conclusion
We have defined what we call Dynamic CSPs and have
underlined that there does not exist algorithms
incrementally maintaining arc-consistency in general
DCSPs (there exists one only for binary DCSPs). We
have noticed that arc-consistency is the most used
filtering technique in CSPs, and so, it is important to
have an incremental algorithm for all DCSPs. Then, we
have provided an efficient algorithm (DnGAC4)
incrementally achieving arc-consistency in general
DCSPs. DnGAC4 can be useful for many systems which
work in a dynamic environment.

Acknowledgements
I would like to thank particularly Marie-Catherine
Vilarem for the implementation of my work on
SYNTHIA and Philippe David who gives me constructive
suggestions for the final draft.

References
[1] P. Janssen, P. Jégou, B. Nouguier, M.C. Vilarem, B. Castro:
"Synthia: Assisted design of peptide synthesis plans"; New
Journal of Chemistry, 14-12, 1990, 969-976

[2] C. Bessière: "Arc-Consistency in Dynamic Constraint
Satisfaction Problems"; Proceedings AAAI-91, Anaheim CA,
221-226

[3] R. Dechter, A. Dechter: "Belief Maintenance in Dynamic
Constraint Networks"; Proceedings AAAI-88, St Paul MN, 37-42

[4] R. Mohr, G. Masini: "Good Old Discrete Relaxation" ;
Proceedings ECAI-88, München, FRG, 651-656

[5] U. Montanari: "Networks of Constraints: Fundamental
Properties and Applications to Picture Processing"; Information
Science 7 (1974), 95-132

[6] A.K. Mackworth: "Consistency in Networks of Relations";
Artificial Intelligence 8 (1977) 99-118

[7] E.C. Freuder: "Synthesizing Constraint Expressions" ;
Communications of the ACM Nov. 1978 Vol.21 No.11, 958-966

[8] C. Bessière: "Algorithmes d'arc-consistance pour les CSP
dynamiques"; Tech.Rep. 91-086, LIRMM Montpellier II,
France, August 1991 (in French)

