N
N

N

HAL

open science

Application of Constraint Networks Filtering Techniques
to Truth Maintenance Systems

Christian Bessiere

» To cite this version:

Christian Bessiere. Application of Constraint Networks Filtering Techniques to Truth Maintenance
Systems. CAIA: Conference on Artificial Intelligence for Applications, Mar 1993, Orlando, FL, United

States. pp.41-47. lirmm-02310598

HAL Id: lirmm-02310598
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02310598
Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02310598
https://hal.archives-ouvertes.fr

Application of Constraint Networks Filtering Techniques
to Truth Maintenance Systems

Christian Bessiere
LIRMM, University of Montpellier II
860, rue de Saint Priest, 34090 Montpellier, France
Phone: (33) 67 14 85 63 Email: bessiere@crim.fr

Abstract

A truth maintenance system (TMS) is a general
problem solving facility designed to work in tandem with
an inference engine. Justification-based TMSs (the most
commonly used TMSs) have not a sufficient expressive
power for many applications. Logic-based TMSs
overcome this limitation but are untractable. So,
McAllester, or Forbus and de Kleer, have proposed to
encode formulae in clauses and to run the efficient Boolean
Constraint Propagation algorithm (BCP), what lose the
completeness of the deductions. In this paper, we introduce
the model of Constraint Networks (CNs), underlining that
the notion of local completeness (called local-consistency
in CNs) has been widely treated in CNs. We then propose
an encoding of McAllester's TMS in Dynamic CN to be
able to use CNs techniques. We show that not only we
can compute as many deductions as BCP for the same
time-consuming, but also we can outperform the local
completeness computed for a slight more running-time.

Al topic: reasoning

Domain area: Expert systems, problem solving
Impact: The estimated benefit is 40% more information
deduced (in average) in a problem solver, while keeping
reasonable time-consuming.

1. Introduction

In this paper, we briefly recall that Justification-based
TMSs have not a sufficient expressive power for many
applications (see [1]). We present Logic-based TMSs
(LTMSs) and remark that efficiency and completeness
cannot hold together since any SAT problem can be
encoded in an LTMS. Then, the problem is to find a
compromise between efficiency and completeness. The
usual way is to encode arbitrary formulae into Conjunctive
Normal Form (CNF) and to run the efficient Boolean
Constraint Propagation algorithm (BCP). De Kleer has
shown in [2] that encoding formulae into CNF results in
losing locality properties of the original formulae and
leads BCP to fail on some deductions. He proposed to

solve local incompleteness by locally compiling formulae
into their prime implicates.

We propose here another alternative, starting from the
observation that the notions of incompleteness or local
completeness are well known and have been widely treated
in Constraint Networks (CNs). The idea is to encode an
LTMS into a CN and to find CNs filtering techniques
which compute the same deductions as the TMS's
algorithm BCP, for the same cost. Then, we will look for
another filtering technique which provides more deductions
(i.e. less incomplete) for a sligth more running-time.

The rest of the paper is organized as follows: Section
2 presents the basic definitions on TMSs and underlines
the drawbacks and advantages of each class saying why
McAllester's TMS is interesting. Section 3 introduces
CNis definitions necessary to understand the next section.
Section 4 begins with a representation of McAllester's
TMS in a Dynamic CN, gives properties of this
representation and shows that we can improve the
deduction algorithm using a well known CNs filtering
technique. An experimental comparison of BCP and this
new approach is given. Section 5 is a conclusion on the
interest of this approach.

2. Definitions and preliminaries on truth
maintenance systems

A truth maintenance system (TMS) is a general
problem solving facility designed to work in tandem with
an inference engine. A TMS takes assertions from the
problem solver (or inference engine). It produces
deductions from the set of assertions and maintains
justifications of its deductions. It incrementally updates its
beliefs when assumptions are added or removed. It does
dependency directed backtracking (DDB) when a
contradiction arises to track down the assumptions which
underlie that contradiction.

A large part of the definitions given in sections 2.1. and
2.2. are taken from [3], [2] and [1]. We have limited the
discussion to monotonic TMSs. Doyle's TMS with non-
monotonic justifications is not considered here, involving
problems out of the topic of this paper.

2.1. Logic-based TMS (LTMS)

Justification-based truth maintenance system
(JTMS) is the simplest and most commonly used type of
TMS. A JTMS deals only with Horn clauses. It is
sufficient for some applications but the expressive power
is very limited.

Many applications need to express more than just Horn
clauses. Logic-based TMSs (LTMSs) overcome this
limitation. Unlike the JTMS, the LTMS allows one to
express negation explicitly and to use the four usual
binary connectives (v, A, — and =). Therefore, it can
represent any propositional formula.

Definition 2.1. A LTMS involves a set of
propositional symbols S, a set of propositional
formulae F and a set of assumption literals A. A
literal is either a propositional symbol o of S or the
negation —o of a symbol 0. A formula is defined in
the usual way with the connectives -, v, A, — and =
in terms of propositional symbols. The reason for
distinguishing A from F is that F grows
monotonically while assumptions may be added or
removed from A at any time.

Definition 2.2. A labeling A is a mapping from
S to the set {T, F, U} (T for true, F for false, and
U for unknown). If for all o in S, A(0)zU then A is
complete; otherwise A is partial. A completion of a
partial labeling is a complete labeling which relabels
all the U symbols T or F. The label of the literal o
is the label of the symbol o and the label of the
literal —~ois F, T or U depending on whether the
label of ois T, F or U. The label T or F for a literal
is also called the truth value of the literal. For any
labeling A, literal [, we define A[/<—v] as the labeling
which is identical to A except that it assigns the
literal / the truth value v.

Since in an LTMS the set F can contain any
propositional formula, determining the satisfiability of
F U A or discovering if a label for a symbol logically
follows from F U A will be NP-complete tasks. So,
LTMSs are usually implemented with the useful
Boolean Constraint Propagation algorithm (BCP)
to reduce the cost of deductions updating. BCP is sound
but incomplete. Propositional formulae of F are called
now constraints.

For BCP, given any labeling A, each constraint is in
one of 4 possible states:

* the constraint is satisfied: for every completion of A
the constraint is true. For example, if A(x)=T, then
the constraint xvy is satisfied.

* the constraint is violated: there is no completion of
A which satisfies the constraint. For example, if
Ax)=T, then the constraint ~xAy is violated.

e the constraint forces a symbol's label: for every
completion of A which makes the constraint true, the
symbol is always labeled T or always F. There may
be multiple such symbols. For example, if A(x)=T,
then the constraint (xvy)—z forces z to be labeled T.

e otherwise the constraint is open.

BCP labels T, F or U every symbol of S. BCP
processes the initial set of assumption literals A ; if
o € A then o is labeled T, and if —o0 € A then o is
labeled F. All remaining symbols are initially labeled U.
BCP processes the constraints one at a time
monotonically expanding the current labeling A:

Algorithm BCP(F U A, A)

1.if F U A contains any violated constraint then
exit.

2.if F U A contains any constraint that forces a
label for a symbol, then select such a constraint C,
select a symbol o that C forces to the truth value v
and return BCP(F U A, A[o<—V]).

3. otherwise return the labeling A.

The problem of this algorithm is that determining
whether a constraint is violated or whether a constraint
forces a symbol's label are NP-complete tasks (since
constraints are arbitrary formulae). So, each of these steps
in BCP is exponential in the size of the constraint
considered.

2.2. Clause-based TMS (CTMS)

BCP on arbitrary formulae is not very efficient since it
is exponential in the size of the formulae. So, in practice,
LTMSs are often restricted to clause-based TMSs
(abbreviated CTMSs).

Definition 2.3. A CTMS involves a set of
propositional symbols S, a set of clauses F¢ instead
of a set of arbitrary formulae F, and a set of
assumption literals A. A clause is a disjunction of
literals.

The algorithm BCP is still available in CTMSs. But
tasks that were expensive on arbitrary formulae become
straightforward on clauses.

Given a labeling A, a constraint C € F is:

o Satisfied if some literal of C is labeled T.

* Violated if every literal of C is labeled F.

* Unit open if one literal is labeled U and the
remainder F (i.e. C forces the label T for this literal).

* Open if more than one literal is labeled U and the
remainder F.

Therefore, BCP on clauses (which is similar to unit
resolution) is very efficient. Even finding the justification
for a deduced literal is done by simply taking the other
literals of the clause where the deduction has been made
(all of them must be labeled F to deduce the label T for
the last one). So, it is sufficient to record the clause as the
justification of the deduction. If we denote |C| the
number of literals in a clause and |F¢| the sum of the
|C;i| for all C; € F then the complexity of BCP on
FcU A is O(|F¢l|+|A]).

Remark. JTMSs are particular CTMSs. BCP detects all
contradictions in JTMSs.

2.3. McAllester's TMS (MTMYS)

CTMSs implemented with BCP are very efficient but
have a limited expressive power compared to general
LTMSs. Hence, some authors (McAllester in [4], Forbus
and deKleer in [1]) have proposed TMSs allowing any
propositional formulae (in what they look like general
LTMSs) but translating these arbitrary formulae in clauses
before running BCP (in what they work like CTMSs).
The difference between McAllester's TMS and Forbus's
and deKleer's one is that in [1] formulae are directly
translated into Conjonctive Normal Form (CNF),
when in [4], formulae are decomposed into ternary
formulae with the help of new symbols before translating
them into CNF.

In this section, we try to give a formal definition of the
TMS presented by McAllester and denoted MTMS in the
rest of this paper.

Definition 2.4. A well-formed formula (wff) is a

formula or the negation of a formula involving a

binary connective (v, A, = or =) and two terms that

are literals or wffs:

Let fbe a formula, fis a wif iff

sf=(1v 2, orf= (1 A f2), or f=(1— f2),

or f=(f] = f2) with f7, fo wiffs or literals (f is a

positive wif)

e or f=—f7 with f7 a wff.

The main idea in a MTMS is the decomposition of any
formula given as an assumption (or assertion) to the
MTMS, in a set of ternary formulae. Each positive wif
included in the formula given to the MTMS is associated
to a new symbol by the connective =. For example, the

formula (=(xvy)—z)) will be decomposed in the set of
ternary formulae {¢r=(xvy)) ; ¢ ;=(=¢»—>2))}, ¢; and ¢»
being two new symbols. ¢; represents the formula
(=(xvy)—z)).

Definition 2.5. A MTMS involves in an
external level, a set of propositional symbols Sg and a
set of assumptions Fgq which are visible to the user.
Any literal or wff can be an assumption.

In an internal level, the kernel, not visible to the
user, it involves another set Syff of symbols (in
addition to Sg), a set of clauses F and a set of
assumption literals A.

* There is a one to one mapping between Sy and
the set of the positive wffs which appear in formulae
of Fal. Each symbol ¢ in Swff is associated to a
positive wff f=(f; * f2) by the ternary formula
¢=(l] = I2) where [] and I are the literals associated
to the wffs f7 and f> (with * € {v, A, —, =})2.

e These ternary formulae are encoded in F. by
their CNF.

* Every literal in F5 or associated to a wff element of
Fgis put in A.

Property 2.6. In a MTMS, FoU A and F, are
proportional in size.

Property 2.7. In a MTMS, FcU A and F, are
logically equivalent (i.e. the labelings satisfying
Fc U A restricted to the symbols in Sg are the
labelings satisfying Fy).

Example. Suppose the assumption formula (=(xvy)—z)
arrives in Fy, x, y and z being symbols of Sg. The symbol
associated to the formula must be put in A. If the formula
was not already known, a symbol ¢; is created in Syff.
(xvy) is a positive wff too, for which a symbol ¢, is
created in Swff. ¢ and ¢; are associated to the formulae
by the connective = CNF(¢p=(xvy)) and
CNF(¢j=(—¢»—>7)) are added to Fc. Now, ¢; can be added
to A. Suppose that the formula (=(xvy)vz) arrives now in
Fa. A symbol ¢3 must be associated to the formula and
put in A. The positive wff (xvy) which appear in the
formula was already known, so we need only to put
CNF(¢3=(—~¢pvz)) in F¢ and ¢3 in A. Now, if the
assumption (—(xvy)—>z) is removed from Fy, we simply
retract ¢; from A.

I'The number of symbols in Swris linear in | F,|, the total size of the
formulae in the MTMS.

A literal [is associated to a wff fif /=0, where ois the symbol
associated to f which is a positive wff, or if /=—0 and o is associated to
—f, fbeing a negative wff.

A MTMS seen from the outside is powerful enough to
encode any propositional formula, but inside is built like a
CTMS and so is very efficient. What are the drawbacks ?
When a formula is encoded in CNF it is decomposed in
several clauses. Now, BCP is inherently local, considering
only one propositional formula at a time. So, BCP is
complete when applied to one formula, but not when
applied to several formulae because of its locality. For
example, BCP applied to the formula ((p—¢q)A(pvq))
deduces g, but applied to the set of clauses {(-pvq); (pvg)}
it does not deduce anything. So, BCP applied to the CNF
of a formula is less powerful than applied to the original
formula. The clauses of the CNF of a formula taken one
after one forget local properties of the formula. The
solution given by de Kleer in [2] was to decompose
formulae not into CNF but into prime implicates. BCP
applied to the set of the prime implicates of a set of
formulae is complete. Since there can be an exponential
number of prime implicates for a set of formulae, deKleer
proposed to build prime implicates only for formulae
taken individually. Running BCP on the prime implicates
of the individual formulae is the same as running BCP on
the original formulae and he can exploit the efficiency of
BCP on clauses. But computing prime implicates of a
formula can be exponential in the size of the formula.

3. Constraint networks basic definitions
3.1. Constraint networks

A static constraint network (CN) (X, dom, ¢) involves
a set of variables, X = {i, j,...}, each taking value in
its respective domain, dom(i), dom(j),..., and a set of
constraints ¢. Each constraint C(i],...,iq) constraining
the subset {i],...,iq} of X, is a set of tuples, subset of the
Cartesian product dom(iy) X...X dom(iq), that specifies
which values of the variables are compatible with each
other.

A solution of a CN is an assignment of values to all
the variables such that all the constraints are satisfied.

3.2. Dynamic constraint networks

A dynamic constraint network (DCN) p is a sequence
of static CNs P(0) P(a) Plat1) each resulting from
a change in the preceding one imposed by "the outside
world". This change can be a restriction (a new
constraint is imposed on a subset of variables) or a
relaxation (a constraint which was present in the CN is
removed).

So, if we have p(a)=(X(a)’ dom(a), c(a)), we will have
Pra+1Xar1) d0Mqi1)s C(qe1) WhEre Crg 1 =¢(q) *
C(i],...,iq) and X(a+1)=X(a)U{i1,...,iq}, C(i],...,iq) being
a constraint.

3.3. Local consistency properties

Since the task of finding a solution in a CN is NP-
complete, local consistency algorithms were proposed by
many authors ([5], [6], [7]). These algorithms do not solve
a CN completely but they eliminate once and for all local
inconsistencies that cannot participate in any solutions.

The most widely used consistency algorithms are those
achieving arc-consistency. Arc-consistency checks the
consistency of values for each pair of variables linked by a
constraint and removes the values that cannot satisfy this
local condition.

Definition 3.1. A CN is arc-consistent iff for all i
in X, dom(i)20 and for all v; in dom(i), for all
CGy,..., iq) in ¢ with 7 in {i;,..., i}, there exists
vil--Vig In d om (ij)...dom(iq) such that
(vi]...vj...vig) is a tuple in C.
Arc-consistency is very simple to implement and has a
good efficiency. Its complexity is O(K) with K the sum of
the lengths of all admissible tuples for all constraints in ¢

[8].

Pairwise-consistency is another local consistency
property which checks the consistency of tuples for pairs
of constraints involving common variables. Pairwise-
consistency has first been introduced in [9] on database
schemes and has been applied to CNs in [10].

SECEPR>

Ct C2

oo N
oOoOoT| W
cooo| N
ocoMoT| @
ovTo| b

TOO | =

Figure 1. This CN is not pairewise-consistent. We have to
discard the tuple (a, a, a) from the constraint Cy(1, 2, 3)
and the tuple (b, a, b) from the constraint Co(2, 3, 4)

Definition 3.2. A CN is pairwise-consistent iff
for all C(i],...,iq) in c, C(i],...,iq)¢® and for all
C(i],...,iq) in ¢, for all C'(j],...,jp) in ¢, with
=i i b0 jp}:t@, we have C[1]=C'[1],
where C[1] is the projection of the tuples of C
on L.

4. Encoding a TMS in dynamic CN

We have seen in section 2 that in a TMS we have to
choose between expressive power and efficiency. If we
choose to keep both of them like McAllester, or Forbus
and de Kleer, we lose completeness. The compromise
made by de Kleer when computing prime implicates, is to
lose a bit of efficiency to earn local completeness. This
approach is very similar to consistency algorithms used in
CNs.

So, we propose a representation of McAllester's TMS
in dynamic CN (called coupled-MTMS in the
following) to be able to use CNs resolution techniques.

4.1. The transformation

Definition 4.1. A coupled-MTMS is a MTMS
in which the kernel is represented by the dynamic CN
(s=ssUsywff {T, F}5, fcUa). The sets of symbols Sg
and Syff are replaced by the sets of bi-valued variables
ss and sy, the set of clauses F¢ is replaced by a set
of ternary constraints f. and the set of assumption
literals A by the set of unary constraints a. Every
time CNF(¢=(/]*[2)) was added to F in the MTMS's
kernel (with * €{—, v, A, =}), the ternary constraint
CNconstraint(¢=(l]+12)) is added to f, in the kernel of
the coupled—MTMS3. Every time a literal o (resp.
- 0) was added or retracted from A, then the unary
constraint V=T (resp. Vo=F) is added or retracted
from a, V5 being the variable in s corresponding to
the symbol o.

Remark. The domain of every variable of sg or sy,ff is
{T, F}. So, if V5is the variable in the CN representation
of the kernel corresponding to the symbol o in the
MTMS, we can define the labeling A in the MTMS
corresponding to the domain dom in the CN representation
of the kernel, by:

dom(V5)={T} < M0)=T

dom(V5)={F} < AM0)=F

dom(V5)={T, F} < A(0)=U

4.2. Properties of the CN representation

The proofs of all properties and theorems which follow
are given in the full paper [11].

Property 4.2. For all wff f, its representation in
a MTMS or in a coupled-MTMS are logically
equivalent and proportional in size.

3The function CNconstraint(¢=(lj*lp)) returns in extension the
definition of the constraint, i.e. the disjunctive normal form of the
formula ¢=(/7x[p). In our case, all the constraints will have four tuples.

Theorem 4.3. BCP in a MTMS or an algorithm
that achieve arc-consistency in a coupled-MTMS
produce exactly the same deductions.

Property 4.4. Using the incremental algorithm
DnGAC4 ([12], [13]) to achieve arc-consistency in a
coupled-MTMS or using BCP in a MTMS give
proportional time consuming for any addition or
retraction of assumption in F,. More, with DnGAC4,
finding the justification of a deduced label for a
symbol is as simple as in BCP on clauses.

We have defined a representation of a MTMS in terms
of CNs (the coupled-MTMS) without any loss of
efficiency. All the tasks processed by a MTMS are still
available in a coupled-MTMS, and for the same cost.

4.3. Enhancing completeness

Having a representation of a MTMS in terms of CNs
without loss of expressive power or efficiency, we can
look for using CN techniques to achieve a local
consistency stronger than arc-consistency without losing
too much efficiency. Pairwise-consistency is a consistency
property a "little stronger" than arc-consistency. Arc-
consistency was complete for an individual constraint,
pairwise-consistency is complete for a pair of constraints.
Used in a coupled-MTMS it seems that pairwise-
consistency provides a good improvement in the number
of deductions without involving a big loss of efficiency.
The complexity of pairwise-consistency in a coupled-
MTMS is O(m-log(m)) with m the number of CN
constraints*. By properties 2.6. and 4.2., m is
proportional to |Fg|, the sum of the sizes of the formulae
in the coupled-MTMS. So, the complexity of pairwise-
consistency in a coupled-MTMS is O(|Fg|-log|Fal).

Example. Let the two formulae fj=(—(xvy)—z) and
f2=(=(xvy)vz). BCP on the CNF of the two formulae in
Forbus's and de Kleer's TMS or BCP in a MTMS with
Fa={f]. f2} as input does not deduce anything for z .

But let see what happens in a coupled-MTMS achieving
arc plus pairwise consistencies.

After the addition of f7 and f in F,, we have:
swif={¢1, ¢2, ¢ 3}, three new symbols created to be
associated to the positive formulae in Fy (see the example
of section 2.3.).

4We obtain a so good complexity because there are no constraints
larger than ternary. In this case, it is sufficient to create a variable for
each couple of variables in a constraint, to add the correct values to
these variables domains, to extend the existent constraints to these
variables and to acheive arc-consistency; this provides the same result
as pairewise-consistency on the original CN. The logarithm comes from
an existence test when we create new variables.

f={CNconstraint(¢pp=(xvy)),
CNconstraint(¢]=(=¢$p2—7)), CNconstraint(p3=(-¢2v2))}

a=(¢/=T. 3T}

92| x|y 1[92 2 93] 92| z
F|F|F| JEAFrF wi=b{=FfF
T|F|T T|F|T T|F|T
T|T|F i . I i 0
T|T|T T|T|T T|T|T

: arc-consistency alone
: with pairwise-consistency

Figure 2. The ternary constraints in the coupled-MTMS and
the deduction processes

Pairwise-consistency plus arc-consistency (see fig. 2)
deduce the label T for z from the formulae f7 and f>. We
can remark that arc-consistency alone (like BCP) does not
deduce z's value.

4.4. Experimental results

We have compared the number of deductions made by
BCP in a MTMS and by pairewise-consistency in a
coupled-MTMS on randomly generated sets of clauses. We
have made these tests on 3 classes of problems, with ten
instances in each class (we give only the average of the ten
instances).

number of
deductions

20 variables 50 clauses
pairewise
BCP

e

0’ ! ! é ! ! é ! ! gI;numberof

assumption literals
Figure 3. Comparison of BCP and pairewise-consistency
deductive power on problems with 20 variables

The problems have a fixed number of variables and a
fixed number of binary and ternary clauses. We compare
the number of deductions made by each algorithm when
the number of unary clauses added (assumption literals)
increases. We have generated only satisfiable problems.

Seeing figures 3 and 4, the first remark, evident, is that
BCP cannot deduce anything if there does not exist unary
clauses at the begining of the deduction process. BCP
needs unit open clauses to deduce values. Pairewise-
consistency can deduce values when there are no unit open
clauses.

The number of deductions made by pairewise-
consistency is almost always more than 40% better than
BCP on the same problem. The difference between the two
algorithms is the largest when there are more non-unary
clauses and less assumption literals. This is what is
wanted in a problem solver: adding less assumptions and
having more informations.

number of
deductions

60 variables 250 clauses

pairewise
BCP
'
o ! 4'1 ! Ig ! 1'2 1|6 number of
assumption literals
number of
deductions
60 variables 500 clauses
60 o o pairewise
45 BCP
30
15
T
'
0 1I é é 4|1 é 1'0 number of
assumption
literals

Figure 4. Comparison of BCP and pairewise-consistency
deductive power on problems with 60 variables

On all the classes tested, BCP needs more than twice as
many assumption literals as pairewise-consistency to
deduce the same number of values. It means, for example,
that contradictions will be discovered twice later (in
number of assumptions) than with pairewise-consistency.

On all these tests, time-consuming of pairewise-
consistency remains between 1.8 and 2.7 times as much as
BCP's.

5. Conclusion

In this paper, we have presented the main classes of
TMSs and focused on one, interesting when a large
expressive power is needed without losing too much
efficiency. We have shown its drawbacks and recalled one
solution given by deKleer to reach stronger completeness
with prime implicates. In section 4, we have introduced a
new approach, encoding a TMS into a Dynamic CN to
apply CNs techniques. We have presented CNs local
consistency techniques that in essence, look like some
techniques used in TMSs. So, the comparison was easy.
The first one (arc-consistency) is as powerful as BCP the
main used algorithm on TMSs. The second one (pairwise-

consistency) outperforms BCP for a slight more running
time. Experimental results show that pairewise-
consistency is an interesting method to maintain a local
completeness in a TMS.

References

[1] K. Forbus, J. de Kleer: "Truth Maintenance Systems";
Tutorial in Proceedings AAAI-91, Anaheim CA

[2] J. de Kleer: "Exploiting locality in a TMS"; Proceedings
AAAI-90, Boston MA, 264-271

[3] R. Zabih, D. McAllester: "A Rearrangement Search
Strategy for Determining Propositional Satisfiability" ;
Proceedings AAAI-88, St-Paul MN, 155-160

[4] D.A. McAllester: "An Outlook on Truth Maintenance",
MIT, Boston MA, Tech.Rep. AI Memo No.551, 1980

[5] U. Montanari: "Networks of Constraints: Fundamental

Properties and Applications to Picture Processing";
Information Science 7, 95-132 (1974)

[6] A.K. Mackworth: "Consistency in Networks of
Relations"; Artificial Intelligence 8 (1977) 99-118

[7]1 E.C. Freuder: "Synthesizing Constraint Expressions";
Communications of the ACM, Nov. 1978, Vol.21 No.11

[8] R. Mohr, G. Masini: "Good Old Discrete Relaxation" ;
Proceedings ECAI-88, Munchen, FRG, 651-656

[9] C. Beeri, R. Fagin, D. Maier, M. Yannakakis: "On the
desirability of acyclic database schemes"; Journal of the
ACM Vol.30, 1983, 479-513

[10] P. Janssen, P. Jégou, B. Nouguier, M.C. Vilarem: "A
Filtering Process for General Constraint-Satisfaction
Problems: Achieving Pairewise-Consistency Using an
Associated Binary Representation"; Proceedings of the IEEE
Workshop on Tools for Artificial Intelligence (TAI), Fairfax
VA, 1989, 420-427

[11] C. Bessiere: "Using CSPs to encode TMSs"; Tech. Rep.
n° 92-001, LIRMM Montpellier 11, France, January 1992

[12] C. Bessiere: "Arc-Consistency in Dynamic Constraint
Satisfaction Problems"; Proceedings AAAI-91, Anaheim
CA, 221-226

[13] C. Bessiere: "Arc-Consistency for Non-Binary
Dynamic CSPs"; Proceedings ECAI-92, Vienna, Austria, 23-
27

